Design of tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion

To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 11; S. e3188
Hauptverfasser: Zhang, Shiquan, Gan, Chaohong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 09.09.2025
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction.
AbstractList To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction.
To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction.To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction.
ArticleNumber e3188
Audience Academic
Author Gan, Chaohong
Zhang, Shiquan
Author_xml – sequence: 1
  givenname: Shiquan
  surname: Zhang
  fullname: Zhang, Shiquan
  organization: Department of Physical Education, Guilin University of Technology, Guilin, Guangxi, China
– sequence: 2
  givenname: Chaohong
  surname: Gan
  fullname: Gan, Chaohong
  organization: School of Business, Hechi University, Yizhou, Guangxi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40989459$$D View this record in MEDLINE/PubMed
BookMark eNptkk2LHCEQhpuwIbvZ7DHXIOSSHHqirXbrcdmPZGAhkI-zOFpOHLp1ojbs_vvYO5slA7EOystTL1VWvW5OQgzQNG8JXg0DGT7tAdKuNXlFiRAvmrOODn3LpexO_nmfNhc57zDGhJN65KvmlGEpJOPyrDHXkP02oOhQgRB8Rnq-96PX6aEK2vzyYYvyQy4woY3OYFEMKIEPLiYDE4SCRtApLJgOFk3zWHzrQJc5AXJz9jG8aV46PWa4eLrPm5-3Nz-uvrR3Xz-vry7vWsP4UFpDekY6Cs4Mfc-loz2TIDZEYiC4qpob0ZG-Z25jrWRMYssldaIXjmNOgJ4364OvjXqn9slPtQsVtVePQkxbpVPxZgQlKVgpqHWOYSYs1jV6PEgxYGaxI9Xrw8Frn-LvGXJRk88GxlEHiHNWtONU9KQTvKLvD-hWV-flZ0rSZsHVpeBsoLIji-HqP1QNC5M3dazOV_0o4eNRQmUK3JetnnNW6-_fjtl3T9XOmwnsc-9_51yB9gCYFHNO4J4RgtWySupxlZSpndVVon8ARKK6SQ
Cites_doi 10.1109/TCYB.2025.3577745
10.1016/j.knosys.2020.106706
10.1016/j.bspc.2025.107775
10.1002/aisy.202200131
10.1109/IJCNN.2015.7280360
10.3390/app11031064
10.12913/22998624/191264
10.1007/s10462-016-9514-6
10.1016/j.asoc.2023.110416
10.1109/TIV.2023.3288810
10.1016/j.eswa.2022.118926
10.32388/3c9rw8
10.1007/s44196-022-00179-1
10.1016/j.knosys.2020.106170
10.1016/j.inffus.2022.09.025
10.3390/app14135517
10.1109/LRA.2025.3575644
10.1007/s11263-021-01436-0
10.34133/cbsystems.0100
10.1145/3447556.3447565
10.3390/app14031155
10.1016/j.compbiomed.2022.105901
ContentType Journal Article
Copyright 2025 Zhang and Gan.
COPYRIGHT 2025 PeerJ. Ltd.
Copyright_xml – notice: 2025 Zhang and Gan.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
DOA
DOI 10.7717/peerj-cs.3188
DatabaseName CrossRef
PubMed
Gale in Context: Science
MEDLINE - Academic
WRHA-DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: WRHA-DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Education
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_93ed983dff4048d0a0a060798704d0f1
A854739211
40989459
10_7717_peerj_cs_3188
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
PUEGO
7X8
ID FETCH-LOGICAL-c457t-c164123efc76659f3649e8b190e10efca5c821664fbdd94490d593f868f5051e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591516200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:50:50 EDT 2025
Thu Sep 25 00:27:19 EDT 2025
Tue Nov 11 10:44:48 EST 2025
Tue Nov 04 18:10:53 EST 2025
Thu Nov 13 15:53:40 EST 2025
Sat Sep 27 02:50:32 EDT 2025
Sat Nov 29 07:32:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi feature fusion
Human pose recognition algorithm
Artificial neural networks
Reinforcement learning
Language English
License https://creativecommons.org/licenses/by-nc/4.0
2025 Zhang and Gan.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-c164123efc76659f3649e8b190e10efca5c821664fbdd94490d593f868f5051e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/93ed983dff4048d0a0a060798704d0f1
PMID 40989459
PQID 3253861285
PQPubID 23479
PageCount e3188
ParticipantIDs doaj_primary_oai_doaj_org_article_93ed983dff4048d0a0a060798704d0f1
proquest_miscellaneous_3253861285
gale_infotracmisc_A854739211
gale_infotracacademiconefile_A854739211
gale_incontextgauss_ISR_A854739211
pubmed_primary_40989459
crossref_primary_10_7717_peerj_cs_3188
PublicationCentury 2000
PublicationDate 2025-09-09
PublicationDateYYYYMMDD 2025-09-09
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Kai-yuan (10.7717/peerj-cs.3188/ref-7) 2022; 41
Tu (10.7717/peerj-cs.3188/ref-18) 2022; 148
Wang (10.7717/peerj-cs.3188/ref-20) 2025; 106
Prakash (10.7717/peerj-cs.3188/ref-13) 2018; 49
Gandhi (10.7717/peerj-cs.3188/ref-3) 2023; 91
Gourgari (10.7717/peerj-cs.3188/ref-4) 2013
Wei (10.7717/peerj-cs.3188/ref-22) 2021; 22
Eisenbach (10.7717/peerj-cs.3188/ref-2) 2015
Cao (10.7717/peerj-cs.3188/ref-1) 2025; 55
Yang (10.7717/peerj-cs.3188/ref-24) 2024; 35
Huang (10.7717/peerj-cs.3188/ref-6) 2021; 213
Wang (10.7717/peerj-cs.3188/ref-21) 2021; 11
Peng (10.7717/peerj-cs.3188/ref-12) 2024; 14
Kim (10.7717/peerj-cs.3188/ref-8) 2023
Zhang (10.7717/peerj-cs.3188/ref-25) 2025; 10
Xin (10.7717/peerj-cs.3188/ref-23) 2022
Zhao (10.7717/peerj-cs.3188/ref-26) 2024; 9
Hou (10.7717/peerj-cs.3188/ref-5) 2023; 16
Liu (10.7717/peerj-cs.3188/ref-10) 2021; 129
Liu (10.7717/peerj-cs.3188/ref-11) 2020; 205
Liu (10.7717/peerj-cs.3188/ref-9) 2023; 213
Sampaio (10.7717/peerj-cs.3188/ref-15) 2024; 14
Zhu (10.7717/peerj-cs.3188/ref-27) 2007
Skublewska-Paszkowska (10.7717/peerj-cs.3188/ref-16) 2024; 18
Ren (10.7717/peerj-cs.3188/ref-14) 2024; 5
Wang (10.7717/peerj-cs.3188/ref-19) 2023; 5
Sohafi-Bonab (10.7717/peerj-cs.3188/ref-17) 2023; 143
References_xml – volume: 55
  start-page: 4089
  issue: 9
  year: 2025
  ident: 10.7717/peerj-cs.3188/ref-1
  article-title: Understanding the dimensional need of noncontrastive learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2025.3577745
– volume: 213
  start-page: 106706
  year: 2021
  ident: 10.7717/peerj-cs.3188/ref-6
  article-title: A deep reinforcement learning based long-term recommender system
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106706
– start-page: 1186
  year: 2022
  ident: 10.7717/peerj-cs.3188/ref-23
  article-title: Supervised advantage actor-critic for recommender systems
– start-page: 676
  year: 2013
  ident: 10.7717/peerj-cs.3188/ref-4
  article-title: Thetis: three dimensional tennis shots a human action dataset
– volume: 106
  start-page: 107775
  year: 2025
  ident: 10.7717/peerj-cs.3188/ref-20
  article-title: Rehabilitation evaluation method and application for upper limb post-stroke based on improved DTW
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2025.107775
– volume: 5
  start-page: 2200131
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-19
  article-title: TASTA: text-assisted spatial and temporal attention network for video question answering
  publication-title: Advanced Intelligent Systems
  doi: 10.1002/aisy.202200131
– year: 2015
  ident: 10.7717/peerj-cs.3188/ref-2
  article-title: Evaluation of multi feature fusion at score-level for appearance-based person re-identification
  doi: 10.1109/IJCNN.2015.7280360
– volume: 11
  start-page: 1064
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.3188/ref-21
  article-title: Predicting implicit user preferences with multimodal feature fusion for similar user recommendation in social media
  publication-title: Applied Sciences
  doi: 10.3390/app11031064
– volume: 18
  start-page: 159
  issue: 6
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-16
  article-title: Tennis patterns recognition based on a novel tennis dataset-3DTennisDS
  publication-title: Advances in Science and Technology. Research Journal
  doi: 10.12913/22998624/191264
– volume: 49
  start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.3188/ref-13
  article-title: Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-016-9514-6
– volume: 143
  start-page: 110416
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-17
  article-title: DCARS: deep context-aware recommendation system based on session latent context
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110416
– volume: 9
  start-page: 1294
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-26
  article-title: Target-driven visual navigation by using causal intervention
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2023.3288810
– volume: 213
  start-page: 118926
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-9
  article-title: REDRL: a review-enhanced deep reinforcement learning model for interactive recommendation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118926
– volume: 35
  start-page: 025136
  issue: 2
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-24
  article-title: Multisource information fusion considering the weight of focal element’s beliefs: a Gaussian kernel similarity approach
  publication-title: Measurement Science and Technology
  doi: 10.32388/3c9rw8
– start-page: 10265
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-8
  article-title: Cross-modal learning with 3D deformable attention for action recognition
– volume: 16
  start-page: 4
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-5
  article-title: A deep reinforcement learning real-time recommendation model based on long and short-term preference
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.1007/s44196-022-00179-1
– volume: 41
  start-page: 71
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.3188/ref-7
  article-title: Patterns recognition of unsafe behavior in chemical laboratory based on C3D
  publication-title: Information Technology and Network Security
– volume: 205
  start-page: 106170
  year: 2020
  ident: 10.7717/peerj-cs.3188/ref-11
  article-title: State representation modeling for deep reinforcement learning based recommendation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106170
– volume: 91
  start-page: 424
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.3188/ref-3
  article-title: Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.09.025
– volume: 14
  start-page: 5517
  issue: 13
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-15
  article-title: Applications of machine learning to optimize tennis performance: a systematic review
  publication-title: Applied Sciences
  doi: 10.3390/app14135517
– volume: 10
  start-page: 7539
  issue: 7
  year: 2025
  ident: 10.7717/peerj-cs.3188/ref-25
  article-title: Online adaptive keypoint extraction for visual odometry across different scenes
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2025.3575644
– volume: 129
  start-page: 1596
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.3188/ref-10
  article-title: Enhanced 3D human pose estimation from videos by using attention-based neural network with dilated convolutions
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-021-01436-0
– volume: 5
  start-page: 100
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-14
  article-title: A survey on 3D skeleton-based action recognition using learning method
  publication-title: Cyborg and Bionic Systems
  doi: 10.34133/cbsystems.0100
– volume: 22
  start-page: 12
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.3188/ref-22
  article-title: Recent advances in reinforcement learning for traffic signal control: a survey of models and evaluation
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/3447556.3447565
– start-page: 487
  year: 2007
  ident: 10.7717/peerj-cs.3188/ref-27
  article-title: Combining content and link for classification using matrix factorization
– volume: 14
  start-page: 1155
  issue: 3
  year: 2024
  ident: 10.7717/peerj-cs.3188/ref-12
  article-title: Integration of deep reinforcement learning with collaborative filtering for movie recommendation systems
  publication-title: Applied Sciences
  doi: 10.3390/app14031155
– volume: 148
  start-page: 105901
  year: 2022
  ident: 10.7717/peerj-cs.3188/ref-18
  article-title: Alzheimer’s disease diagnosis via multimodal feature fusion
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105901
SSID ssj0001511119
Score 2.3026114
Snippet To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e3188
SubjectTerms Algorithms
Artificial neural networks
Education
Human pose recognition algorithm
Machine learning
Methods
Multi feature fusion
Reinforcement learning
Tennis
Title Design of tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/40989459
https://www.proquest.com/docview/3253861285
https://doaj.org/article/93ed983dff4048d0a0a060798704d0f1
Volume 11
WOSCitedRecordID wos001591516200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: WRHA-DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCmxIoK4MQnKxmN34eW9iKCrpaFZAWLpbjR7UIJVUeCC78dsZOtnThwAVFshTbiuIZOzOfM_4GoecefGwlHCMuD45QQSUpvRdE-cCEMsIKmyjz34nFQq5Wankp1VeMCRvogQfB7avCOyULFwKFyeZyAxfPBUDlnMLzE_CB20tgajgfHD8FaiDVFABZ9s-9b74Q2wJITVlWfhuhxNX_9xf5Dz8z2Zuj2-jm6Cjig-EF76ArvrqLbm2SMOBxTd5D9nWKwcB1wF2MVGmx6b-vv65N8wMqhlBJPPA142iyHK4r3PhEmGrT3iAeM0ecYVM5nCIMSfCJ8BOHPu6m3Ucfj-YfXr0hY-YEYikTHbEAgsAk-WAF50yFglPlZQnG309zqDXMytmUcxpK5xSlKndMFUFyGcAjmvriAdqp6so_RFjZUkjuSsWppIEHU_iYm14xATIuBc3Qi40o9flAkKEBWESZ6yRzbVsdZZ6hwyjoi06R1zpVgLb1qG39L21n6FlUk47MFVUMjTkzfdvq4_en-kDGNMoKAG2GXo6dQt01xprxpAEMKJJdbfXc2-oJS8tuNT_dzAYdm2I8WuXrHgY0A0MBzqFkGdodpsnFwAAxS0WZevQ_BvwY3ZjFjMPxF5baQztd0_sn6Lr91q3bZoKuipWcoGuH88XydJKWAJRvBYHy5OccyiX7DO3L45Plp1-weg2N
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+tennis+auxiliary+teaching+system+based+on+reinforcement+learning+and+multi-feature+fusion&rft.jtitle=PeerJ.+Computer+science&rft.au=Zhang%2C+Shiquan&rft.au=Gan%2C+Chaohong&rft.date=2025-09-09&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e3188&rft_id=info:doi/10.7717%2Fpeerj-cs.3188&rft.externalDocID=A854739211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon