Design of tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion
To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first e...
Gespeichert in:
| Veröffentlicht in: | PeerJ. Computer science Jg. 11; S. e3188 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
PeerJ. Ltd
09.09.2025
PeerJ Inc |
| Schlagworte: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction. |
|---|---|
| AbstractList | To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction. To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction.To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed by combining deep learning methods with tennis-related knowledge to recognize and evaluate tennis movements accurately. The algorithm first extracts human skeletal joint points from a video sequence using a human pose-recognition algorithm. Reinforcement learning is then used to extract and optimize the keyframes. Second, genetic algorithms were used to fuse the different features. The results demonstrate that the proposed tennis action recognition method achieves a classification accuracy of 98.45% for four types of tennis subactions. Its generalization ability is greater than that of graph convolutional network-based techniques, such as AGCN and ST-GCN. Lastly, following action categorization, the suggested scoring method based on dynamic temporal warping may deliver accurate and real-time assessment ratings for corresponding actions, lowering the effort of tennis instructors and significantly raising the standard of tennis instruction. |
| ArticleNumber | e3188 |
| Audience | Academic |
| Author | Gan, Chaohong Zhang, Shiquan |
| Author_xml | – sequence: 1 givenname: Shiquan surname: Zhang fullname: Zhang, Shiquan organization: Department of Physical Education, Guilin University of Technology, Guilin, Guangxi, China – sequence: 2 givenname: Chaohong surname: Gan fullname: Gan, Chaohong organization: School of Business, Hechi University, Yizhou, Guangxi, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40989459$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk2LHCEQhpuwIbvZ7DHXIOSSHHqirXbrcdmPZGAhkI-zOFpOHLp1ojbs_vvYO5slA7EOystTL1VWvW5OQgzQNG8JXg0DGT7tAdKuNXlFiRAvmrOODn3LpexO_nmfNhc57zDGhJN65KvmlGEpJOPyrDHXkP02oOhQgRB8Rnq-96PX6aEK2vzyYYvyQy4woY3OYFEMKIEPLiYDE4SCRtApLJgOFk3zWHzrQJc5AXJz9jG8aV46PWa4eLrPm5-3Nz-uvrR3Xz-vry7vWsP4UFpDekY6Cs4Mfc-loz2TIDZEYiC4qpob0ZG-Z25jrWRMYssldaIXjmNOgJ4364OvjXqn9slPtQsVtVePQkxbpVPxZgQlKVgpqHWOYSYs1jV6PEgxYGaxI9Xrw8Frn-LvGXJRk88GxlEHiHNWtONU9KQTvKLvD-hWV-flZ0rSZsHVpeBsoLIji-HqP1QNC5M3dazOV_0o4eNRQmUK3JetnnNW6-_fjtl3T9XOmwnsc-9_51yB9gCYFHNO4J4RgtWySupxlZSpndVVon8ARKK6SQ |
| Cites_doi | 10.1109/TCYB.2025.3577745 10.1016/j.knosys.2020.106706 10.1016/j.bspc.2025.107775 10.1002/aisy.202200131 10.1109/IJCNN.2015.7280360 10.3390/app11031064 10.12913/22998624/191264 10.1007/s10462-016-9514-6 10.1016/j.asoc.2023.110416 10.1109/TIV.2023.3288810 10.1016/j.eswa.2022.118926 10.32388/3c9rw8 10.1007/s44196-022-00179-1 10.1016/j.knosys.2020.106170 10.1016/j.inffus.2022.09.025 10.3390/app14135517 10.1109/LRA.2025.3575644 10.1007/s11263-021-01436-0 10.34133/cbsystems.0100 10.1145/3447556.3447565 10.3390/app14031155 10.1016/j.compbiomed.2022.105901 |
| ContentType | Journal Article |
| Copyright | 2025 Zhang and Gan. COPYRIGHT 2025 PeerJ. Ltd. |
| Copyright_xml | – notice: 2025 Zhang and Gan. – notice: COPYRIGHT 2025 PeerJ. Ltd. |
| DBID | AAYXX CITATION NPM ISR 7X8 DOA |
| DOI | 10.7717/peerj-cs.3188 |
| DatabaseName | CrossRef PubMed Gale in Context: Science MEDLINE - Academic WRHA-DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: WRHA-DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Education |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_93ed983dff4048d0a0a060798704d0f1 A854739211 40989459 10_7717_peerj_cs_3188 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM H13 NPM PUEGO 7X8 |
| ID | FETCH-LOGICAL-c457t-c164123efc76659f3649e8b190e10efca5c821664fbdd94490d593f868f5051e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591516200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:50:50 EDT 2025 Thu Sep 25 00:27:19 EDT 2025 Tue Nov 11 10:44:48 EST 2025 Tue Nov 04 18:10:53 EST 2025 Thu Nov 13 15:53:40 EST 2025 Sat Sep 27 02:50:32 EDT 2025 Sat Nov 29 07:32:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi feature fusion Human pose recognition algorithm Artificial neural networks Reinforcement learning |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 2025 Zhang and Gan. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c457t-c164123efc76659f3649e8b190e10efca5c821664fbdd94490d593f868f5051e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/93ed983dff4048d0a0a060798704d0f1 |
| PMID | 40989459 |
| PQID | 3253861285 |
| PQPubID | 23479 |
| PageCount | e3188 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_93ed983dff4048d0a0a060798704d0f1 proquest_miscellaneous_3253861285 gale_infotracmisc_A854739211 gale_infotracacademiconefile_A854739211 gale_incontextgauss_ISR_A854739211 pubmed_primary_40989459 crossref_primary_10_7717_peerj_cs_3188 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-09 |
| PublicationDateYYYYMMDD | 2025-09-09 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2025 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Kai-yuan (10.7717/peerj-cs.3188/ref-7) 2022; 41 Tu (10.7717/peerj-cs.3188/ref-18) 2022; 148 Wang (10.7717/peerj-cs.3188/ref-20) 2025; 106 Prakash (10.7717/peerj-cs.3188/ref-13) 2018; 49 Gandhi (10.7717/peerj-cs.3188/ref-3) 2023; 91 Gourgari (10.7717/peerj-cs.3188/ref-4) 2013 Wei (10.7717/peerj-cs.3188/ref-22) 2021; 22 Eisenbach (10.7717/peerj-cs.3188/ref-2) 2015 Cao (10.7717/peerj-cs.3188/ref-1) 2025; 55 Yang (10.7717/peerj-cs.3188/ref-24) 2024; 35 Huang (10.7717/peerj-cs.3188/ref-6) 2021; 213 Wang (10.7717/peerj-cs.3188/ref-21) 2021; 11 Peng (10.7717/peerj-cs.3188/ref-12) 2024; 14 Kim (10.7717/peerj-cs.3188/ref-8) 2023 Zhang (10.7717/peerj-cs.3188/ref-25) 2025; 10 Xin (10.7717/peerj-cs.3188/ref-23) 2022 Zhao (10.7717/peerj-cs.3188/ref-26) 2024; 9 Hou (10.7717/peerj-cs.3188/ref-5) 2023; 16 Liu (10.7717/peerj-cs.3188/ref-10) 2021; 129 Liu (10.7717/peerj-cs.3188/ref-11) 2020; 205 Liu (10.7717/peerj-cs.3188/ref-9) 2023; 213 Sampaio (10.7717/peerj-cs.3188/ref-15) 2024; 14 Zhu (10.7717/peerj-cs.3188/ref-27) 2007 Skublewska-Paszkowska (10.7717/peerj-cs.3188/ref-16) 2024; 18 Ren (10.7717/peerj-cs.3188/ref-14) 2024; 5 Wang (10.7717/peerj-cs.3188/ref-19) 2023; 5 Sohafi-Bonab (10.7717/peerj-cs.3188/ref-17) 2023; 143 |
| References_xml | – volume: 55 start-page: 4089 issue: 9 year: 2025 ident: 10.7717/peerj-cs.3188/ref-1 article-title: Understanding the dimensional need of noncontrastive learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2025.3577745 – volume: 213 start-page: 106706 year: 2021 ident: 10.7717/peerj-cs.3188/ref-6 article-title: A deep reinforcement learning based long-term recommender system publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106706 – start-page: 1186 year: 2022 ident: 10.7717/peerj-cs.3188/ref-23 article-title: Supervised advantage actor-critic for recommender systems – start-page: 676 year: 2013 ident: 10.7717/peerj-cs.3188/ref-4 article-title: Thetis: three dimensional tennis shots a human action dataset – volume: 106 start-page: 107775 year: 2025 ident: 10.7717/peerj-cs.3188/ref-20 article-title: Rehabilitation evaluation method and application for upper limb post-stroke based on improved DTW publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2025.107775 – volume: 5 start-page: 2200131 issue: 4 year: 2023 ident: 10.7717/peerj-cs.3188/ref-19 article-title: TASTA: text-assisted spatial and temporal attention network for video question answering publication-title: Advanced Intelligent Systems doi: 10.1002/aisy.202200131 – year: 2015 ident: 10.7717/peerj-cs.3188/ref-2 article-title: Evaluation of multi feature fusion at score-level for appearance-based person re-identification doi: 10.1109/IJCNN.2015.7280360 – volume: 11 start-page: 1064 issue: 3 year: 2021 ident: 10.7717/peerj-cs.3188/ref-21 article-title: Predicting implicit user preferences with multimodal feature fusion for similar user recommendation in social media publication-title: Applied Sciences doi: 10.3390/app11031064 – volume: 18 start-page: 159 issue: 6 year: 2024 ident: 10.7717/peerj-cs.3188/ref-16 article-title: Tennis patterns recognition based on a novel tennis dataset-3DTennisDS publication-title: Advances in Science and Technology. Research Journal doi: 10.12913/22998624/191264 – volume: 49 start-page: 1 year: 2018 ident: 10.7717/peerj-cs.3188/ref-13 article-title: Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges publication-title: Artificial Intelligence Review doi: 10.1007/s10462-016-9514-6 – volume: 143 start-page: 110416 issue: 6 year: 2023 ident: 10.7717/peerj-cs.3188/ref-17 article-title: DCARS: deep context-aware recommendation system based on session latent context publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110416 – volume: 9 start-page: 1294 issue: 1 year: 2024 ident: 10.7717/peerj-cs.3188/ref-26 article-title: Target-driven visual navigation by using causal intervention publication-title: IEEE Transactions on Intelligent Vehicles doi: 10.1109/TIV.2023.3288810 – volume: 213 start-page: 118926 issue: 3 year: 2023 ident: 10.7717/peerj-cs.3188/ref-9 article-title: REDRL: a review-enhanced deep reinforcement learning model for interactive recommendation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118926 – volume: 35 start-page: 025136 issue: 2 year: 2024 ident: 10.7717/peerj-cs.3188/ref-24 article-title: Multisource information fusion considering the weight of focal element’s beliefs: a Gaussian kernel similarity approach publication-title: Measurement Science and Technology doi: 10.32388/3c9rw8 – start-page: 10265 year: 2023 ident: 10.7717/peerj-cs.3188/ref-8 article-title: Cross-modal learning with 3D deformable attention for action recognition – volume: 16 start-page: 4 issue: 1 year: 2023 ident: 10.7717/peerj-cs.3188/ref-5 article-title: A deep reinforcement learning real-time recommendation model based on long and short-term preference publication-title: International Journal of Computational Intelligence Systems doi: 10.1007/s44196-022-00179-1 – volume: 41 start-page: 71 issue: 3 year: 2022 ident: 10.7717/peerj-cs.3188/ref-7 article-title: Patterns recognition of unsafe behavior in chemical laboratory based on C3D publication-title: Information Technology and Network Security – volume: 205 start-page: 106170 year: 2020 ident: 10.7717/peerj-cs.3188/ref-11 article-title: State representation modeling for deep reinforcement learning based recommendation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106170 – volume: 91 start-page: 424 issue: 3 year: 2023 ident: 10.7717/peerj-cs.3188/ref-3 article-title: Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions publication-title: Information Fusion doi: 10.1016/j.inffus.2022.09.025 – volume: 14 start-page: 5517 issue: 13 year: 2024 ident: 10.7717/peerj-cs.3188/ref-15 article-title: Applications of machine learning to optimize tennis performance: a systematic review publication-title: Applied Sciences doi: 10.3390/app14135517 – volume: 10 start-page: 7539 issue: 7 year: 2025 ident: 10.7717/peerj-cs.3188/ref-25 article-title: Online adaptive keypoint extraction for visual odometry across different scenes publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2025.3575644 – volume: 129 start-page: 1596 issue: 5 year: 2021 ident: 10.7717/peerj-cs.3188/ref-10 article-title: Enhanced 3D human pose estimation from videos by using attention-based neural network with dilated convolutions publication-title: International Journal of Computer Vision doi: 10.1007/s11263-021-01436-0 – volume: 5 start-page: 100 year: 2024 ident: 10.7717/peerj-cs.3188/ref-14 article-title: A survey on 3D skeleton-based action recognition using learning method publication-title: Cyborg and Bionic Systems doi: 10.34133/cbsystems.0100 – volume: 22 start-page: 12 issue: 2 year: 2021 ident: 10.7717/peerj-cs.3188/ref-22 article-title: Recent advances in reinforcement learning for traffic signal control: a survey of models and evaluation publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/3447556.3447565 – start-page: 487 year: 2007 ident: 10.7717/peerj-cs.3188/ref-27 article-title: Combining content and link for classification using matrix factorization – volume: 14 start-page: 1155 issue: 3 year: 2024 ident: 10.7717/peerj-cs.3188/ref-12 article-title: Integration of deep reinforcement learning with collaborative filtering for movie recommendation systems publication-title: Applied Sciences doi: 10.3390/app14031155 – volume: 148 start-page: 105901 year: 2022 ident: 10.7717/peerj-cs.3188/ref-18 article-title: Alzheimer’s disease diagnosis via multimodal feature fusion publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105901 |
| SSID | ssj0001511119 |
| Score | 2.3026114 |
| Snippet | To accurately identify and evaluate tennis movements, a tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion was designed... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e3188 |
| SubjectTerms | Algorithms Artificial neural networks Education Human pose recognition algorithm Machine learning Methods Multi feature fusion Reinforcement learning Tennis |
| Title | Design of tennis auxiliary teaching system based on reinforcement learning and multi-feature fusion |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40989459 https://www.proquest.com/docview/3253861285 https://doaj.org/article/93ed983dff4048d0a0a060798704d0f1 |
| Volume | 11 |
| WOSCitedRecordID | wos001591516200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: WRHA-DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCmxIoK4MQnKxmN34eW9iKCrpaFZAWLpbjR7UIJVUeCC78dsZOtnThwAVFshTbiuIZOzOfM_4GoecefGwlHCMuD45QQSUpvRdE-cCEMsIKmyjz34nFQq5Wankp1VeMCRvogQfB7avCOyULFwKFyeZyAxfPBUDlnMLzE_CB20tgajgfHD8FaiDVFABZ9s-9b74Q2wJITVlWfhuhxNX_9xf5Dz8z2Zuj2-jm6Cjig-EF76ArvrqLbm2SMOBxTd5D9nWKwcB1wF2MVGmx6b-vv65N8wMqhlBJPPA142iyHK4r3PhEmGrT3iAeM0ecYVM5nCIMSfCJ8BOHPu6m3Ucfj-YfXr0hY-YEYikTHbEAgsAk-WAF50yFglPlZQnG309zqDXMytmUcxpK5xSlKndMFUFyGcAjmvriAdqp6so_RFjZUkjuSsWppIEHU_iYm14xATIuBc3Qi40o9flAkKEBWESZ6yRzbVsdZZ6hwyjoi06R1zpVgLb1qG39L21n6FlUk47MFVUMjTkzfdvq4_en-kDGNMoKAG2GXo6dQt01xprxpAEMKJJdbfXc2-oJS8tuNT_dzAYdm2I8WuXrHgY0A0MBzqFkGdodpsnFwAAxS0WZevQ_BvwY3ZjFjMPxF5baQztd0_sn6Lr91q3bZoKuipWcoGuH88XydJKWAJRvBYHy5OccyiX7DO3L45Plp1-weg2N |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+tennis+auxiliary+teaching+system+based+on+reinforcement+learning+and+multi-feature+fusion&rft.jtitle=PeerJ.+Computer+science&rft.au=Zhang%2C+Shiquan&rft.au=Gan%2C+Chaohong&rft.date=2025-09-09&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e3188&rft_id=info:doi/10.7717%2Fpeerj-cs.3188&rft.externalDocID=A854739211 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |