Fuzzy curve-tracing algorithm
This paper presents a fuzzy clustering algorithm for the extraction of a smooth curve from unordered noisy data. In this method, the input data are first clustered into different regions using the fuzzy c-means algorithm and each region is represented by its cluster center. Neighboring cluster cente...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Jg. 31; H. 5; S. 768 - 780 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.10.2001
|
| Schlagworte: | |
| ISSN: | 1083-4419 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a fuzzy clustering algorithm for the extraction of a smooth curve from unordered noisy data. In this method, the input data are first clustered into different regions using the fuzzy c-means algorithm and each region is represented by its cluster center. Neighboring cluster centers are linked to produce a graph according to the average class membership values. Loops in the graph are removed to form a curve according to spatial relations of the cluster centers. The input samples are then reclustered using the fuzzy c-means (FCM) algorithm, with the constraint that the curve must be smooth. The method has been tested with both open and closed curves with good results. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1083-4419 |
| DOI: | 10.1109/3477.956038 |