Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance

Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of high-resolution quantitative models of the subsurface at various scales. Full modelling and inversion of visco-elastic waves from multiple seismic sources allow for the recovering of different physical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences Jg. 37; H. 4; S. 444 - 455
1. Verfasser: Brossier, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.04.2011
Elsevier
Schlagworte:
ISSN:0098-3004, 1873-7803
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of high-resolution quantitative models of the subsurface at various scales. Full modelling and inversion of visco-elastic waves from multiple seismic sources allow for the recovering of different physical parameters, although they remain computationally challenging tasks. An efficient massively parallel, frequency-domain FWI algorithm is implemented here on large-scale distributed-memory platforms for imaging two-dimensional visco-elastic media. The resolution of the elastodynamic equations, as the forward problem of the inversion, is performed in the frequency domain on unstructured triangular meshes, using a low-order finite element discontinuous Galerkin method. The linear system resulting from discretization of the forward problem is solved with a parallel direct solver. The inverse problem, which is presented as a non-linear local optimization problem, is solved in parallel with a quasi-Newton method, and this allows for reliable estimation of multiple classes of visco-elastic parameters. Two levels of parallelism are implemented in the algorithm, based on message passing interfaces and multi-threading, for optimal use of computational time and the core-memory resources available on modern distributed-memory multi-core computational platforms. The algorithm allows for imaging of realistic targets at various scales, ranging from near-surface geotechnic applications to crustal-scale exploration.
Bibliographie:http://dx.doi.org/10.1016/j.cageo.2010.09.013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2010.09.013