AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control
Smart cities and communities (SCC) constitute a new paradigm in urban development. SCC ideate a data-centered society aimed at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with Internet of Things enables data collection an...
Uložené v:
| Vydané v: | Smart cities (Basel) Ročník 4; číslo 2; s. 783 - 802 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
2021
|
| Predmet: | |
| ISSN: | 2624-6511, 2624-6511 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Smart cities and communities (SCC) constitute a new paradigm in urban development. SCC ideate a data-centered society aimed at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with Internet of Things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, smart traffic control and driver modeling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, availability of data from different stakeholders is necessary. Further, though AI technologies provide accurate predictions and classifications, there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability: models can have difficulty explaining how they came to certain conclusions, so it is difficult for humans to trust them. |
|---|---|
| AbstractList | Smart cities and communities (SCC) constitute a new paradigm in urban development. SCC ideate a data-centered society aimed at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with Internet of Things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, smart traffic control and driver modeling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, availability of data from different stakeholders is necessary. Further, though AI technologies provide accurate predictions and classifications, there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability: models can have difficulty explaining how they came to certain conclusions, so it is difficult for humans to trust them. Smart Cities and Communities (SCC) constitute a new paradigm in urban development. SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with internet of things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, Smart Traffic Control and Driver Modelling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, the availability of data from different stakeholders is need. Further, though AI technologies provide accurate predictions and classifications there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability, while the models have difficulties explaining how they come to a certain conclusions it is difficult for humans to trust it. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
| Author | Aksoy, Eren Erdal Åstrand, Björn Englund, Cristofer Alonso-Fernandez, Fernando Cooney, Martin Daniel Pashami, Sepideh |
| Author_xml | – sequence: 1 givenname: Cristofer orcidid: 0000-0002-1043-8773 surname: Englund fullname: Englund, Cristofer – sequence: 2 givenname: Eren Erdal orcidid: 0000-0002-5712-6777 surname: Aksoy fullname: Aksoy, Eren Erdal – sequence: 3 givenname: Fernando orcidid: 0000-0002-1400-346X surname: Alonso-Fernandez fullname: Alonso-Fernandez, Fernando – sequence: 4 givenname: Martin Daniel orcidid: 0000-0002-4998-1685 surname: Cooney fullname: Cooney, Martin Daniel – sequence: 5 givenname: Sepideh orcidid: 0000-0003-3272-4145 surname: Pashami fullname: Pashami, Sepideh – sequence: 6 givenname: Björn surname: Åstrand fullname: Åstrand, Björn |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-44272$$DView record from Swedish Publication Index (Högskolan i Halmstad) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-55191$$DView record from Swedish Publication Index |
| BookMark | eNqNkV2LEzEYhYOs4LruH_Aq4KXUzZtkMpPLUlctLCi67m1I82FT26QmGcV_bzojix8gXiXvm3MeDjmP0VlM0SH0FMgLxiS5Kgedqwk1uMIJJYSTB-icCsoXogM4--X-CF2WsiOE0F7yrifn6PNyjd-5XI7O1PDVFRwi_nDi4dUExDpavEqHwxjnuSZ8HfVm7_D7pC2-c9tg2rAcazroGlKcHDPiNmvvg2n-WHPaP0EPvd4Xd_nzvEAfX13frt4sbt6-Xq-WNwvTMtWF7tiGS-HBCyacJ9JTA1z30nLqwFvJNtRaIYQxvTaWdsMAtgcnCUjfC8ou0Hrm2qR36phDC_NdJR3UtEj5k2rpTrGVtk5rKThIYbkkYhgoMG54b7SVFEhjPZ9Z5Zs7jpvfaC_D3XKi5aC6DiT8n3q7VZzT_pTz2aw-5vRldKWqXRpzbF-jaMd5x4ABbyo6q0xOpWTn76lA1Kl_9Xf_zTT8YWrvUz0167D_l_UHrU27KA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3296911 crossref_primary_10_1109_ACCESS_2021_3125527 crossref_primary_10_1002_cpe_7601 crossref_primary_10_1109_ACCESS_2025_3555750 crossref_primary_10_1155_int_1782136 crossref_primary_10_3390_bdcc7010003 crossref_primary_10_3390_electronics12071517 crossref_primary_10_1016_j_giq_2023_101814 crossref_primary_10_1080_17483107_2025_2507684 crossref_primary_10_1155_2022_4681583 crossref_primary_10_1007_s10639_024_13209_6 crossref_primary_10_1016_j_ecolind_2025_114053 crossref_primary_10_1016_j_cities_2024_105021 crossref_primary_10_1088_1755_1315_1488_1_012080 crossref_primary_10_3390_wevj16010005 crossref_primary_10_1016_j_scs_2023_104985 crossref_primary_10_1016_j_ecmx_2025_101162 crossref_primary_10_1007_s11227_025_07426_0 crossref_primary_10_1016_j_trf_2025_103330 crossref_primary_10_1177_15501329221105159 crossref_primary_10_1155_2022_2332769 crossref_primary_10_3390_math10122045 crossref_primary_10_3390_app14198736 crossref_primary_10_3390_smartcities7010007 crossref_primary_10_1155_2022_4485168 crossref_primary_10_1108_JIMSE_11_2024_0035 |
| Cites_doi | 10.5220/0007682502320242 10.1109/ICCV.2017.322 10.1162/089976600300015015 10.1109/ICRA.2018.8462926 10.1016/j.engappai.2011.03.002 10.1109/ICRA.2019.8793495 10.1186/s40648-014-0001-z 10.1109/CVPR.2016.91 10.29007/dkzb 10.1109/ACCESS.2019.2915364 10.1109/IVS.2018.8500529 10.1109/ICASSP40776.2020.9053659 10.1109/CVPR.2018.00472 10.5220/0009316000002550 10.1145/2939672.2939754 10.3390/s19194279 10.1016/j.eswa.2013.08.004 10.1007/978-3-319-54181-5_14 10.7708/ijtte.2012.2(3).07 10.1109/TVT.2013.2281199 10.1109/TITS.2007.908572 10.1007/s00170-007-1273-8 10.1109/ICCVE.2014.7297636 10.1016/j.jclepro.2013.11.049 10.1109/CVPR.2018.00102 10.1109/CVPR.2014.81 10.1145/3126686.3126727 10.1109/SITIS.2018.00087 10.1007/978-3-030-39512-4_142 10.1023/A:1010933404324 10.3390/smartcities3030052 10.1093/oso/9780198538493.001.0001 10.1504/IJVD.2020.10037795 10.1109/IROS40897.2019.8968513 10.1108/BPMJ-05-2015-0074 10.1007/s11263-019-01247-4 10.1109/IROS.2016.7759048 10.1155/2016/2596783 10.1007/978-3-030-01264-9_45 10.18653/v1/D18-1246 10.1109/IVS.2017.7995831 10.1109/MWC.2016.7553038 10.1111/psyp.12243 10.1109/IV47402.2020.9304694 10.1109/SITIS.2018.00109 10.1109/IROS40897.2019.8967762 10.1109/TITS.2013.2266661 10.1109/TITS.2011.2113340 10.1609/aaai.v32i1.11849 10.1109/CVPR.2018.00479 10.1109/CVPR.2018.00033 10.1088/1742-6596/434/1/012047 10.1109/ITSC.2018.8569814 10.1109/CVPR.2019.00752 10.1177/0278364920917446 10.1016/j.medengphy.2008.06.009 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.660 10.1109/IVS.2012.6232178 10.1145/2939672.2939753 10.1007/978-3-030-01234-2_40 10.1109/EEEIC.2016.7555867 10.1109/Nets4CarsFall.2014.7000906 10.1109/TITS.2012.2204877 10.1007/978-3-319-67361-5_17 10.1109/TBME.2011.2163715 10.1109/MIC.2018.2884277 10.1016/j.cviu.2019.102805 10.1109/TITS.2012.2186513 10.1111/j.1540-4560.2007.00500.x 10.1109/3DV.2018.00053 10.1109/MITS.2016.2620398 10.1007/s10514-011-9248-x 10.3390/s18020460 10.24963/ijcai.2018/505 10.1016/j.patrec.2015.08.026 10.1109/TPAMI.2017.2699184 10.1016/j.patrec.2015.12.013 10.1109/CVPR.2017.691 10.1371/journal.pone.0096656 10.1109/TELFOR.2018.8612054 10.1007/978-3-030-01234-2_49 10.1109/TITS.2015.2471812 10.1109/CVPR.2015.7298641 10.1109/IROS.2013.6696502 10.3390/s18124423 10.1007/s11263-019-01188-y 10.1109/TMTT.2013.2256924 10.1109/TIFS.2017.2778010 10.1007/978-3-319-46448-0_2 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AAXBQ ADTPV AOWAS D8T D8Z ZZAVC DOA |
| DOI | 10.3390/smartcities4020040 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection SWEPUB Högskolan i Halmstad full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Halmstad SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2624-6511 |
| EndPage | 802 |
| ExternalDocumentID | oai_doaj_org_article_adeaa964196d4906882134c47cad9210 oai_DiVA_org_ri_55191 oai_DiVA_org_hh_44272 10_3390_smartcities4020040 |
| GeographicLocations | Europe |
| GeographicLocations_xml | – name: Europe |
| GroupedDBID | AADQD AAYXX ABJCF AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BAAKF BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IOF ITC M7S MODMG M~E N95 OK1 PHGZM PHGZT PIMPY PQGLB PTHSS 8FE 8FG ABUWG AZQEC COVID DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS 2XV AAXBQ ADMLS ADTPV AOWAS D8T D8Z IAO ICD ZZAVC |
| ID | FETCH-LOGICAL-c457t-a53b496f1f636ef09f2c14a79d42e1fd93b2dd666cc7acd25881d71e9019f7623 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668714200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-6511 |
| IngestDate | Fri Oct 03 12:52:20 EDT 2025 Tue Nov 04 16:02:33 EST 2025 Tue Nov 04 16:09:46 EST 2025 Fri Jul 25 11:43:04 EDT 2025 Sat Nov 29 07:13:45 EST 2025 Tue Nov 18 20:58:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c457t-a53b496f1f636ef09f2c14a79d42e1fd93b2dd666cc7acd25881d71e9019f7623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3272-4145 0000-0002-1043-8773 0000-0002-5712-6777 0000-0002-1400-346X 0000-0002-4998-1685 |
| OpenAccessLink | https://www.proquest.com/docview/2544531314?pq-origsite=%requestingapplication% |
| PQID | 2544531314 |
| PQPubID | 5046858 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_adeaa964196d4906882134c47cad9210 swepub_primary_oai_DiVA_org_ri_55191 swepub_primary_oai_DiVA_org_hh_44272 proquest_journals_2544531314 crossref_primary_10_3390_smartcities4020040 crossref_citationtrail_10_3390_smartcities4020040 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Smart cities (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_137 ref_91 Belli (ref_1) 2020; 3 ref_14 ref_13 ref_11 ref_99 ref_130 ref_10 ref_98 ref_97 Jazayeri (ref_95) 2011; 12 ref_19 ref_18 ref_17 Szegedy (ref_46) 2013; Volume 2 Xie (ref_115) 2020; 8 ref_16 ref_15 ref_126 ref_125 ref_127 ref_129 ref_25 Jaffrin (ref_134) 2008; 30 ref_120 ref_22 Freund (ref_94) 1999; 14 ref_21 ref_122 ref_20 ref_121 ref_124 ref_123 Ortiz (ref_145) 2018; 23 ref_29 ref_28 Macias (ref_133) 2013; 434 ref_27 ref_26 Tukker (ref_4) 2015; 97 ref_72 Li (ref_135) 2013; 61 Valada (ref_102) 2019; 128 Barrachina (ref_23) 2014; 41 ref_151 ref_79 ref_150 ref_77 Byttner (ref_6) 2011; 24 ref_76 ref_74 Ioannou (ref_136) 2014; 51 ref_73 Wartzek (ref_132) 2011; 58 Bigun (ref_131) 2016; 82 Schuitema (ref_5) 2007; 63 Maurya (ref_75) 2012; 2 Garcia (ref_92) 2017; 9 ref_83 ref_148 ref_82 ref_147 ref_81 ref_80 ref_149 ref_140 ref_89 ref_142 ref_141 ref_87 ref_144 Kianfar (ref_71) 2012; 13 ref_86 ref_143 ref_85 ref_146 ref_84 Chen (ref_12) 2016; 17 Gers (ref_88) 2000; 12 ref_50 Maiorana (ref_138) 2018; 13 ref_58 ref_56 ref_55 ref_54 Breiman (ref_90) 2001; 45 ref_52 ref_51 Wang (ref_96) 2008; 9 ref_59 Englund (ref_24) 2016; 23 ref_61 ref_60 Scuotto (ref_2) 2016; 22 Chen (ref_53) 2018; 40 Englund (ref_7) 2008; 39 ref_69 ref_68 ref_67 ref_66 Krajzewicz (ref_110) 2012; 5 ref_65 ref_64 ref_63 ref_62 Bebis (ref_57) 2020; Volume 12510 Li (ref_93) 2013; 63 ref_114 ref_117 ref_116 ref_119 ref_118 ref_35 ref_34 ref_33 ref_32 ref_111 ref_31 Liu (ref_41) 2020; 128 ref_30 ref_113 Jain (ref_139) 2016; 79 ref_39 ref_38 ref_37 Joseph (ref_78) 2011; 31 Sivaraman (ref_36) 2013; 14 Lidstrom (ref_70) 2012; 13 ref_104 ref_103 ref_106 ref_105 ref_108 ref_107 ref_109 ref_47 Kheterpal (ref_112) 2018; 2 ref_44 ref_43 ref_100 Guo (ref_128) 2019; 189 ref_42 ref_40 ref_101 ref_3 ref_49 ref_48 ref_9 ref_8 Ren (ref_45) 2016; 39 |
| References_xml | – ident: ref_126 doi: 10.5220/0007682502320242 – ident: ref_44 doi: 10.1109/ICCV.2017.322 – ident: ref_117 – ident: ref_9 – volume: 12 start-page: 2451 year: 2000 ident: ref_88 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – ident: ref_55 doi: 10.1109/ICRA.2018.8462926 – ident: ref_74 – ident: ref_80 – volume: 24 start-page: 833 year: 2011 ident: ref_6 article-title: Consensus self-organized models for fault detection (COSMO) publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.03.002 – ident: ref_63 doi: 10.1109/ICRA.2019.8793495 – ident: ref_73 doi: 10.1186/s40648-014-0001-z – ident: ref_47 doi: 10.1109/CVPR.2016.91 – volume: 2 start-page: 134 year: 2018 ident: ref_112 article-title: Flow: Deep reinforcement learning for control in sumo publication-title: EPiC Ser. Eng. doi: 10.29007/dkzb – volume: 8 start-page: 63349 year: 2020 ident: ref_115 article-title: Sequential Graph Neural Network for Urban Road Traffic Speed Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915364 – ident: ref_16 – ident: ref_79 doi: 10.1109/IVS.2018.8500529 – ident: ref_123 – ident: ref_146 – ident: ref_124 doi: 10.1109/ICASSP40776.2020.9053659 – ident: ref_65 doi: 10.1109/CVPR.2018.00472 – ident: ref_38 doi: 10.5220/0009316000002550 – ident: ref_77 – ident: ref_121 doi: 10.1145/2939672.2939754 – ident: ref_114 – ident: ref_31 – ident: ref_86 doi: 10.3390/s19194279 – volume: 41 start-page: 1206 year: 2014 ident: ref_23 article-title: Reducing emergency services arrival time by using vehicular communications and Evolution Strategies publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.004 – ident: ref_27 – ident: ref_106 doi: 10.1007/978-3-319-54181-5_14 – ident: ref_10 – volume: 2 start-page: 253 year: 2012 ident: ref_75 article-title: Study of deceleration behaviour of different vehicle types publication-title: Int. J. Traffic Transp. Eng. doi: 10.7708/ijtte.2012.2(3).07 – volume: 63 start-page: 540 year: 2013 ident: ref_93 article-title: A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2013.2281199 – volume: 9 start-page: 83 year: 2008 ident: ref_96 article-title: Automatic vehicle detection using local features—A statistical approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2007.908572 – volume: 39 start-page: 919 year: 2008 ident: ref_7 article-title: Ink feed control in a web-fed offset printing press publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1273-8 – ident: ref_141 doi: 10.1109/ICCVE.2014.7297636 – volume: 97 start-page: 76 year: 2015 ident: ref_4 article-title: Product services for a resource-efficient and circular economy—A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.11.049 – ident: ref_97 doi: 10.1109/CVPR.2018.00102 – ident: ref_42 doi: 10.1109/CVPR.2014.81 – ident: ref_59 – ident: ref_149 – ident: ref_28 – ident: ref_100 doi: 10.1145/3126686.3126727 – ident: ref_30 – ident: ref_130 doi: 10.1109/SITIS.2018.00087 – ident: ref_125 doi: 10.1007/978-3-030-39512-4_142 – ident: ref_11 – volume: 45 start-page: 5 year: 2001 ident: ref_90 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 3 start-page: 1039 year: 2020 ident: ref_1 article-title: IoT-Enabled Smart Sustainable Cities: Challenges and Approaches publication-title: Smart Cities doi: 10.3390/smartcities3030052 – ident: ref_129 – ident: ref_14 – ident: ref_91 doi: 10.1093/oso/9780198538493.001.0001 – ident: ref_39 doi: 10.1504/IJVD.2020.10037795 – ident: ref_105 doi: 10.1109/IROS40897.2019.8968513 – ident: ref_148 – volume: 22 start-page: 2 year: 2016 ident: ref_2 article-title: Internet of Things: Applications and challenges in smart cities. A case study of IBM smart city projects publication-title: Bus. Process. Manag. J. doi: 10.1108/BPMJ-05-2015-0074 – volume: 128 start-page: 261 year: 2020 ident: ref_41 article-title: Deep Learning for Generic Object Detection: A Survey publication-title: Int. J. Comput. Vis. Vol. doi: 10.1007/s11263-019-01247-4 – ident: ref_101 doi: 10.1109/IROS.2016.7759048 – ident: ref_107 doi: 10.1155/2016/2596783 – ident: ref_143 – ident: ref_25 – ident: ref_50 – ident: ref_49 doi: 10.1007/978-3-030-01264-9_45 – ident: ref_33 – ident: ref_116 doi: 10.18653/v1/D18-1246 – ident: ref_81 doi: 10.1109/IVS.2017.7995831 – volume: 23 start-page: 146 year: 2016 ident: ref_24 article-title: The grand cooperative driving challenge 2016: Boosting the introduction of cooperative automated vehicles publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2016.7553038 – volume: 51 start-page: 951 year: 2014 ident: ref_136 article-title: Thermal infrared imaging in psychophysiology: Potentialities and limits publication-title: Psychophysiology doi: 10.1111/psyp.12243 – ident: ref_89 – ident: ref_62 doi: 10.1109/IV47402.2020.9304694 – ident: ref_140 doi: 10.1109/SITIS.2018.00109 – ident: ref_56 doi: 10.1109/IROS40897.2019.8967762 – volume: 14 start-page: 1773 year: 2013 ident: ref_36 article-title: Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2266661 – ident: ref_19 – volume: 12 start-page: 583 year: 2011 ident: ref_95 article-title: Vehicle detection and tracking in car video based on motion model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2113340 – ident: ref_22 – ident: ref_119 doi: 10.1609/aaai.v32i1.11849 – ident: ref_109 – ident: ref_61 doi: 10.1109/CVPR.2018.00479 – ident: ref_104 doi: 10.1109/CVPR.2018.00033 – volume: 434 start-page: 012047 year: 2013 ident: ref_133 article-title: Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/434/1/012047 – ident: ref_67 doi: 10.1109/ITSC.2018.8569814 – ident: ref_99 doi: 10.1109/CVPR.2019.00752 – ident: ref_142 – ident: ref_72 doi: 10.1177/0278364920917446 – volume: 30 start-page: 1257 year: 2008 ident: ref_134 article-title: Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods publication-title: Med Eng. Phys. doi: 10.1016/j.medengphy.2008.06.009 – volume: 39 start-page: 1137 year: 2016 ident: ref_45 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 14 start-page: 1612 year: 1999 ident: ref_94 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – ident: ref_32 – ident: ref_51 doi: 10.1109/CVPR.2017.660 – ident: ref_26 – ident: ref_113 – ident: ref_84 doi: 10.1109/IVS.2012.6232178 – ident: ref_120 doi: 10.1145/2939672.2939753 – ident: ref_68 doi: 10.1007/978-3-030-01234-2_40 – ident: ref_127 – ident: ref_151 – ident: ref_35 – ident: ref_58 – ident: ref_3 doi: 10.1109/EEEIC.2016.7555867 – ident: ref_8 – ident: ref_13 doi: 10.1109/Nets4CarsFall.2014.7000906 – volume: 13 start-page: 1050 year: 2012 ident: ref_70 article-title: A modular CACC system integration and design publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2204877 – ident: ref_103 doi: 10.1007/978-3-319-67361-5_17 – ident: ref_69 – volume: 58 start-page: 3112 year: 2011 ident: ref_132 article-title: ECG on the Road: Robust and Unobtrusive Estimation of Heart Rate publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2163715 – ident: ref_87 – volume: 23 start-page: 29 year: 2018 ident: ref_145 article-title: A UAV-based content delivery architecture for rural areas and future smart cities publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2018.2884277 – volume: Volume 12510 start-page: 207 year: 2020 ident: ref_57 article-title: SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds publication-title: Advances in Visual Computing ISVC 2020 Lecture Notes in Computer Science – ident: ref_66 – ident: ref_17 – volume: 189 start-page: 102805 year: 2019 ident: ref_128 article-title: A survey on deep learning based face recognition publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.102805 – volume: 13 start-page: 994 year: 2012 ident: ref_71 article-title: Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2186513 – ident: ref_20 – volume: 63 start-page: 139 year: 2007 ident: ref_5 article-title: Travel demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility publication-title: J. Soc. Issues doi: 10.1111/j.1540-4560.2007.00500.x – ident: ref_76 – ident: ref_144 – volume: Volume 2 start-page: 2553 year: 2013 ident: ref_46 article-title: Deep Neural Networks for Object Detection publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) – ident: ref_64 doi: 10.1109/3DV.2018.00053 – volume: 9 start-page: 123 year: 2017 ident: ref_92 article-title: Sensor fusion methodology for vehicle detection publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2016.2620398 – ident: ref_34 – volume: 31 start-page: 383 year: 2011 ident: ref_78 article-title: A Bayesian nonparametric approach to modeling motion patterns publication-title: Auton. Robot. doi: 10.1007/s10514-011-9248-x – ident: ref_82 – ident: ref_40 – volume: 5 start-page: 128 year: 2012 ident: ref_110 article-title: Recent development and applications of SUMO-Simulation of Urban MObility publication-title: Int. J. Adv. Syst. Meas. – ident: ref_108 doi: 10.3390/s18020460 – ident: ref_118 doi: 10.24963/ijcai.2018/505 – volume: 82 start-page: 92 year: 2016 ident: ref_131 article-title: A survey on periocular biometrics research publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.08.026 – ident: ref_18 – ident: ref_111 – volume: 40 start-page: 834 year: 2018 ident: ref_53 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_21 – volume: 79 start-page: 80 year: 2016 ident: ref_139 article-title: 50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.12.013 – ident: ref_98 doi: 10.1109/CVPR.2017.691 – ident: ref_137 doi: 10.1371/journal.pone.0096656 – ident: ref_37 doi: 10.1109/TELFOR.2018.8612054 – ident: ref_52 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_29 – ident: ref_54 – ident: ref_122 – volume: 17 start-page: 570 year: 2016 ident: ref_12 article-title: Cooperative Intersection Management: A Survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2471812 – ident: ref_43 doi: 10.1109/CVPR.2015.7298641 – ident: ref_83 doi: 10.1109/IROS.2013.6696502 – ident: ref_85 doi: 10.3390/s18124423 – ident: ref_15 – volume: 128 start-page: 1239 year: 2019 ident: ref_102 article-title: Self-Supervised Model Adaptation for Multimodal Semantic Segmentations publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01188-y – ident: ref_150 – ident: ref_60 – volume: 61 start-page: 2046 year: 2013 ident: ref_135 article-title: A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2013.2256924 – ident: ref_147 – volume: 13 start-page: 1123 year: 2018 ident: ref_138 article-title: Longitudinal Evaluation of EEG-Based Biometric Recognition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2778010 – ident: ref_48 doi: 10.1007/978-3-319-46448-0_2 |
| SSID | ssj0002794570 |
| Score | 2.3912122 |
| Snippet | Smart cities and communities (SCC) constitute a new paradigm in urban development. SCC ideate a data-centered society aimed at improving efficiency by... Smart Cities and Communities (SCC) constitute a new paradigm in urban development. SCC ideates on a data-centered society aiming at improving efficiency by... |
| SourceID | doaj swepub proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 783 |
| SubjectTerms | Advanced driver assistance systems Annotations Artificial intelligence Automation Automobile safety Business operations Business services COVID-19 Data collection driver modeling Energy consumption Energy efficiency Fatalities Industrial plant emissions Internet of Things perception Renewable resources Situational awareness Smart cities smart traffic control Standardization Traffic accidents & safety Traffic control Traffic models Trends Urban development Utilities |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4Q4gAHxFOMl3LYDVU0bdYsxzGGQEJo4iVuUZqHNh4t2gq_HyfpRickuHBslcSp7dZ2an9GqA0m3eZM2khaYiJq8yzKFScRYXkO1rbLifbo-tfs5qb79MSHjVZfLicswAMHxp1KbaTkGQVN0ZS7FikOg0xRpqTmSSiuAq-nEUw9-99pnHZYHKpkUojrT6dvsKLyKKUuZIrdaUfDEnnA_kUvs4kc6q3NxQZar91E3Avb20RLpthCaw3wwG300rvCw-9SySkeF_jOkcd9Tx_LQuO6_sNfVyUe-EopfFtKjR_NyK2Nex9VGeoX_YywBJgwhy2B-yGTfQc9XAzu-5dR3TohUvDcVSQ7aU55ZonN0szYmNtEESoZ1zQxxGqe5onWELooxaTSSacLfisjBrwDbuH7mO6i5aIszB7CJu5K5xZkYOtBCrk0tCOJpbF2daqctxCZsVGoGlfctbd4FRBfONaLn6xvoZP5nPeAqvHr6DMnnflIh4jtb4CeiFpPxF960kKHM9mK-jWdCo_PlpKU0BZqB3kvUDkfP_Y8ldFIUJqw5I9hk7EAD5ST_f_Y8QFaTVwCjT_vOUTL1eTDHKEV9VmNp5Njr-9fIyQHKg priority: 102 providerName: Directory of Open Access Journals |
| Title | AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control |
| URI | https://www.proquest.com/docview/2544531314 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-44272 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-55191 https://doaj.org/article/adeaa964196d4906882134c47cad9210 |
| Volume | 4 |
| WOSCitedRecordID | wos000668714200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2624-6511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794570 issn: 2624-6511 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLeg48AOfKMVRuXDbihanDhxfUJd6cQkqKINpsElcvxBKyAZTcaRv533HLfrhDQOXCwl8VfybL-PvPd7hBwAS3eVUC5SjtmIuyqPKi1ZxERVAbcdS2Y8uv57MZ-PLy5kEQxubXCrXJ-J_qA2jUYb-aGH0kpZyviby58RZo3Cv6shhcZdsoNIZXxAdo5m8-J0Y2VJYLllIu6jZVLQ7w_bH0AS7dFKUXWK0eqxxZE8cP9NaXMbQdRzneOH_zvfR-RBkDfppF8gj8kdWz8hu1sohE_Jt8kJLa5jLlu6rOkZzp9O_QtQVRsaAkn8ddfQmQ-5oqeNMvTcLrBvOrnqmj4Q0rfouwBeiCAVdNq7xD8jn45nH6fvopCDIdLw4bpIZWnFZe6Yy9Pculi6RDOuhDQ8scwZmVaJMaADaS2UNkk2BgFYMAtihnRw0KbPyaBuartHqI3HCuWLHIQGzmSlLM8Uczw2GPAq5ZCwNR1KHQDKMU_G9xIUFaRd-TfthuT1ps1lD89xa-0jJO-mJkJr-xvN6msZdmqpjFVK5jDD3HCJOXkQ9E5zoZWRoCAPyf6a4GXY7215Te0hOegXzI1R3i7PJ36UxaLkPBHJP6qtliWIspK9uH2wl-R-gj423iS0Twbd6sq-Ivf0r27ZrkZhM4y8nWGEXq1nWP6eQVlkX-B5cfKh-PwHOcMc7A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKOBDOaGoseM8fEBo2bbqqtvVCkpVTsbxo7sqJGWTgvhT_EZsJ9luhVROPXBMZI8T5_PMeOL5BmDTmnSTp8IEwmAdUJMnQS4ZDnCa59baZgwrz64_TieT7PiYTdfgd5cL445VdjrRK2pVShcj3_JUWhGOMH139j1wVaPc39WuhEYDi33966fdslVvR9v2-74mZHfncLgXtFUFAknjtA5EHOWUJQabJEq0CZkhElORMkWJxkaxKCdKWa9eylRIReLMunQp1tZwMmNVR2Tl3oB1asGe9WB9OjqYfl5GdYiFd5yGTXZOFLFwq_pmISA9O6rbqoUuyrJiAX2hgMve7Spjqbdyu_f-t_m5D3dbfxoNmgXwANZ08RDurLAsPoLTwQhNL3JKKzQv0Ec3X2joJwyJQqE2UcZf1yXa8Sll6EMpFDrSMycbDc7rskn09D0aEdbWOxIONGyO_D-GT9fytk-gV5SFfgpIh5lw_lNinSKKWS40jQU2NFQuoZexPuDuu3PZErC7OiBfud2IOazwv7HShzfLPmcN_ciVrd87OC1bOupwf6NcnPBWE3GhtBAssU-YKMpczSFH6idpKoViBFshGx3AeKvPKn6Brj5sNgC9NMr2_GjgR5nNuF0ZKflHs8WcW1ed4WdXD_YKbu0dHoz5eDTZfw63iTtP5MNfG9CrF-f6BdyUP-p5tXjZLkQEX64b238AXRd0Mw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAgeuCMKA_wwnlDU2HHi-gGh0q6i2lRVXKaJF8_xhVZAMpoMxF_j1-HjJF0npPG0Bx4T-ZI4n88tPt9BaNerdJdz5SLliI2Yy7Mo14JEhOe517YDQUxg1z_gs9ng6EjMt9DvLhcGjlV2MjEIalNqiJH3A5VWQhLC-q49FjEfT16ffI-gghT8ae3KaTQQ2be_fnr3rXo1Hftv_YLSyd6H0duorTAQaZbyOlJpkjOROeKyJLMuFo5qwhQXhlFLnBFJTo3xFr7WXGlD04E37zixXokK58VI4se9gq5y72PC7pqnn9bxHeqBnvK4ydNJEhH3q28eDDrwpILTFkO8ZUMXhpIB5-3cTe7SoO8mt__nlbqDbrVWNh422-Iu2rLFPXRzg3vxPvoynOL5WaZphZcFfg9rh0dh8bAqDG7TZ8J1XeK9kGiG35XK4EO7gLHx8LQum_TP0KMZwlsAQM2BR00iwAP08VLe9iHaLsrCPkLYxgMFVlXmTSVGRK4sSxVxLDaQ5itED5EOA1K3tOxQHeSr9O4Z4Eb-jZseernuc9KQklzY-g1Aa90SCMXDjXL1WbbySSpjlRKZf8LMMAGViIDqTzOulRGU-EF2OrDJVspV8gxpPbTbgPXcLOPl4TDMslhIxiin_2i2WkpvwAvy-OLJnqPrHtDyYDrbf4JuUDhkFGJiO2i7Xp3ap-ia_lEvq9WzsCMxOr5sYP8BRpd7lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+Perspectives+in+Smart+Cities+and+Communities+to+Enable+Road+Vehicle+Automation+and+Smart+Traffic+Control&rft.jtitle=Smart+cities+%28Basel%29&rft.au=Englund%2C+Cristofer&rft.au=Eren+Erdal+Aksoy&rft.au=Alonso-Fernandez%2C+Fernando&rft.au=Cooney%2C+Martin+Daniel&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2624-6511&rft.volume=4&rft.issue=2&rft.spage=783&rft_id=info:doi/10.3390%2Fsmartcities4020040&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-6511&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-6511&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-6511&client=summon |