CLARIFY: cell–cell interaction and gene regulatory network refinement from spatially resolved transcriptomics

Abstract Motivation Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 39; číslo Supplement_1; s. i484 - i493
Hlavní autoři: Bafna, Mihir, Li, Hechen, Zhang, Xiuwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 30.06.2023
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Motivation Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. Results We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. Availability and implementation The source code and data is available at https://github.com/MihirBafna/CLARIFY.
AbstractList Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell-cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. The source code and data is available at https://github.com/MihirBafna/CLARIFY.
Abstract Motivation Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. Results We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. Availability and implementation The source code and data is available at https://github.com/MihirBafna/CLARIFY.
Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell-cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.MOTIVATIONGene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell-cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks.RESULTSWe propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks.The source code and data is available at https://github.com/MihirBafna/CLARIFY.AVAILABILITY AND IMPLEMENTATIONThe source code and data is available at https://github.com/MihirBafna/CLARIFY.
Author Li, Hechen
Zhang, Xiuwei
Bafna, Mihir
Author_xml – sequence: 1
  givenname: Mihir
  surname: Bafna
  fullname: Bafna, Mihir
  email: mbafna@gatech.edu
– sequence: 2
  givenname: Hechen
  surname: Li
  fullname: Li, Hechen
– sequence: 3
  givenname: Xiuwei
  surname: Zhang
  fullname: Zhang, Xiuwei
  email: xiuwei.zhang@gatech.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37387180$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR_YC_UPnIZakdJ3GMkFC1olBpJSQEB06WY08Wg2MH22m1N_4D_5BfgqPdVpQLnGY08968pzen6MgHDwidU_KCEsEuehusH0IcVbY6XfRZmaoVj9AJZS1f1R2lR_c9YcfoNKWvhJCGNO0TdMw46zjtyAkK683lh-urzy-xBud-_fi5FGx9hqh0tsFj5Q3eggccYTs7lUPcYQ_5NsRvZTRYDyP4jIcYRpymYkc5tyubFNwNGJyj8klHO-UwFqdP0eNBuQTPDvUMfbp683H9brV5__Z6fblZ6brheSUqxQWvjBENUxUhTPd6ED0B0MPQ9XW7dHVnTAV8EEbQWpjOKFBE9ZqzgZ2h1_u709yPYHSxGJWTU7SjijsZlJUPN95-kdtwIylhlDLKyoXnhwsxfJ8hZTnatKSjPIQ5yapjVcNb3tACPf9T7F7lLuYCeLUH6BhSKqlJbbNa4i3a1hVRuXxVPvyqPHy10Nu_6HcK_yTSPTHM0_9yfgNX5cbN
CitedBy_id crossref_primary_10_1186_s13073_024_01282_y
crossref_primary_10_1016_j_jmb_2024_168543
crossref_primary_10_1038_s41576_023_00685_8
crossref_primary_10_3390_ijms26093997
crossref_primary_10_1093_bib_bbaf236
crossref_primary_10_1038_s44320_025_00088_3
crossref_primary_10_1002_advs_202403572
crossref_primary_10_1093_bioinformatics_btaf057
crossref_primary_10_1007_s10462_025_11257_z
crossref_primary_10_1038_s41592_025_02721_3
crossref_primary_10_3390_cimb46050298
crossref_primary_10_1002_ctm2_70331
crossref_primary_10_52601_bpr_2024_240006
crossref_primary_10_1049_syb2_70000
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1093_bioinformatics_btaf254
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1016_j_cels_2025_101243
Cites_doi 10.1038/s41551-022-00951-w
10.1126/science.aat5691
10.1038/s41576-020-00292-x
10.1016/j.bpj.2011.11.4022
10.1186/s13059-020-02214-w
10.1038/s41467-020-15968-5
10.1126/science.aaw1219
10.1371/journal.pone.0012776
10.1186/s13059-022-02692-0
10.1093/bib/bbaa269
10.1016/j.coisb.2021.03.007
10.1038/s41467-022-30755-0
10.1038/s41586-019-1049-y
10.1038/nmeth.2892
10.1038/s41467-022-32111-8
10.1016/j.sbi.2021.09.003
10.1073/pnas.0408031102
10.1038/s41596-020-0292-x
10.1038/s41592-019-0690-6
10.1016/j.celrep.2021.109211
10.1016/j.coisb.2017.04.001
10.1038/s41588-021-00972-2
10.1038/s41551-022-00997-w
10.1016/j.cell.2018.01.015
10.1038/s41551-022-00942-x
10.1126/science.aau5324
10.1126/science.aaf2403
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btad269
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ISMB/ECCB 2023 Proceedings
EISSN 1367-4811
EndPage i493
ExternalDocumentID PMC10311313
37387180
10_1093_bioinformatics_btad269
10.1093/bioinformatics/btad269
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM143070
– fundername: ;
  grantid: R35GM143070
– fundername: ;
  grantid: DBI-2019771
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AASNB
AAUQX
AAVAP
AAVLN
ABEFU
ABEUO
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACMRT
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BCRHZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
XJT
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
ABEJV
ABGNP
ADMLS
AMNDL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c457t-92a7972dd953a2003cbcf9b0eecff8b460eec48dd2e7f9d9149d8daea0abc73f3
IEDL.DBID TOX
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001027457000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:37:39 EDT 2025
Wed Oct 01 13:51:04 EDT 2025
Thu May 08 07:32:57 EDT 2025
Tue Nov 18 22:34:18 EST 2025
Sat Nov 29 03:49:27 EST 2025
Wed Aug 28 03:15:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-92a7972dd953a2003cbcf9b0eecff8b460eec48dd2e7f9d9149d8daea0abc73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btad269
PMID 37387180
PQID 2832576751
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311313
proquest_miscellaneous_2832576751
pubmed_primary_37387180
crossref_citationtrail_10_1093_bioinformatics_btad269
crossref_primary_10_1093_bioinformatics_btad269
oup_primary_10_1093_bioinformatics_btad269
PublicationCentury 2000
PublicationDate 2023-06-30
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Almet (2023063008162088400_btad269-B1) 2021; 26
Rouault (2023063008162088400_btad269-B20) 2012; 102
Levine (2023063008162088400_btad269-B12) 2005; 102
Pratapa (2023063008162088400_btad269-B18) 2020; 17
Yuan (2023063008162088400_btad269-B28) 2020; 21
Kipf (2023063008162088400_btad269-B11)
Wang (2023063008162088400_btad269-B25) 2018; 361
Dimitrov (2023063008162088400_btad269-B5) 2022; 13
Efremova (2023063008162088400_btad269-B6) 2020; 15
Moffitt (2023063008162088400_btad269-B17) 2018; 362
Wang (2023063008162088400_btad269-B26) 2021; 35
Grover (2023063008162088400_btad269-B9) 2016
Shao (2023063008162088400_btad269-B21) 2022; 13
Zeng (2023063008162088400_btad269-B29) 2022; 72
Rodriques (2023063008162088400_btad269-B19) 2019; 363
Ståhl (2023063008162088400_btad269-B23) 2016; 353
Armingol (2023063008162088400_btad269-B2) 2021; 22
Eng (2023063008162088400_btad269-B7) 2019; 568
Tie (2023063008162088400_btad269-B24) 2022; 6
Zhang (2023063008162088400_btad269-B31) 2022; 13
Wu (2023063008162088400_btad269-B27) 2022; 6
Li (2023063008162088400_btad269-B14) 2022; 6
Garcia-Alonso (2023063008162088400_btad269-B8) 2021; 53
Huynh-Thu (2023063008162088400_btad269-B10) 2010; 5
Zhang (2023063008162088400_btad269-B32) 2022
Li (2023063008162088400_btad269-B15) 2022; 23
Li (2023063008162088400_btad269-B13) 2022
Shao (2023063008162088400_btad269-B22) 2021; 22
Lubeck (2023063008162088400_btad269-B16) 2014; 11
Chasman (2023063008162088400_btad269-B4) 2017; 2
Zhang (2023063008162088400_btad269-B30) 2023
Cang (2023063008162088400_btad269-B3) 2020; 11
Zhou (2023063008162088400_btad269-B33) 2018; 172
References_xml – volume: 6
  start-page: 1435
  year: 2022
  ident: 2023063008162088400_btad269-B27
  article-title: Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-022-00951-w
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 2023063008162088400_btad269-B25
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 22
  start-page: 71
  year: 2021
  ident: 2023063008162088400_btad269-B2
  article-title: Deciphering cell-cell interactions and communication from gene expression
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-00292-x
– volume: 102
  start-page: 417
  year: 2012
  ident: 2023063008162088400_btad269-B20
  article-title: Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.11.4022
– volume: 21
  start-page: 1
  year: 2020
  ident: 2023063008162088400_btad269-B28
  article-title: Gcng: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02214-w
– volume: 11
  start-page: 1
  year: 2020
  ident: 2023063008162088400_btad269-B3
  article-title: Inferring spatial and signaling relationships between cells from single cell transcriptomic data
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15968-5
– volume: 363
  start-page: 1463
  year: 2019
  ident: 2023063008162088400_btad269-B19
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 5
  start-page: e12776
  year: 2010
  ident: 2023063008162088400_btad269-B10
  article-title: Inferring regulatory networks from expression data using tree-based methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 23
  start-page: 1
  year: 2022
  ident: 2023063008162088400_btad269-B15
  article-title: De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with deeplinc
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02692-0
– volume: 22
  start-page: bbaa269
  year: 2021
  ident: 2023063008162088400_btad269-B22
  article-title: Celltalkdb: a manually curated database of ligand–receptor interactions in humans and mice
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa269
– year: 2022
  ident: 2023063008162088400_btad269-B13
– volume: 26
  start-page: 12
  year: 2021
  ident: 2023063008162088400_btad269-B1
  article-title: The landscape of cell-cell communication through single-cell transcriptomics
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2021.03.007
– volume: 13
  start-page: 1
  year: 2022
  ident: 2023063008162088400_btad269-B5
  article-title: Comparison of methods and resources for cell-cell communication inference from single-cell RNA-seq data
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-30755-0
– volume: 568
  start-page: 235
  year: 2019
  ident: 2023063008162088400_btad269-B7
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 11
  start-page: 360
  year: 2014
  ident: 2023063008162088400_btad269-B16
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2892
– volume: 13
  start-page: 4429
  year: 2022
  ident: 2023063008162088400_btad269-B21
  article-title: Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-32111-8
– volume: 72
  start-page: 114
  year: 2022
  ident: 2023063008162088400_btad269-B29
  article-title: Toward better drug discovery with knowledge graph
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2021.09.003
– volume: 102
  start-page: 4936
  year: 2005
  ident: 2023063008162088400_btad269-B12
  article-title: Gene regulatory networks for development
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0408031102
– year: 2022
  ident: 2023063008162088400_btad269-B32
– volume: 13
  start-page: 1
  year: 2022
  ident: 2023063008162088400_btad269-B31
  article-title: Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease
  publication-title: Nat Commun
– volume: 15
  start-page: 1484
  year: 2020
  ident: 2023063008162088400_btad269-B6
  article-title: CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-0292-x
– volume: 17
  start-page: 147
  year: 2020
  ident: 2023063008162088400_btad269-B18
  article-title: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0690-6
– ident: 2023063008162088400_btad269-B11
– volume: 35
  start-page: 109211
  year: 2021
  ident: 2023063008162088400_btad269-B26
  article-title: Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109211
– volume: 2
  start-page: 130
  year: 2017
  ident: 2023063008162088400_btad269-B4
  article-title: Inference of cell type specific regulatory networks on mammalian lineages
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2017.04.001
– volume: 53
  start-page: 1698
  year: 2021
  ident: 2023063008162088400_btad269-B8
  article-title: Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00972-2
– year: 2023
  ident: 2023063008162088400_btad269-B30
– volume: 6
  start-page: 1319
  year: 2022
  ident: 2023063008162088400_btad269-B24
  article-title: Contextual learning is nearly all you need
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-022-00997-w
– volume: 172
  start-page: 744
  year: 2018
  ident: 2023063008162088400_btad269-B33
  article-title: Circuit design features of a stable two-cell system
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.015
– start-page: 855
  year: 2016
  ident: 2023063008162088400_btad269-B9
– volume: 6
  start-page: 1353
  year: 2022
  ident: 2023063008162088400_btad269-B14
  article-title: Graph representation learning in biomedicine and healthcare
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-022-00942-x
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: 2023063008162088400_btad269-B17
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 353
  start-page: 78
  year: 2016
  ident: 2023063008162088400_btad269-B23
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
SSID ssj0005056
Score 2.5486271
Snippet Abstract Motivation Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take...
Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage i484
SubjectTerms Benchmarking
Cell Communication
Gene Expression Profiling
Gene Regulatory Networks
Systems Biology and Networks
Transcriptome
Title CLARIFY: cell–cell interaction and gene regulatory network refinement from spatially resolved transcriptomics
URI https://www.ncbi.nlm.nih.gov/pubmed/37387180
https://www.proquest.com/docview/2832576751
https://pubmed.ncbi.nlm.nih.gov/PMC10311313
Volume 39
WOSCitedRecordID wos001027457000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S0EIvfTfdtFlU6Klg1rYsS-othC4plLSUFLYnoyddWOzidQJ763_oP-wvicbybuNA6eNkYz0Q0sgzGs18H8Aryxh1hbaJL9B1UyqXKB8MOW-t90yynKlINsHPzsRiIT_uQbbNhbl5hS_pTC-bAUQUgYtnulM2LzFlL2MCJfv8w-JXUEfa87UiDllSiJRuc4J_281IHY1S3K5ZmjcDJq9poPn9_xj7A7g3mJvkOMrHQ9hz9SO4EwkoN4-hOXl__Ond_Msbgg78n99_4IMghEQbEx6Iqi0JMuZIG0nrm3ZD6hg6Hj75YKOie5FglgpZY3S2Wq02oSSI9KWzpENV2P-YMPt5_QQ-z9-en5wmAwVDYgrGu0TmikueWysZVRjHZrTxUqfOGe-FLkp8K4S1ueNeWhnOW1ZY5VSqtOHU06ewXze1ewYkc2WpvTDG8KJQ0mrmdcp1mWvuvWRuAmy7EpUZ8MmRJmNVxXtyWo0nsxomcwKzXbtvEaHjjy1eh4X-68ovt_JQhZ2Hy6Bq11ysKyR5YoiFk03gIMrHrk_EiwpaP52AGEnOrgKieo9L6uXXHt0beTcymtHDfxnlc7ibB-srBjK-gP2uvXBHcNtcdst1O4VbfCGmvbth2u-XKzpII1g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLARIFY%3A+cell%E2%80%93cell+interaction+and+gene+regulatory+network+refinement+from+spatially+resolved+transcriptomics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bafna%2C+Mihir&rft.au=Li%2C+Hechen&rft.au=Zhang%2C+Xiuwei&rft.date=2023-06-30&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=39&rft.issue=Suppl+1&rft.spage=i484&rft.epage=i493&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad269&rft_id=info%3Apmid%2F37387180&rft.externalDocID=PMC10311313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon