The isolation of lignin with native-like structure
Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as i...
Uložené v:
| Vydané v: | Biotechnology advances Ročník 68; s. 108230 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Inc
01.11.2023
|
| Predmet: | |
| ISSN: | 0734-9750, 1873-1899, 1873-1899 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain “native-like” lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.
•Collection of methods involving the isolation of lignin with a native-like structure;•Retention of the alkyl aryl ether linking motif is used as the key benchmark.•Balance between lignin quality and intensity of the isolation is of significance.•Guidelines for method selection to isolate native-like lignin are provided. |
|---|---|
| AbstractList | Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure. Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain “native-like” lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure. •Collection of methods involving the isolation of lignin with a native-like structure;•Retention of the alkyl aryl ether linking motif is used as the key benchmark.•Balance between lignin quality and intensity of the isolation is of significance.•Guidelines for method selection to isolate native-like lignin are provided. Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure. Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material need to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the analytical used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure. |
| ArticleNumber | 108230 |
| Author | Wang, Zhiwen Deuss, Peter J. |
| Author_xml | – sequence: 1 givenname: Zhiwen surname: Wang fullname: Wang, Zhiwen email: zhiwen.wang@uni-graz.at – sequence: 2 givenname: Peter J. surname: Deuss fullname: Deuss, Peter J. email: p.j.deuss@rug.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37558187$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9LAzEQxYMotla_guzRy9Zkk2yyF0HFfyB4qeeQZGdt6najSbbit3drWwQvehoYfu8N894R2u98BwhlBE8JJuX5YmqcT2Dnul5NC1zQYS0LivfQmEhBcyKrah-NsaAsrwTHI3QU4wJjwjGnh2hEBedyIMeomM0hc9G3OjnfZb7JWvfSuS77cGmedcN2BXnrXiGLKfQ29QGO0UGj2wgn2zlBz7c3s-v7_PHp7uH68jG3jIuUS9Joa4CKwoDFhBGjMW1IqWnNWElqIWtmTUlFaSSzhTC1qTinrMKFZpgKOkFnG9-34N97iEktXbTQtroD30dVSCnx8A-X_0CZlIwJygf0dIv2Zgm1egtuqcOn2kUyABcbwAYfY4BGWZe-00lBu1YRrNYdqIX66UCtO1CbDgYD-ctgd-Mf0quNFIZcVw6CitZBZ6F2AWxStXd_m3wB9YulPQ |
| CitedBy_id | crossref_primary_10_1002_ep_14400 crossref_primary_10_3390_separations11080250 crossref_primary_10_1016_j_ijbiomac_2024_132922 crossref_primary_10_3390_fermentation11040178 crossref_primary_10_1016_j_jechem_2025_06_016 crossref_primary_10_3390_molecules29010098 crossref_primary_10_1016_j_jcis_2024_12_037 crossref_primary_10_1002_cbdv_202501385 crossref_primary_10_1021_acsapm_4c03810 crossref_primary_10_1016_j_tibtech_2024_07_004 crossref_primary_10_1039_D5RE00122F crossref_primary_10_1021_acssuschemeng_5c02184 crossref_primary_10_1016_j_cej_2025_162288 crossref_primary_10_1007_s00249_024_01720_0 crossref_primary_10_1080_17597269_2025_2545034 crossref_primary_10_59717_j_xinn_mater_2024_100062 crossref_primary_10_1021_acsami_5c04539 crossref_primary_10_1016_j_cej_2024_154491 crossref_primary_10_1016_j_indcrop_2024_120236 crossref_primary_10_1016_j_biotechadv_2025_108624 crossref_primary_10_1016_j_indcrop_2024_119808 crossref_primary_10_1039_D5SE00535C crossref_primary_10_1016_j_cej_2024_154018 crossref_primary_10_1016_j_jcis_2025_01_033 crossref_primary_10_1039_D4SE01016G crossref_primary_10_1038_s41598_025_99715_0 crossref_primary_10_1016_j_bios_2025_118001 crossref_primary_10_1038_s41467_024_45844_5 crossref_primary_10_1002_cssc_202402334 crossref_primary_10_1039_D5GC01618E crossref_primary_10_1016_j_jobab_2025_08_002 crossref_primary_10_1016_j_seppur_2025_135221 crossref_primary_10_1002_cssc_202400938 crossref_primary_10_1039_D5GC00370A crossref_primary_10_3390_molecules29071555 crossref_primary_10_1021_acssuschemeng_5c00942 crossref_primary_10_1016_j_biortech_2025_132493 crossref_primary_10_3390_microorganisms12081715 crossref_primary_10_1021_acs_biomac_5c00264 crossref_primary_10_1007_s42114_024_00873_y crossref_primary_10_1016_j_fuel_2025_135974 crossref_primary_10_1021_acs_langmuir_5c01389 crossref_primary_10_1016_j_proci_2024_105527 crossref_primary_10_1002_cey2_662 crossref_primary_10_3390_catal14110747 crossref_primary_10_1038_s41563_024_02024_6 crossref_primary_10_3390_ph17101406 crossref_primary_10_1016_j_indcrop_2024_119029 crossref_primary_10_1016_j_indcrop_2023_117660 crossref_primary_10_1016_j_cej_2025_162552 crossref_primary_10_1016_j_cej_2025_168015 |
| Cites_doi | 10.1515/hf-2016-0182 10.1146/annurev.arplant.54.031902.134938 10.1111/tpj.12012 10.1104/pp.17.00834 10.1002/cssc.201801971 10.3183/npprj-1999-14-02-p123-128 10.1016/j.ijbiomac.2022.09.277 10.4137/ACI.S10799 10.1016/j.ijbiomac.2017.03.146 10.1016/S0031-9422(02)00573-3 10.1021/acs.jafc.8b05760 10.1038/s41467-019-12979-9 10.1039/b109876d 10.1016/j.indcrop.2012.07.024 10.1021/jf0205312 10.1021/ja01140a020 10.1002/anie.201710838 10.1002/jctb.4492 10.1016/j.copbio.2015.10.009 10.1366/0003702924125456 10.1021/ja029035k 10.1126/sciadv.1600393 10.1007/s12155-012-9203-5 10.1016/j.fuel.2021.122153 10.1023/B:PHYT.0000047811.13837.fb 10.1021/acs.biomac.7b01223 10.1021/jf9600566 10.1016/j.ccr.2010.04.007 10.1186/s12864-015-1215-z 10.1021/cr900354u 10.1016/0031-9422(95)00413-2 10.1515/hf-2016-0112 10.1021/acssuschemeng.8b02541 10.1016/j.biortech.2011.07.081 10.1021/jf981140j 10.1016/j.jaap.2020.104837 10.1039/C5GC01334H 10.1016/j.jclepro.2018.04.126 10.1126/science.aaf7810 10.1080/02773818508085193 10.1007/BF00353151 10.1016/j.indcrop.2019.03.027 10.3389/fchem.2021.655983 10.1515/hf-2012-0162 10.1007/s13205-018-1399-4 10.1126/science.1250161 10.3390/molecules27103185 10.1016/j.biortech.2022.127570 10.1021/jf010870f 10.1039/C9SC02088H 10.1016/j.phytochem.2008.09.005 10.1021/jacs.5b03693 10.1038/nprot.2012.064 10.1016/j.copbio.2019.02.018 10.1021/ja00100a006 10.1021/acssuschemeng.0c05651 10.3390/ma6010359 10.4186/ej.2015.19.4.25 10.1039/D1GC01591E 10.1021/jf900441q 10.3183/npprj-1999-14-02-p163-170 10.1016/j.fluid.2004.02.003 10.1021/acs.biomac.6b00256 10.1021/jf00008a014 10.1021/jf062433c 10.1080/02773810701700828 10.15376/biores.9.2.3660-3687 10.1002/anie.201811630 10.1039/C6GC02739C 10.1002/cssc.202001324 10.1021/acssuschemeng.0c03491 10.1039/C4GC01012D 10.1039/C8GC00900G 10.1038/ncomms13902 10.1104/pp.110.1.3 10.1021/jf9901136 10.1021/acssuschemeng.9b02506 10.1080/02773810903477613 10.1104/pp.110.167254 10.1016/j.procbio.2015.03.014 10.1073/pnas.1120992109 10.15376/biores.3.2.549-565 10.1080/02773810600580271 10.1002/cssc.202101527 10.1021/acs.jafc.8b02014 10.1039/b913609f 10.1016/j.indcrop.2021.113493 10.1073/pnas.2307323120 10.1166/jbmb.2011.1131 10.1038/s41467-018-08252-0 10.1126/sciadv.aau2968 10.1016/j.indcrop.2004.04.022 10.1021/acssuschemeng.0c07156 10.1016/j.biortech.2015.05.053 10.1021/jf903998d 10.1021/acssuschemeng.2c04447 10.1039/C5GC01165E 10.1007/s12155-015-9583-4 10.1515/HF.2006.061 10.1038/s41598-022-08717-9 10.1021/ja048266j 10.1186/s13068-016-0552-8 10.1021/jf035282b 10.1016/j.biortech.2022.128258 10.1021/ja01172a043 10.1039/D0GC01209B 10.1039/C4GC01888E 10.1046/j.1365-313X.2003.01817.x 10.1021/bm200948r 10.1016/j.indcrop.2021.113350 10.1104/pp.17.00362 10.1007/s12155-010-9079-1 10.1021/jf0006978 10.1002/anie.201510351 10.1002/mrc.2201 10.1016/j.cej.2011.10.060 10.1007/s00425-008-0791-4 10.4155/bfs.09.5 10.1016/j.indcrop.2020.112241 10.1093/mp/ssp047 10.1021/acssuschemeng.9b02166 10.1007/s00226-003-0163-y 10.1016/j.enconman.2018.09.002 10.1021/jf980680d 10.1039/c1ee01201k 10.1039/C8GC03606C 10.1201/EBK1574444865-c5 10.1016/j.indcrop.2021.114359 10.1021/acssuschemeng.9b05845 10.1021/acssuschemeng.7b02575 10.1002/open.201500113 10.1038/s41598-018-24328-9 10.1021/cr300162p 10.1016/j.copbio.2014.02.002 10.1002/cssc.202000989 10.1021/acssuschemeng.9b07222 10.1021/acssuschemeng.7b02970 10.1139/v69-118 10.1080/02773810701282330 10.1021/jf970258h 10.1021/acs.chemrev.5b00345 10.1021/ie50573a037 10.1021/jf970813f 10.1016/j.indcrop.2013.03.025 10.1021/ja01877a043 10.1039/D0GC04127K 10.1073/pnas.96.16.8955 10.3390/polym11121913 10.1139/v59-183 10.1126/sciadv.1701735 10.1111/j.1365-313X.2007.03345.x 10.1002/cssc.202001259 10.1021/acssuschemeng.6b02892 10.1002/cssc.201801177 10.1016/j.copbio.2019.02.019 10.4236/ajps.2016.717221 10.1016/j.biortech.2013.03.042 10.1111/tpj.12420 10.1039/C4GC01911C 10.1016/j.biortech.2014.08.020 10.1002/cssc.201600135 10.1039/C3RA46338A 10.1002/cssc.201700101 10.1007/s12155-008-9004-z 10.1002/cssc.202001238 10.1039/C7OB03087H 10.1016/j.ccr.2015.02.004 10.1021/ma00197a045 10.1039/C5EE01322D 10.1039/D0GC00926A 10.1021/acssuschemeng.2c02954 10.1016/0031-9422(76)85121-7 10.1016/j.indcrop.2019.111631 10.1039/C4GC01889C 10.1021/jacs.6b04144 10.1038/s41467-019-09986-1 10.1039/c3gc41110a 10.1074/jbc.M208860200 10.1039/C3GC41752B 10.1039/C9GC02315A 10.1021/acssuschemeng.9b01634 10.1021/acs.jafc.0c04981 10.1016/0040-4039(94)02203-N 10.1016/j.ijbiomac.2021.10.134 10.1021/jf010333v 10.1002/ange.201000900 10.1039/C5EE00204D 10.1016/j.biortech.2022.127065 10.1021/jf301002n 10.1073/pnas.96.18.10045 10.1039/D0GC02439B 10.1002/bit.22179 10.1038/1741057a0 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023. Published by Elsevier Inc. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biotechadv.2023.108230 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1873-1899 |
| ExternalDocumentID | 37558187 10_1016_j_biotechadv_2023_108230 S0734975023001374 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXKI AAXUO ABDPE ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SIN SPC SPCBC SSG SSI SSU SSZ T5K WUQ XPP Y6R ~G- ~KM 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c457t-81facbe372bec0141ba03f16a3d4461d78d4cb6376b84c27bdb95534902a40373 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063340100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0734-9750 1873-1899 |
| IngestDate | Thu Oct 02 22:52:42 EDT 2025 Sun Nov 09 14:45:17 EST 2025 Mon Feb 17 10:00:08 EST 2025 Tue Nov 18 21:01:26 EST 2025 Sat Nov 29 07:19:25 EST 2025 Tue Dec 03 03:45:10 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Characterization Lignin Fractionation Native-like structure Isolation Extraction Lignocellulosic biomass |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier Inc. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c457t-81facbe372bec0141ba03f16a3d4461d78d4cb6376b84c27bdb95534902a40373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.biotechadv.2023.108230 |
| PMID | 37558187 |
| PQID | 2848844735 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2888005358 proquest_miscellaneous_2848844735 pubmed_primary_37558187 crossref_citationtrail_10_1016_j_biotechadv_2023_108230 crossref_primary_10_1016_j_biotechadv_2023_108230 elsevier_sciencedirect_doi_10_1016_j_biotechadv_2023_108230 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biotechnology advances |
| PublicationTitleAlternate | Biotechnol Adv |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Garedew, Lam, Petitjean, Huang, Song, Lin, Jackson, Saffron, Anastas (bb0230) 2021; 23 Giummarella, Pu, Ragauskas, Lawoko (bb0240) 2019; 21 Li, Sun, Xu, Sun (bb0480) 2012; 179 Xia, Liu, Meng, Cheng, Chen, Liu, Liu, Li, Yu (bb1000) 2018; 20 Zinovyev, Sulaeva, Podzimek, Rössner, Kilpeläinen, Sumerskii, Rosenau, Potthast (bb1125) 2018; 11 Van Den Bosch, Schutyser, Vanholme, Driessen, Koelewijn, Renders, De Meester, Huijgen, Dehaen, Courtin, Lagrain, Boerjan, Sels (bb0880) 2015; 8 Xia, Akim, Argyropoulos (bb0995) 2001; 49 Miles-barrett, Neal, Hand, Montgomery, Panovic, Ojo, Lance, Cordes, Slawin, Lebl, Westwood (bb0605) 2016 Wilkerson, Mansfield, Lu, Withers, Park, Karlen, Gonzales-Vigil, Padmakshan, Unda, Rencoret, Ralph (bb0985) 2014; 344 Yelle, Ralph, Frihart (bb1040) 2008; 46 Kuchenbuch, Giernoth (bb0420) 2015; 4 Ralph, Ralph, Landucci, Landucci (bb0740) 2004 Ikeda, Holtman, Kadla, Chang, Jameel (bb0340) 2002; 50 Tran, Lancefield, Kamer, Lebl, Westwood (bb0865) 2015; 17 Yan, Zhao, Dyson, Wang, Liu, Kou (bb1020) 2008; 1 Freudenberg, Neish (bb0215) 1968 Hu, Yeh, Chang, Matsumoto, Kadla (bb0330) 2006; 60 Björkman (bb0045) 1954; 174 Kim, Ralph (bb0385) 2014; 4 Muchero, Guo, DiFazio, Chen, Ranjan, Slavov, Gunter, Jawdy, Bryan, Sykes, Ziebell, Klápště, Porth, Skyba, Unda, El-Kassaby, Douglas, Mansfield, Martin, Schackwitz, Evans, Czarnecki, Tuskan (bb0620) 2015; 16 Chen, Bai, Lusi, Wan (bb0140) 2018; 6 Yue, Lu, Ralph, Ralph (bib1131) 2016; 17 Panovic, Montgomery, Lancefield, Puri, Lebl, Westwood (bb0655) 2017; 5 Lu, Ralph (bb0525) 2002; 2 Guerra, Filpponen, Lucia, Argyropoulos (bb0270) 2006; 54 Wang, Deuss (bb0895) 2021; 14 Deuss, Barta (bb0175) 2016; 306 Rencoret, Gutiérrez, Nieto, Jiménez-Barbero, Faulds, Kim, Ralph, Martínez, José (bb0755) 2011; 155 Simmons, Mortimer, Bernardinelli, Pöppler, Brown, Deazevedo, Dupree, Dupree (bb0805) 2016; 7 Su, Fu, Shao, Qin, Li, Zhang (bb0825) 2022; 176 Chen, Ragauskas, Wan (bb0150) 2020; 147 Marita, Rancour, Hatfield, Weimer (bb0580) 2016; 7 Zeng, Saar, Friedrich, Chen, Liu, Dixon, Himmel, Xie, Ding (bb1070) 2010; 3 Wen, Sun, Xue, Sun (bb0965) 2013; 6 Yang, Zhong, Yuan, Peng, Sun (bb1025) 2013; 43 Wang, Ma, Li, Chen, Wen, Cao, Wang, Yuan, Sun (bb0935) 2019; 8 Zhang, Gellerstedt, Ralph, Lu (bb1080) 2006; 26 Wang, Qiu, Hirth, Cheng, Wen, Li, Fang, Pan, Zhu (bb0940) 2019; 7 Marsh, Boxall, Lichtenthaler (bb0585) 2004; 219 Lee, Doherty, Linhardt, Dordick (bb0475) 2009; 102 Schuerch (bb0795) 1952; 74 Parsell, Yohe, Degenstein, Jarrell, Klein, Gencer, Hewetson, Hurt, Im Kim, Choudhari (bb0670) 2015; 17 Anderson, Stone, Katahira, Reed, Muchero, Ramirez, Beckham, Román-Leshkov (bb0025) 2019; 10 Zhang, Zijlstra, Lahive, Deuss (bb1095) 2020; 22 Li, Huang, Zhao, Zheng, Su, Zhang, Luo, Zhao, Wang, Huang (bb0490) 2021; 9 Boerjan, Ralph, Baucher (bb0055) 2003; 54 Brauns (bb0065) 1939; 61 Lu, Ralph (bb0520) 1999; 47 Lu, Karlen, Regner, Kim, Ralph, Sun, Kuroda, Augustin, Mawson, Sabarez, Singh, Jimenez-Monteon, Zakaria, Hill, Harris, Boerjan, Wilkerson, Mansfield, Ralph (bb0555) 2015; 8 Capanema, Balakshin, Kadla (bb0090) 2004; 52 Lahive, Deuss, Lancefield, Sun, Cordes, Young, Tran, Slawin, De Vries, Kamer, Westwood, Barta (bb0430) 2016; 138 Wu, Argyropoulos (bb0990) 2003; 29 Jensen, Cabrera, Hsieh, Nielsen, Ralph, Felby (bb0355) 2017; 71 Salvachúa, Karp, Nimlos, Vardon, Beckham (bib1126) 2015; 17 Del Río, Rencoret, Prinsen, Martínez, Ralph, Gutiérrez (bb0170) 2012; 60 Fournand, Cathala, Lapierre (bb0210) 2003; 62 Carlos del Río, Rencoret, Gutiérrez, Kim, Ralph (bb0095) 2017; 174 Procentese, Johnson, Orr, Campanile, Wood, Marzocchella, Rehmann (bb0695) 2015; 192 Wang, Zhang, Wang, Deuss (bb0960) 2022 Mattinen, Suortti, Gosselink, Argyropoulos, Evtuguin, Suurnäkki, de Jong, Tamminen (bb0595) 2008; 3 Grabber, Ralph, Hatfield (bb0260) 2002; 50 Vermaas, Crowley, Beckham (bb0890) 2020; 8 Chang, Cowling, Brown (bb0105) 1975; 29 Saar, Zeng, Freudiger, Liu, Himmel, Xie, Ding (bb0780) 2010; 122 Machmudah, Wahyudiono, Kanda, Sasaki, Goto (bb0570) 2015; 19 Espinoza-Acosta, Torres-Chávez, Carvajal-Millán, Ramírez-Wong, Bello-Pérez, Montaño-Leyva (bb0190) 2014; 9 Lahive (bb0425) 2018 Dou, Kim, Li, Padmakshan, Yue, Ralph, Vuorinen (bb0185) 2018; 66 Grabber, Hatfield, Ralph, Zoń, Amrhein (bb0250) 1995; 40 Kim, Ralph, Lu, Pilate, Leplé, Pollet, Lapierre (bb0390) 2002; 277 Avelino, da Silva, de Souza, Mazzetto, Lomonaco (bb0035) 2018; 189 Holtman, Chang, Kadla (bb0320) 2007; 27 Karhunen, Rummakko, Sipilä, Brunow, Kilpeläinen (bb0370) 1995; 36 Lin, Dence (bb0500) 2012 Chen, Tobimatsu, Havkin-Frenkel, Dixon, Ralph (bb0110) 2012; 109 Lahive, Kamer, Lancefield, Deuss (bb0440) 2020; 13 Wang, Wei, Li, Ma, Ma, Ding, Wang, Zhao, Yan, Wan, Zhang, Wang, Wang, Li (bb0915) 2014; 170 Liu, Deak, Wang, Yu, Hameleers, Jurak, Deuss, Barta (bb0510) 2021; 12 Gärtner, Gellerstedt, Tamminen (bb0235) 1999; 14 Pepper, Baylis, Adler (bb0680) 1959; 37 Yang, Zhang, Tang, Li, Peng, Bian (bb1035) 2023; 368 Graham Forsythe, Garrett, Hardacre, Nieuwenhuyzen, Sheldrake (bb0265) 2013; 15 Ralph, Hatfield (bb0705) 1991; 39 Harkin (bb0285) 1967; 243–321 Rolando, Monties, Lapierre (bb0770) 1992 Lapierre, Monties, Rolando, de Chirale (bb0470) 1985; 5 Yamasaki (bb1015) 1981 Sun, Lawther, Banks (bb0835) 1996; 44 Campbell, Sederoff (bb0085) 1996; 110 Friese, Banerjee (bb0220) 1992; 46 Fengel, Wegener (bb0195) 2011 Kang, Kirui, Dickwella Widanage, Mentink-Vigier, Cosgrove, Wang (bb0365) 2019; 10 Wen, Sun, Yuan, Sun (bb0980) 2015; 17 Hong, Shen, Xue, Sun, Yuan (bb0325) 2020; 22 Luterbacher, Azarpira, Motagamwala, Lu, Ralph, Dumesic (bb0560) 2015; 8 Heitner, Dimmel, Schmidt (bb0315) 2016 Hedenström, Wiklund-Lindström, Öman, Lu, Gerber, Schatz, Sundberg, Ralph (bb0305) 2009; 2 Yuan, You, Wang, Xu, Sun (bb1045) 2013; 136 Pepper, Lee (bb0675) 1969; 47 Grabber, Ralph, Hatfield (bb0255) 2000; 48 Klason (bb0410) 1911 Hartley, Jones (bb0295) 1976; 15 Mansfield, Kim, Lu, Ralph (bb0575) 2012; 7 Sun, Wang, Wang, Li, Shi, Zheng, Wang, Liu, Sun (bb0845) 2019; 140 Lan, Amiri, Hunston, Luterbacher (bb0450) 2018; 57 Lu, Ralph (bb0540) 2010; 35 Ralph, Hatfield, Quideau, Helm, Grabber, Jung (bb0720) 1994; 116 Lu, Ralph (bb0550) 2014 Brunow, Kilpeläinen, Sipilä, Syrjänen, Karhunen, Setälä, Rummakko (bb0075) 1998; 10 Lin, Wang, Guo, Aprà, Ma, Ragauskas, Zhang (bb0505) 2023; 120 Petrik, Karlen, Cass, Padmakshan, Lu, Liu, Le Bris, Antelme, Santoro, Wilkerson, Sibout, Lapierre, Ralph, Sedbrook (bb0685) 2014; 77 Ralph, Marita, Ralph, Hatfield, Lu, Ede, Peng, Landucci (bb0725) 1999; c1999 Van Acker, Déjardin, Desmet, Hoengenaert, Vanholme, Morreel, Laurans, Kim, Santoro, Foster, Goeminne, Légée, Lapierre, Pilate, Ralph, Boerjan (bb0875) 2017; 175 Zhang, Zhu, Sun, Yuan, Cheng, Argyropoulos (bb1090) 2019; 133 Isogai, Usuda, Kato, Uryu, Atalla (bb0345) 1989; 22 Heikkinen, Toikka, Karhunen, Kilpeläinen (bb0310) 2003; 125 Li, Li, You, Li, Nawaz, Zhang, Xu (bb0495) 2021; 193 Upton, Kasko (bb0870) 2016; 116 Wang, Zhang, Li, Xiao, Song (bb0945) 2021; 12 Zhang, Lu, Sun, Ralph (bb1085) 2010; 58 Richel, Vanderghem, Simon, Wathelet, Paquot (bb0760) 2012; 7 Guo, Li, You, Zhang, Xu, Zhang, Yang (bb0275) 2020; 8 Glas, Van Doorslaer, Depuydt, Liebner, Rosenau, Binnemans, De Vos (bb0245) 2015; 90 Lan, Morreel, Lu, Rencoret, Carlos del Río, Voorend, Vermerris, Boerjan, Ralph (bb0445) 2016; 171 Li, Shuai, Kim, Motagamwala, Mobley, Yue, Tobimatsu, Havkin-Frenkel, Chen, Dixon (bb0485) 2018; 4 Lan, de Bueren, Luterbacher (bb0455) 2019; 58 Nishimura, Kamiya, Nagata, Katahira, Watanabe (bb0630) 2018; 8 Karlen, Zhang, Peck, Smith, Padmakshan, Helmich, Free, Lee, Smith, Lu, Sedbrook, Sibout, Grabber, Runge, Mysore, Harris, Bartley, Ralph (bb0380) 2016; 2 Ma, Xu, Sun, Sun, Cao, Wen, Yuan (bb0565) 2022; 352 Pu, Jiang, Ragauskas (bb0700) 2007; 27 Wang, Liu, Barta, Deuss (bb0955) 2022; 10 Buchanan, Brauns, Leaf (bb0080) 1949; 71 Shuai, Amiri, Questell-Santiago, Héroguel, Li, Kim, Meilan, Chapple, Ralph, Luterbacher (bb0800) 2016; 354 Xu, Shao, Li, Dai, Wang, Si (bb1010) 2021; 164 Studer, Demartini, Davis, Sykes, Davison, Keller (bb0820) 2011 Adler, Pepper, Eriksoo (bb0015) 1957; 49 Lancefield, Panovic, Deuss, Barta, Westwood (bb0465) 2017; 19 Balakshin, Capanema, Zhu, Sulaeva, Potthast, Rosenau, Rojas (bb0040) 2020; 22 Figueiredo, Venderbosch, Heeres, Deuss (bb0200) 2020; 149 Saha, Dwibedi, Ghosh, Sikder, Chakraborty, Curcio (bb0785) 2018; 8 Wang, Zhu, Li, Wang, Wei, Sun (bb0920) 2016; 9 Lancefield, Westwood (bb0460) 2015; 17 Lu, Ralph (bb0530) 2003; 35 Gani, Orella, Anderson, Stone, Brushett, Beckham, Román-Leshkov (bb0225) 2019; 7 Deuss, Scott, Tran, Westwood, De Vries, Barta (bb0180) 2015; 137 Humphreys, Hemm, Chapple (bb0335) 1999; 96 Hall, Wooten (bb0280) 1998; 46 Jääskeläinen, Sun, Argyropoulos, Tamminen, Hortling (bb0350) 2003; 37 Terrett, Lyczakowski, Yu, Iuga, Franks, Brown, Dupree, Dupree (bb0855) 2019; 10 Zhang, Gellerstedt (bb1075) 2001; 2744–2745 Timokhin, Regner, Motagamwala, Sener, Karlen, Dumesic, Ralph (bb0860) 2020; 8 Yue, Lu, Regner, Sun, Ralph (bb1050) 2017; 10 Lu, Ralph (bb0535) 2005 Chen, Zhao, Cao, Yuan, Shi, Wang, Sun (bb0135) 2018; 67 Wang, Wang, Wen, Wang, Shi, Sun (bb0930) 2018; 175 Chen, Tobimatsu, Jackson, Nakashima, Ralph, Dixon (bb0115) 2013; 73 Panovic, Lancefield, Phillips, Gronnow, Westwood (bb0660) 2019; 12 Martínez, Rencoret, Marques, Gutiérrez, Ibarra, Jiménez-Barbero, del Río (bb0590) 2008; 69 Jiang, Pu, Samuel, Ragauskas (bb0360) 2009; 11 Wang, Yokoyama, Matsumoto (bb0910) 2010; 30 Yue, Suopajärvi, Mankinen, Mikola, Mikkelson, Ahola, Hiltunen, Komulainen, Kantola, Telkki (bb1055) 2020; 68 Önnerud (bb0635) 2003; 377-384 Rönnols, Jacobs, Aldaeus (bb0775) 2017; 71 Xu, Sun, Sun (bb1005) 2015; 50 Chen, Dou, Ma, Li, Wu, Bian, Yelle, Vuorinen, Fu, Pan, Zhu (bb0120) 2017; 3 Chen, Liang, Zhang, Zhang, Wang, Chen, Zeng, Min (bb0155) 2022; 222 Brauns, Brauns (bb0070) 1952 Chen, Bai, Wan (bb0145) 2018; 6 Zijlstra, Analbers, de Korte, Wilbers, Deuss (bb1110) 2019; 11 Hatfield, Ralph, Grabber (bb0300) 2008; 228 Ralph, Bunzel, Marita, Hatfield, Lu, Kim, Schatz, Grabber, Steinhart (bb0735) 2004; 3 Vanholme, De Meester, Ralph, Boerjan (bb0885) 2019; 5 Upton (10.1016/j.biotechadv.2023.108230_bb0870) 2016; 116 Mottiar (10.1016/j.biotechadv.2023.108230_bb0615) 2016; 37 Lu (10.1016/j.biotechadv.2023.108230_bb0515) 1997; 45 Crestini (10.1016/j.biotechadv.2023.108230_bb0165) 2011; 12 Campbell (10.1016/j.biotechadv.2023.108230_bb0085) 1996; 110 Nagardeolekar (10.1016/j.biotechadv.2023.108230_bb0625) 2020; 13 Lee (10.1016/j.biotechadv.2023.108230_bb0475) 2009; 102 Chen (10.1016/j.biotechadv.2023.108230_bb0110) 2012; 109 Figueiredo (10.1016/j.biotechadv.2023.108230_bb0200) 2020; 149 Wang (10.1016/j.biotechadv.2023.108230_bb0900) 2021; 125587 Wang (10.1016/j.biotechadv.2023.108230_bb0935) 2019; 8 Liu (10.1016/j.biotechadv.2023.108230_bb0510) 2021; 12 Deuss (10.1016/j.biotechadv.2023.108230_bb0180) 2015; 137 Brauns (10.1016/j.biotechadv.2023.108230_bb0070) 1952 Lahive (10.1016/j.biotechadv.2023.108230_bb0430) 2016; 138 Lapierre (10.1016/j.biotechadv.2023.108230_bb0470) 1985; 5 Sun (10.1016/j.biotechadv.2023.108230_bb0835) 1996; 44 Zhang (10.1016/j.biotechadv.2023.108230_bb1075) 2001; 2744–2745 Jiang (10.1016/j.biotechadv.2023.108230_bb0360) 2009; 11 Ralph (10.1016/j.biotechadv.2023.108230_bb0750) 2019; 56 Tran (10.1016/j.biotechadv.2023.108230_bb0865) 2015; 17 Rinaldi (10.1016/j.biotechadv.2023.108230_bb0765) 2016; 55 Yue (10.1016/j.biotechadv.2023.108230_bb1050) 2017; 10 Smith (10.1016/j.biotechadv.2023.108230_bb0810) 2014; 114 Capanema (10.1016/j.biotechadv.2023.108230_bb0090) 2004; 52 Pepper (10.1016/j.biotechadv.2023.108230_bb0675) 1969; 47 Lu (10.1016/j.biotechadv.2023.108230_bb0535) 2005 Lu (10.1016/j.biotechadv.2023.108230_bb0540) 2010; 35 Zhang (10.1016/j.biotechadv.2023.108230_bb1090) 2019; 133 Parsell (10.1016/j.biotechadv.2023.108230_bb0670) 2015; 17 Procentese (10.1016/j.biotechadv.2023.108230_bb0695) 2015; 192 Wang (10.1016/j.biotechadv.2023.108230_bb0960) 2022 Ralph (10.1016/j.biotechadv.2023.108230_bb0720) 1994; 116 Yang (10.1016/j.biotechadv.2023.108230_bb1030) 2023; 11 Yoo (10.1016/j.biotechadv.2023.108230_bib1130) 2016; 9 Humphreys (10.1016/j.biotechadv.2023.108230_bb0335) 1999; 96 Li (10.1016/j.biotechadv.2023.108230_bb0490) 2021; 9 Brandner (10.1016/j.biotechadv.2023.108230_bb0060) 2021; 23 Ralph (10.1016/j.biotechadv.2023.108230_bb0725) 1999; c1999 Wang (10.1016/j.biotechadv.2023.108230_bb0955) 2022; 10 Karhunen (10.1016/j.biotechadv.2023.108230_bb0370) 1995; 36 Lu (10.1016/j.biotechadv.2023.108230_bb0550) 2014 Chen (10.1016/j.biotechadv.2023.108230_bb0120) 2017; 3 Isogai (10.1016/j.biotechadv.2023.108230_bb0345) 1989; 22 Sun (10.1016/j.biotechadv.2023.108230_bb0845) 2019; 140 Balakshin (10.1016/j.biotechadv.2023.108230_bb0040) 2020; 22 Vermaas (10.1016/j.biotechadv.2023.108230_bb0890) 2020; 8 Wang (10.1016/j.biotechadv.2023.108230_bb0940) 2019; 7 Yelle (10.1016/j.biotechadv.2023.108230_bb1040) 2008; 46 Smith (10.1016/j.biotechadv.2023.108230_bb0815) 2015; 169 Wen (10.1016/j.biotechadv.2023.108230_bb0975) 2014; 16 Glas (10.1016/j.biotechadv.2023.108230_bb0245) 2015; 90 Richel (10.1016/j.biotechadv.2023.108230_bb0760) 2012; 7 Fengel (10.1016/j.biotechadv.2023.108230_bb0195) 2011 Lu (10.1016/j.biotechadv.2023.108230_bb0545) 2011; 5 Ralph (10.1016/j.biotechadv.2023.108230_bb0735) 2004; 3 Pals (10.1016/j.biotechadv.2023.108230_bb0645) 2022; 27 Zhang (10.1016/j.biotechadv.2023.108230_bb1095) 2020; 22 Simmons (10.1016/j.biotechadv.2023.108230_bb0805) 2016; 7 Adler (10.1016/j.biotechadv.2023.108230_bb0015) 1957; 49 Rönnols (10.1016/j.biotechadv.2023.108230_bb0775) 2017; 71 Kim (10.1016/j.biotechadv.2023.108230_bb0390) 2002; 277 Adler (10.1016/j.biotechadv.2023.108230_bb0010) 1955; 84-93 Zakzeski (10.1016/j.biotechadv.2023.108230_bb1065) 2010; 110 Jensen (10.1016/j.biotechadv.2023.108230_bb0355) 2017; 71 Ma (10.1016/j.biotechadv.2023.108230_bb0565) 2022; 352 Rencoret (10.1016/j.biotechadv.2023.108230_bb0755) 2011; 155 Pepper (10.1016/j.biotechadv.2023.108230_bb0680) 1959; 37 Schuerch (10.1016/j.biotechadv.2023.108230_bb0795) 1952; 74 Zijlstra (10.1016/j.biotechadv.2023.108230_bb1120) 2021; 9 Friese (10.1016/j.biotechadv.2023.108230_bb0220) 1992; 46 Petrik (10.1016/j.biotechadv.2023.108230_bb0685) 2014; 77 Karlen (10.1016/j.biotechadv.2023.108230_bb0380) 2016; 2 Luterbacher (10.1016/j.biotechadv.2023.108230_bb0560) 2015; 8 Garedew (10.1016/j.biotechadv.2023.108230_bb0230) 2021; 23 Hedenström (10.1016/j.biotechadv.2023.108230_bb0305) 2009; 2 Chang (10.1016/j.biotechadv.2023.108230_bb0105) 1975; 29 Li (10.1016/j.biotechadv.2023.108230_bb0495) 2021; 193 Machmudah (10.1016/j.biotechadv.2023.108230_bb0570) 2015; 19 Jacobs (10.1016/j.biotechadv.2023.108230_bib1127) 2000; 15 Martínez (10.1016/j.biotechadv.2023.108230_bb0590) 2008; 69 Chen (10.1016/j.biotechadv.2023.108230_bb0140) 2018; 6 Li (10.1016/j.biotechadv.2023.108230_bb0485) 2018; 4 Lu (10.1016/j.biotechadv.2023.108230_bb0530) 2003; 35 Hong (10.1016/j.biotechadv.2023.108230_bb0325) 2020; 22 Lu (10.1016/j.biotechadv.2023.108230_bb0520) 1999; 47 Karhunen (10.1016/j.biotechadv.2023.108230_bb0375) 1999; 14 Kuchenbuch (10.1016/j.biotechadv.2023.108230_bb0420) 2015; 4 Van Den Bosch (10.1016/j.biotechadv.2023.108230_bb0880) 2015; 8 Yue (10.1016/j.biotechadv.2023.108230_bb1060) 2022; 360 Hu (10.1016/j.biotechadv.2023.108230_bb0330) 2006; 60 Xu (10.1016/j.biotechadv.2023.108230_bb1005) 2015; 50 Saar (10.1016/j.biotechadv.2023.108230_bb0780) 2010; 122 Amiri (10.1016/j.biotechadv.2023.108230_bb0020) 2019; 10 Brauns (10.1016/j.biotechadv.2023.108230_bb0065) 1939; 61 Lancefield (10.1016/j.biotechadv.2023.108230_bb0465) 2017; 19 Wang (10.1016/j.biotechadv.2023.108230_bb0905) 2009; 57 Wen (10.1016/j.biotechadv.2023.108230_bb0965) 2013; 6 Nishimura (10.1016/j.biotechadv.2023.108230_bb0630) 2018; 8 Pu (10.1016/j.biotechadv.2023.108230_bb0700) 2007; 27 Lahive (10.1016/j.biotechadv.2023.108230_bb0435) 2018; 16 Grabber (10.1016/j.biotechadv.2023.108230_bb0250) 1995; 40 Wang (10.1016/j.biotechadv.2023.108230_bb0945) 2021; 12 Kim (10.1016/j.biotechadv.2023.108230_bb0385) 2014; 4 Muchero (10.1016/j.biotechadv.2023.108230_bb0620) 2015; 16 Zhou (10.1016/j.biotechadv.2023.108230_bb1105) 2019; 21 Hall (10.1016/j.biotechadv.2023.108230_bb0280) 1998; 46 Panovic (10.1016/j.biotechadv.2023.108230_bb0665) 2019; 7 Heikkinen (10.1016/j.biotechadv.2023.108230_bb0310) 2003; 125 Wang (10.1016/j.biotechadv.2023.108230_bb0895) 2021; 14 Van Acker (10.1016/j.biotechadv.2023.108230_bb0875) 2017; 175 Klason (10.1016/j.biotechadv.2023.108230_bb0410) 1911 Zinovyev (10.1016/j.biotechadv.2023.108230_bb1125) 2018; 11 Foston (10.1016/j.biotechadv.2023.108230_bb0205) 2014; 27 Lin (10.1016/j.biotechadv.2023.108230_bb0500) 2012 Marsh (10.1016/j.biotechadv.2023.108230_bb0585) 2004; 219 Pu (10.1016/j.biotechadv.2023.108230_bib1129) 2011; 4 Xia (10.1016/j.biotechadv.2023.108230_bb0995) 2001; 49 Vanholme (10.1016/j.biotechadv.2023.108230_bb0885) 2019; 56 Saha (10.1016/j.biotechadv.2023.108230_bb0785) 2018; 8 Zijlstra (10.1016/j.biotechadv.2023.108230_bb1110) 2019; 11 Hartley (10.1016/j.biotechadv.2023.108230_bb0295) 1976; 15 Studer (10.1016/j.biotechadv.2023.108230_bb0820) 2011 Grabber (10.1016/j.biotechadv.2023.108230_bb0260) 2002; 50 Terrett (10.1016/j.biotechadv.2023.108230_bb0855) 2019; 10 Chen (10.1016/j.biotechadv.2023.108230_bb0150) 2020; 147 Collinson (10.1016/j.biotechadv.2023.108230_bb0160) 2010; 254 Kim (10.1016/j.biotechadv.2023.108230_bb0400) 2011; 102 Lahive (10.1016/j.biotechadv.2023.108230_bb0440) 2020; 13 Çetinkol (10.1016/j.biotechadv.2023.108230_bb0100) 2010; 1 Sun (10.1016/j.biotechadv.2023.108230_bb0830) 2020; 13 Zhang (10.1016/j.biotechadv.2023.108230_bb1100) 2022; 309 Mattinen (10.1016/j.biotechadv.2023.108230_bb0595) 2008; 3 Jääskeläinen (10.1016/j.biotechadv.2023.108230_bb0350) 2003; 37 Osakabe (10.1016/j.biotechadv.2023.108230_bb0640) 1999; 96 Mansfield (10.1016/j.biotechadv.2023.108230_bb0575) 2012; 7 Lan (10.1016/j.biotechadv.2023.108230_bb0445) 2016; 171 Freudenberg (10.1016/j.biotechadv.2023.108230_bb0215) 1968 Xia (10.1016/j.biotechadv.2023.108230_bb1000) 2018; 20 Abbott (10.1016/j.biotechadv.2023.108230_bb0005) 2004; 126 Guerra (10.1016/j.biotechadv.2023.108230_bb0270) 2006; 54 Boerjan (10.1016/j.biotechadv.2023.108230_bb0055) 2003; 54 Yang (10.1016/j.biotechadv.2023.108230_bb1025) 2013; 43 Ralph (10.1016/j.biotechadv.2023.108230_bb0705) 1991; 39 Lu (10.1016/j.biotechadv.2023.108230_bb0555) 2015; 8 Salvachúa (10.1016/j.biotechadv.2023.108230_bib1126) 2015; 17 Shuai (10.1016/j.biotechadv.2023.108230_bb0800) 2016; 354 Kim (10.1016/j.biotechadv.2023.108230_bb0405) 2017; 18 Ralph (10.1016/j.biotechadv.2023.108230_bb0740) 2004 Ralph (10.1016/j.biotechadv.2023.108230_bb0715) 1998; 46 Panovic (10.1016/j.biotechadv.2023.108230_bb0655) 2017; 5 Rolando (10.1016/j.biotechadv.2023.108230_bb0770) 1992 Su (10.1016/j.biotechadv.2023.108230_bb0825) 2022; 176 Saka (10.1016/j.biotechadv.2023.108230_bb0790) 1982; 16 Xu (10.1016/j.biotechadv.2023.108230_bb1010) 2021; 164 Ralph (10.1016/j.biotechadv.2023.108230_bb0710) 2010; 137–243 Zhang (10.1016/j.biotechadv.2023.108230_bb1085) 2010; 58 Fournand (10.1016/j.biotechadv.2023.108230_bb0210) 2003; 62 Miles-barrett (10.1016/j.biotechadv.2023.108230_bb0605) 2016 Chen (10.1016/j.biotechadv.2023.108230_bb0135) 2018; 67 Sun (10.1016/j.biotechadv.2023.108230_bb0840) 2013; 47 Yan (10.1016/j.biotechadv.2023.108230_bb1020) 2008; 1 Guo (10.1016/j.biotechadv.2023.108230_bb0275) 2020; 8 Lan (10.1016/j.biotechadv.2023.108230_bb0455) 2019; 58 Björkman (10.1016/j.biotechadv.2023.108230_bb0045) 1954; 174 Chen (10.1016/j.biotechadv.2023.108230_bb0155) 2022; 222 Argyropoulos (10.1016/j.biotechadv.2023.108230_bb0030) 2002; 28 Zeng (10.1016/j.biotechadv.2023.108230_bb1070) 2010; 3 Wang (10.1016/j.biotechadv.2023.108230_bb0925) 2017; 5 Kim (10.1016/j.biotechadv.2023.108230_bb0395) 2008; 1 Chen (10.1016/j.biotechadv.2023.108230_bb0115) 2013; 73 Wen (10.1016/j.biotechadv.2023.108230_bib1128) 2012; 5 Önnerud (10.1016/j.biotechadv.2023.108230_bb0635) 2003; 377-384 Del Río (10.1016/j.biotechadv.2023.108230_bb0170) 2012; 60 Wu (10.1016/j.biotechadv.2023.108230_bb0990) 2003; 29 Timokhin (10.1016/j.biotechadv.2023.108230_bb0860) 2020; 8 Holtman (10.1016/j.biotechadv.2023.108230_bb0320) 2007; 27 Wang (10. |
| References_xml | – volume: 192 start-page: 31 year: 2015 end-page: 36 ident: bb0695 article-title: Deep eutectic solvent pretreatment and subsequent saccharification of corncob publication-title: Bioresour. Technol. – start-page: 27 year: 2014 end-page: 65 ident: bb0550 article-title: The DFRC (Derivatization Followed by Reductive Cleavage) method and its applications for lignin characterization publication-title: Lignin Struct. Anal. Appl. Biomater. Ecol. Significance – volume: 12 start-page: 3928 year: 2011 end-page: 3935 ident: bb0165 article-title: Milled wood lignin: A linear oligomer publication-title: Biomacromolecules – volume: 69 start-page: 2831 year: 2008 end-page: 2843 ident: bb0590 article-title: Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study publication-title: Phytochemistry – volume: 17 start-page: 1492 year: 2015 end-page: 1499 ident: bb0670 article-title: A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass publication-title: Green Chem. – volume: 57 start-page: 6167 year: 2009 end-page: 6170 ident: bb0905 article-title: Dissolution of beech and spruce milled woods in LiCl/DMSO publication-title: J. Agric. Food Chem. – volume: 169 start-page: 2992 year: 2015 end-page: 3001 ident: bb0815 article-title: Engineering monolignol p-coumarate conjugates into poplar and arabidopsis lignins publication-title: Plant Physiol. – volume: 58 start-page: 3446 year: 2010 end-page: 3450 ident: bb1085 article-title: Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/N-methylimidazole publication-title: J. Agric. Food Chem. – volume: 254 start-page: 1854 year: 2010 end-page: 1870 ident: bb0160 article-title: The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin publication-title: Coord. Chem. Rev. – volume: 4 start-page: eaau2968 year: 2018 ident: bb0485 article-title: An “ideal lignin” facilitates full biomass utilization publication-title: Sci. Adv. – volume: 4 start-page: 3154 year: 2011 end-page: 3166 ident: bib1129 article-title: Application of quantitative publication-title: Energy Environ. Sci. – volume: 133 start-page: 241 year: 2019 end-page: 249 ident: bb1090 article-title: Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment publication-title: Ind. Crop. Prod. – volume: 15 start-page: 1157 year: 1976 end-page: 1160 ident: bb0295 article-title: Diferulic acid as a component of cell walls of Lolium multiflorum publication-title: Phytochemistry – volume: 23 start-page: 5437 year: 2021 end-page: 5441 ident: bb0060 article-title: Flow-through solvolysis enables production of native-like lignin from biomass publication-title: Green Chem. – volume: 2 start-page: 1 year: 2016 end-page: 10 ident: bb0380 article-title: Monolignol ferulate conjugates are naturally incorporated into plant lignins publication-title: Sci. Adv. – start-page: 1 year: 2011 end-page: 6 ident: bb0820 article-title: Lignin Content in Natural Populus Variants Affects Sugar Release – volume: 179 start-page: 80 year: 2012 end-page: 89 ident: bb0480 article-title: Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): Comparative characterization of the dissolved lignins with milled wood lignin publication-title: Chem. Eng. J. – volume: 3 start-page: 79 year: 2004 end-page: 96 ident: bb0735 article-title: Peroxidase-dependent cross-linking reactions of publication-title: Phytochem. Rev. – volume: 96 start-page: 10045 year: 1999 end-page: 10050 ident: bb0335 article-title: Ferulate 5-hydroxylase from Arabidopsis is a multifunctional cytochrome P450-dependent monooxygenase catalyzing parallel hydroxylations in phenylpropanoid metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 3660 year: 2014 end-page: 3687 ident: bb0190 article-title: Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass publication-title: BioResources – volume: 7 start-page: 1579 year: 2012 end-page: 1589 ident: bb0575 article-title: Whole plant cell wall characterization using solution-state 2D NMR publication-title: Nat. Protoc. – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: bb0785 article-title: Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment publication-title: 3 Biotech – volume: 49 start-page: 3573 year: 2001 end-page: 3578 ident: bb0995 article-title: Quantitative 13C NMR analysis of lignins with internal standards publication-title: J. Agric. Food Chem. – volume: 54 start-page: 9696 year: 2006 end-page: 9705 ident: bb0270 article-title: Comparative evaluation of three lignin isolation protocols for various wood species publication-title: J. Agric. Food Chem. – volume: 40 start-page: 553 year: 1957 end-page: 558 ident: bb0690 article-title: Properties of powdered wood and isolation of lignin by cellulytic enzymes publication-title: Tappi – volume: 73 start-page: 201 year: 2013 end-page: 211 ident: bb0115 article-title: Novel seed coat lignins in the Cactaceae: Structure, distribution and implications for the evolution of lignin diversity publication-title: Plant J. – volume: 61 start-page: 2120 year: 1939 end-page: 2127 ident: bb0065 article-title: Native lignin I. its isolation and methylation publication-title: J. Am. Chem. Soc. – volume: 125587 year: 2021 ident: bb0900 article-title: Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review publication-title: Bioresour. Technol. – year: 2004 ident: bb0740 article-title: NMR Database of Lignin and Cell Wall Model Compounds – volume: 8 start-page: 17427 year: 2020 end-page: 17438 ident: bb0860 article-title: Production of publication-title: ACS Sustain. Chem. Eng. – volume: 110 start-page: 3552 year: 2010 end-page: 3599 ident: bb1065 article-title: The catalytic valorization of lignin for the production of renewable chemicals publication-title: Chem. Rev. – volume: 13 start-page: 4238 year: 2020 ident: bb0440 article-title: An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies publication-title: ChemSusChem – volume: 20 start-page: 2711 year: 2018 end-page: 2721 ident: bb1000 article-title: Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass publication-title: Green Chem. – volume: 47 start-page: 277 year: 2013 end-page: 285 ident: bb0840 article-title: Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent publication-title: Ind. Crop. Prod. – volume: 46 start-page: 246 year: 1992 end-page: 248 ident: bb0220 article-title: Lignin determination by FT-IR publication-title: Appl. Spectrosc. – volume: 11 start-page: 3170 year: 2023 end-page: 3181 ident: bb1030 article-title: Solvent-Free Catalytic Hydrotreatment of Alcell lignin using mono-and bimetallic Ni (Mo) catalysts supported on mesoporous alumina publication-title: ACS Sustain. Chem. Eng. – volume: 5 start-page: 2544 year: 2017 end-page: 2561 ident: bb0610 article-title: Ammonia pretreatment of corn stover enables facile lignin extraction publication-title: ACS Sustain. Chem. Eng. – volume: 27 start-page: 23 year: 2007 end-page: 33 ident: bb0700 article-title: Ionic liquid as a green solvent for lignin publication-title: J. Wood Chem. Technol. – volume: 120 year: 2023 ident: bb0505 article-title: Lignin with controlled structural properties by N-heterocycle-based deep eutectic solvent extraction publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 17839 year: 2020 end-page: 17850 ident: bb0890 article-title: Molecular lignin solubility and structure in organic solvents publication-title: ACS Sustain. Chem. Eng. – volume: 11 start-page: 3259 year: 2018 end-page: 3268 ident: bb1125 article-title: Getting closer to absolute molar masses of technical lignins publication-title: ChemSusChem – start-page: 334 year: 1992 end-page: 349 ident: bb0770 article-title: Thioacidolysis publication-title: Methods in Lignin Chemistry – volume: 44 start-page: 3965 year: 1996 end-page: 3970 ident: bb0835 article-title: Effects of extraction time and different alkalis on the composition of alkali-soluble wheat straw lignins publication-title: J. Agric. Food Chem. – volume: 74 start-page: 5061 year: 1952 end-page: 5067 ident: bb0795 article-title: The Solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4616 year: 1998 end-page: 4619 ident: bb0715 article-title: The DFRC method for lignin analysis. 6. A simple modification for identifying natural acetates on lignins publication-title: J. Agric. Food Chem. – volume: 9 start-page: 1090 year: 2016 end-page: 1095 ident: bib1130 article-title: Elucidating structural characteristics of biomass using solution‐state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide publication-title: ChemSusChem – volume: 68 start-page: 15074 year: 2020 end-page: 15084 ident: bb1055 article-title: Comparison of lignin fractions isolated from wheat straw using alkaline and acidic deep eutectic solvents publication-title: J. Agric. Food Chem. – volume: 49 start-page: 1391 year: 1957 end-page: 1392 ident: bb0015 article-title: Action of mineral acid on lignin and model substances of guaiacylglycerol-β-aryl ether type publication-title: Ind. Eng. Chem. – volume: 7 start-page: 13270 year: 2019 end-page: 13277 ident: bb0225 article-title: Computational evidence for kinetically controlled radical coupling during lignification publication-title: ACS Sustain. Chem. Eng. – volume: 22 start-page: 7219 year: 2020 end-page: 7232 ident: bb0325 article-title: Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation publication-title: Green Chem. – volume: 2744–2745 year: 2001 ident: bb1075 article-title: NMR observation of a new lignin structure, a spiro-dienone publication-title: Chem. Commun. – volume: 17 start-page: 214 year: 2015 end-page: 218 ident: bb0290 article-title: The effect of changing the components of an ionic liquid upon the solubility of lignin† publication-title: Green Chem. – volume: 45 start-page: 2590 year: 1997 end-page: 2592 ident: bb0515 article-title: Derivatization followed by reductive cleavage (DFRC Method), a new method for lignin analysis: protocol for analysis of DFRC monomers publication-title: J. Agric. Food Chem. – volume: 5 start-page: 11618 year: 2017 end-page: 11627 ident: bb0925 article-title: Structural characteristics of lignin macromolecules from different Eucalyptus species publication-title: ACS Sustain. Chem. Eng. – volume: 354 start-page: 329 year: 2016 end-page: 333 ident: bb0800 article-title: Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization publication-title: Science (80. ) – volume: 17 start-page: 4980 year: 2015 end-page: 4990 ident: bb0460 article-title: The synthesis and analysis of advanced lignin model polymers publication-title: Green Chem. – volume: 16 start-page: 181 year: 2014 end-page: 190 ident: bb0975 article-title: Understanding the chemical transformations of lignin during ionic liquid pretreatment publication-title: Green Chem. – volume: 54 start-page: 519 year: 2003 end-page: 546 ident: bb0055 article-title: Lignin biosynthesis publication-title: Annu. Rev. Plant Biol. – volume: 47 start-page: 723 year: 1969 end-page: 727 ident: bb0675 article-title: Lignin and related compounds. I. A comparative study of catalysts for lignin hydrogenolysis publication-title: Can. J. Chem. – volume: 7 start-page: 12098 year: 2019 end-page: 12104 ident: bb0665 article-title: Preparation and reaction of β-O-4 γ-aldehyde-containing butanosolv lignins publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 13062 year: 2019 end-page: 13072 ident: bb0850 article-title: Green process for extraction of lignin by the microwave-assisted ionic liquid approach: toward biomass biorefinery and lignin characterization publication-title: ACS Sustain. Chem. Eng. – volume: 30 start-page: 219 year: 2010 end-page: 229 ident: bb0910 article-title: Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling publication-title: J. Wood Chem. Technol. – volume: 37 start-page: 190 year: 2016 end-page: 200 ident: bb0615 article-title: Designer lignins: Harnessing the plasticity of lignification publication-title: Curr. Opin. Biotechnol. – year: 1952 ident: bb0070 article-title: The Chemistry Oflignin – year: 1968 ident: bb0215 article-title: Constitution and Biosynthesis of Lignin – volume: c1999 start-page: 55 year: 1999 end-page: 108 ident: bb0725 article-title: Solution state NMR of lignins publication-title: Adv. Lignocellul. Charact – volume: 60 start-page: 5922 year: 2012 end-page: 5935 ident: bb0170 article-title: Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods publication-title: J. Agric. Food Chem. – volume: 19 start-page: 202 year: 2017 end-page: 214 ident: bb0465 article-title: Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation publication-title: Green Chem. – volume: 15 start-page: 3031 year: 2013 end-page: 3038 ident: bb0265 article-title: An efficient and flexible synthesis of model lignin oligomers publication-title: Green Chem. – volume: 171 start-page: 810 year: 2016 end-page: 820 ident: bb0445 article-title: Maize tricin-oligolignol metabolites and their implications for monocot lignification publication-title: Plant Physiol. – year: 2011 ident: bb0195 article-title: Wood: chemistry, Ultrastructure, Reactions – volume: 243–321 year: 1967 ident: bb0285 article-title: Lignin-a natural polymeric product of phenol oxidation publication-title: Oxidat. Coupl. Phenols – volume: 174 start-page: 2072 year: 2017 end-page: 2082 ident: bb0095 article-title: Hydroxystilbenes are monomers in palm fruit endocarp lignins publication-title: Plant Physiol. – volume: 15 start-page: 120 year: 2000 end-page: 127 ident: bib1127 article-title: Absolute molar mass of lignins by size exclusion chromatography and MALDI-TOF mass spectroscopy. Nordic pulp & paper publication-title: Res. J. – volume: 16 start-page: 1 year: 2015 end-page: 14 ident: bb0620 article-title: High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus publication-title: BMC Genomics – volume: 26 start-page: 65 year: 2006 end-page: 79 ident: bb1080 article-title: NMR studies on the occurrence of spirodienone structures in lignins publication-title: J. Wood Chem. Technol. – volume: 5 start-page: 277 year: 1985 end-page: 292 ident: bb0470 article-title: Thioacidolysis of lignin: comparison with acidolysis publication-title: J. Wood Chem. Technol. – volume: 52 start-page: 1850 year: 2004 end-page: 1860 ident: bb0090 article-title: A comprehensive approach for quantitative lignin characterization by NMR spectroscopy publication-title: J. Agric. Food Chem. – volume: 14 start-page: 123 year: 1999 end-page: 128 ident: bb0375 article-title: The behaviour of dibenzodioxocin structures in lignin during alkaline pulping processes publication-title: Nord. Pulp Pap. Res. J. – volume: 18 start-page: 4184 year: 2017 end-page: 4195 ident: bb0405 article-title: Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy publication-title: Biomacromolecules – volume: 3 start-page: 549 year: 2008 end-page: 565 ident: bb0595 article-title: Polymerization of different lignins by laccase publication-title: BioResources – volume: 11 start-page: 1762 year: 2009 end-page: 1766 ident: bb0360 article-title: Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls publication-title: Green Chem. – volume: 175 start-page: 112 year: 2018 end-page: 120 ident: bb0930 article-title: Green and efficient conversion strategy of Eucalyptus based on mechanochemical pretreatment publication-title: Energy Convers. Manag. – volume: 14 start-page: 5186 year: 2021 end-page: 5198 ident: bb0895 article-title: Catalytic hydrogenolysis of lignin: The influence of minor units and saccharides publication-title: ChemSusChem – volume: 9 year: 2021 ident: bb1120 article-title: Highly efficient semi-continuous extraction and in-line purification of high β-O-4 butanosolv lignin publication-title: Front. Chem. – volume: 149 year: 2020 ident: bb0200 article-title: In-depth structural characterization of the lignin fraction of a pine-derived pyrolysis oil publication-title: J. Anal. Appl. Pyrolysis – volume: 174 start-page: 1057 year: 1954 end-page: 1058 ident: bb0045 article-title: Isolation of lignin from finely divided wood with neutral solvents publication-title: Nature – volume: 4 start-page: 677 year: 2015 end-page: 681 ident: bb0420 article-title: Ionic liquids beyond simple solvents: glimpses at the state of the art in organic Chemistry publication-title: ChemistryOpen – volume: 137 start-page: 7456 year: 2015 end-page: 7467 ident: bb0180 article-title: Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8135 year: 2019 end-page: 8142 ident: bb0020 article-title: Establishing lignin structure-upgradeability relationships using quantitative publication-title: Chem. Sci. – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: bb0855 article-title: Molecular architecture of softwood revealed by solid-state NMR publication-title: Nat. Commun. – volume: 56 start-page: 240 year: 2019 end-page: 249 ident: bb0750 article-title: Lignin structure and its engineering publication-title: Curr. Opin. Biotechnol. – volume: 8 start-page: 934 year: 2015 end-page: 952 ident: bb0555 article-title: Naturally p-Hydroxybenzoylated Lignins in Palms publication-title: Bioenergy Res. – volume: 102 start-page: 1368 year: 2009 end-page: 1376 ident: bb0475 article-title: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis publication-title: Biotechnol. Bioeng. – volume: 35 start-page: 535 year: 2010 end-page: 544 ident: bb0540 article-title: Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR publication-title: Plant J. Cell Mol. Biol. – volume: 193 start-page: 319 year: 2021 end-page: 327 ident: bb0495 article-title: Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: Lignin structural features and modification mechanism publication-title: Int. J. Biol. Macromol. – volume: 10 start-page: 830 year: 2017 end-page: 835 ident: bb1050 article-title: Lignin-derived thioacidolysis dimers: reevaluation, new products, authentication, and quantification publication-title: ChemSusChem – volume: 48 start-page: 6106 year: 2000 end-page: 6113 ident: bb0255 article-title: Cross-linking of maize walls by ferulate dimerization and incorporation into lignin publication-title: J. Agric. Food Chem. – volume: 37 start-page: 1241 year: 1959 end-page: 1248 ident: bb0680 article-title: The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane–water medium publication-title: Can. J. Chem. – volume: 175 start-page: 1018 year: 2017 end-page: 1039 ident: bb0875 article-title: Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1 publication-title: Plant Physiol. – start-page: 10023 year: 2016 end-page: 10030 ident: bb0605 article-title: Biomolecular Chemistry Ketone Structures in Technical Lignins † – volume: 109 start-page: 1772 year: 2012 end-page: 1777 ident: bb0110 article-title: A polymer of caffeyl alcohol in plant seeds publication-title: Proc. Natl. Acad. Sci. – volume: 27 start-page: 176 year: 2014 end-page: 184 ident: bb0205 article-title: Advances in solid-state NMR of cellulose publication-title: Curr. Opin. Biotechnol. – volume: 46 start-page: 1423 year: 1998 end-page: 1427 ident: bb0280 article-title: Quantitative analysis of cellulose in tobacco by 13C CPMAS NMR publication-title: J. Agric. Food Chem. – volume: 8 start-page: 5119 year: 2020 end-page: 5131 ident: bb1115 article-title: Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation publication-title: ACS Sustain. Chem. Eng. – volume: 189 start-page: 785 year: 2018 end-page: 796 ident: bb0035 article-title: Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts publication-title: J. Clean. Prod. – volume: 167 year: 2021 ident: bb0950 article-title: The effect of ball milling on birch, pine, reed, walnut shell enzymatic hydrolysis recalcitrance and the structure of the isolated residual enzyme lignin publication-title: Ind. Crop. Prod. – volume: 50 start-page: 955 year: 2015 end-page: 965 ident: bb1005 article-title: Synergistic effects of ionic liquid plus alkaline pretreatments on eucalyptus: lignin structure and cellulose hydrolysis publication-title: Process Biochem. – volume: 125 start-page: 4362 year: 2003 end-page: 4367 ident: bb0310 article-title: Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 4625 year: 2019 end-page: 4632 ident: bb1105 article-title: Rapid flow-through fractionation of biomass to preserve labile aryl ether bonds in native lignin publication-title: Green Chem. – volume: 138 start-page: 8900 year: 2016 end-page: 8911 ident: bb0430 article-title: Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1 year: 2021 end-page: 15 ident: bb0510 article-title: Tunable and functional deep eutectic solvents for lignocellulose valorization publication-title: Nat. Commun. – volume: 2 start-page: 90 year: 2002 end-page: 91 ident: bb0525 article-title: Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf publication-title: Chem. Commun. – volume: 5 start-page: 886 year: 2012 end-page: 903 ident: bib1128 article-title: Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique publication-title: Bioenergy Res. – volume: 8 start-page: 12110 year: 2020 end-page: 12119 ident: bb0275 article-title: New Lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance publication-title: ACS Sustain. Chem. Eng. – volume: 19 start-page: 25 year: 2015 end-page: 44 ident: bb0570 article-title: Hot compressed water extraction of lignin by using a flow-through reactor publication-title: Engl. J. – volume: 222 start-page: 1423 year: 2022 end-page: 1432 ident: bb0155 article-title: A facile and novel lignin isolation procedure–Methanolic hydrochloric acid treatment at ambient temperature publication-title: Int. J. Biol. Macromol. – volume: 147 year: 2020 ident: bb0150 article-title: Lignin extraction and upgrading using deep eutectic solvents publication-title: Ind. Crop. Prod. – volume: 22 start-page: 3791 year: 2020 end-page: 3801 ident: bb1095 article-title: Combined lignin defunctionalisation and synthesis gas formation by acceptorless dehydrogenative decarbonylation publication-title: Green Chem. – volume: 7 start-page: 2553 year: 2016 ident: bb0580 article-title: Impact of expressing p-coumaryl transferase in Medicago sativa L. on cell wall chemistry and digestibility publication-title: Am. J. Plant Sci. – volume: 77 start-page: 713 year: 2014 end-page: 726 ident: bb0685 article-title: P-Coumaroyl-CoA: Monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon publication-title: Plant J. – volume: 368 year: 2023 ident: bb1035 article-title: Mild pretreatment with Brønsted acidic deep eutectic solvents for fractionating β–O–4 linkage-rich lignin with high sunscreen performance and evaluation of enzymatic saccharification synergism publication-title: Bioresour. Technol. – start-page: 34 year: 1981 end-page: 42 ident: bb1015 article-title: Characterization of residual lignin in kraft pulp publication-title: International Symposium on Wood and Pulping Chemistry, Stockholm, June 9–12 – year: 2016 ident: bb0315 article-title: Lignin and Lignans: Advances in Chemistry – volume: 344 start-page: 90 year: 2014 end-page: 93 ident: bb0985 article-title: Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone publication-title: Science (80-. ). – volume: 35 start-page: 535 year: 2003 end-page: 544 ident: bb0530 article-title: Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR publication-title: Plant J. – volume: 60 start-page: 389 year: 2006 end-page: 397 ident: bb0330 article-title: Elucidation of the structure of cellulolytic enzyme lignin publication-title: Holzforschung – volume: 164 year: 2021 ident: bb1010 article-title: A flow-through reactor for fast fractionation and production of structure-preserved lignin publication-title: Ind. Crop. Prod. – volume: 20 start-page: 205 year: 2004 end-page: 218 ident: bb0050 article-title: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy publication-title: Ind. Crop. Prod. – volume: 13 start-page: 4394 year: 2020 end-page: 4399 ident: bb0415 article-title: Nucleophilic thiols reductively cleave ether linkages in lignin model polymers and lignin publication-title: ChemSusChem – volume: 170 start-page: 499 year: 2014 end-page: 505 ident: bb0915 article-title: Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures publication-title: Bioresour. Technol. – volume: 27 start-page: 179 year: 2007 end-page: 200 ident: bb0320 article-title: An NMR comparison of the whole lignin from milled wood, MWL, and REL dissolved by the DMSO/NMI procedure publication-title: J. Wood Chem. Technol. – volume: 4 start-page: 7549 year: 2014 end-page: 7560 ident: bb0385 article-title: A gel-state 2D-NMR method for plant cell wall profiling and analysis: A model study with the amorphous cellulose and xylan from ball-milled cotton linters publication-title: RSC Adv. – volume: 12 start-page: 1 year: 2021 end-page: 9 ident: bb0945 article-title: Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst publication-title: Nat. Commun. – volume: 71 start-page: 1297 year: 1949 end-page: 1299 ident: bb0080 article-title: Native lignin. II. Native aspen lignin publication-title: J. Am. Chem. Soc. – volume: 67 start-page: 613 year: 2013 end-page: 627 ident: bb0970 article-title: Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens) publication-title: Holzforschung – volume: 116 start-page: 2275 year: 2016 end-page: 2306 ident: bb0870 article-title: Strategies for the conversion of lignin to high-value polymeric materials: review and perspective publication-title: Chem. Rev. – volume: 55 start-page: 8164 year: 2016 end-page: 8215 ident: bb0765 article-title: Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bb0025 article-title: Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields publication-title: Nat. Commun. – volume: 102 start-page: 9020 year: 2011 end-page: 9025 ident: bb0400 article-title: Structural features of lignin macromolecules extracted with ionic liquid from poplar wood publication-title: Bioresour. Technol. – volume: 90 start-page: 1821 year: 2015 end-page: 1826 ident: bb0245 article-title: Lignin solubility in non-imidazolium ionic liquids publication-title: J. Chem. Technol. Biotechnol. – volume: 7 start-page: 10808 year: 2019 end-page: 10820 ident: bb0940 article-title: Preserving both lignin and cellulose chemical structures: flow-through acid hydrotropic fractionation at atmospheric pressure for complete wood valorization publication-title: ACS Sustain. Chem. Eng. – volume: 6 start-page: 12205 year: 2018 end-page: 12216 ident: bb0145 article-title: High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals publication-title: ACS Sustain. Chem. Eng. – start-page: 16 year: 2005 end-page: 19 ident: bb0535 article-title: Novel β-β structures in lignins incorporating acylated monolignols publication-title: Proceedings of 13th International Symposium on Wood, Fiber, and Pulping Chemistry. Citeseer – volume: 17 start-page: 1909 year: 2016 end-page: 1920 ident: bib1131 article-title: Identification of 4–O–5-units in softwood lignins via definitive lignin models and NMR publication-title: Biomacromolecules – volume: 352 year: 2022 ident: bb0565 article-title: Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue publication-title: Bioresour. Technol. – volume: 22 start-page: 3985 year: 2020 end-page: 4001 ident: bb0040 article-title: Spruce milled wood lignin: linear, branched or cross-linked? publication-title: Green Chem. – volume: 2 start-page: 933 year: 2009 end-page: 942 ident: bb0305 article-title: Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls publication-title: Mol. Plant – volume: 309 year: 2022 ident: bb1100 article-title: Fractionation and quantitative structural analysis of lignin from a lignocellulosic biorefinery process by gradient acid precipitation publication-title: Fuel – year: 2012 ident: bb0500 article-title: Methods in lignin chemistry – volume: 12 start-page: 542 year: 2019 end-page: 548 ident: bb0660 article-title: Selective primary alcohol oxidation of lignin streams from butanol-pretreated agricultural waste biomass publication-title: ChemSusChem – volume: 16 start-page: 269 year: 1982 end-page: 277 ident: bb0790 article-title: Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA publication-title: Wood Sci. Technol. – volume: 62 start-page: 139 year: 2003 end-page: 146 ident: bb0210 article-title: Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: Capillary zone electrophoresis study of pH effect publication-title: Phytochemistry – volume: 137–243 year: 2010 ident: bb0710 article-title: NMR of lignins publication-title: Lignin Lignans. – volume: 50 start-page: 129 year: 2002 end-page: 135 ident: bb0340 article-title: Studies on the effect of ball milling on lignin structure using a modified DFRC method publication-title: J. Agric. Food Chem. – volume: 71 start-page: 461 year: 2017 end-page: 469 ident: bb0355 article-title: 2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities publication-title: Holzforschung – volume: 13 start-page: 4385 year: 2020 end-page: 4393 ident: bb0830 article-title: Lignin source and structural characterization publication-title: ChemSusChem – volume: 67 start-page: 968 year: 2018 end-page: 974 ident: bb0135 article-title: Structural features of alkaline dioxane lignin and residual lignin from Eucalyptus grandis× E. urophylla publication-title: J. Agric. Food Chem. – volume: 7 start-page: ACI-S10799 year: 2012 ident: bb0760 article-title: Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis publication-title: Anal. Chem. Insights – volume: 116 start-page: 9448 year: 1994 end-page: 9456 ident: bb0720 article-title: Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 7294 year: 2018 end-page: 7300 ident: bb0185 article-title: Structural characterization of lignins from willow bark and wood publication-title: J. Agric. Food Chem. – volume: 8 start-page: 1748 year: 2015 end-page: 1763 ident: bb0880 article-title: Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps publication-title: Energy Environ. Sci. – volume: 10 start-page: 131 year: 1998 end-page: 147 ident: bb0075 article-title: Oxidative Coupling of Phenols and the Biosynthesis of Lignin – volume: 306 start-page: 510 year: 2016 end-page: 532 ident: bb0175 article-title: From models to lignin: Transition metal catalysis for selective bond cleavage reactions publication-title: Coord. Chem. Rev. – volume: 6 start-page: 12205 year: 2018 end-page: 12216 ident: bb0140 article-title: High-Solid Lignocellulose Processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals publication-title: ACS Sustain. Chem. Eng. – start-page: 34 year: 1911 end-page: 36 ident: bb0410 article-title: Beitrage zur Kenntnis der chemischen Zusammensetzung des Fichtenholzes. Berlin – volume: 1 start-page: 33 year: 2010 end-page: 46 ident: bb0100 article-title: Understanding the impact of ionic liquid pretreatment on eucalyptus publication-title: Biofuels – volume: 16 start-page: 1976 year: 2018 end-page: 1982 ident: bb0435 article-title: Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions publication-title: Org. Biomol. Chem. – volume: 46 start-page: 508 year: 2008 end-page: 517 ident: bb1040 article-title: Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy publication-title: Magn. Reson. Chem. – volume: 5 start-page: 169 year: 2011 end-page: 180 ident: bb0545 article-title: Solution-state NMR of lignocellulosic biomass publication-title: J. Biobased Mater. Bioenergy – volume: 140 year: 2019 ident: bb0845 article-title: Structural elucidation of tobacco stalk lignin isolated by different integrated processes publication-title: Ind. Crop. and Prod. – volume: 122 start-page: 5608 year: 2010 end-page: 5611 ident: bb0780 article-title: Label-free, real-time monitoring of biomass processing with stimulated raman scattering microscopy publication-title: Angew. Chem. – volume: 10 start-page: 12569 year: 2022 end-page: 12579 ident: bb0955 article-title: The effect of acidic ternary deep eutectic solvent treatment on native lignin publication-title: ACS Sustain. Chem. Eng. – volume: 5 start-page: 10640 year: 2017 end-page: 10648 ident: bb0655 article-title: Grafting of technical lignins through regioselective triazole formation on β-O-4 linkages publication-title: ACS Sustain. Chem. Eng. – volume: 17 start-page: 244 year: 2015 end-page: 249 ident: bb0865 article-title: Selective modification of the β-β Linkage in DDQ-treated Kraft lignin analysed by 2D NMR spectroscopy publication-title: Green Chem. – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bb0365 article-title: Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR publication-title: Nat. Commun. – volume: 84-93 year: 1955 ident: bb0010 article-title: The Alkylation of Lignin with alcoholic hydrochloric acid publication-title: Acta Chem. Scand. – volume: 13 start-page: 4702 year: 2020 end-page: 4721 ident: bb0625 article-title: Willow Lignin Recovered from hot-water extraction for the production of hydrogels and thermoplastic blends publication-title: ChemSusChem – volume: 50 start-page: 6008 year: 2002 end-page: 6016 ident: bb0260 article-title: Model studies of ferulate - Coniferyl alcohol cross-product formation in primary maize walls: Implications for lignification in grasses publication-title: J. Agric. Food Chem. – volume: 36 start-page: 169 year: 1995 end-page: 170 ident: bb0370 article-title: Dibenzodioxocins; a novel type of linkage in softwood lignins publication-title: Tetrahedron Lett. – volume: 17 start-page: 1589 year: 2015 end-page: 1596 ident: bb0980 article-title: Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis publication-title: Green Chem. – volume: 17 start-page: 4951 year: 2015 end-page: 4967 ident: bib1126 article-title: Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria publication-title: Green Chem. – volume: 96 start-page: 8955 year: 1999 end-page: 8960 ident: bb0640 article-title: Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms publication-title: Proc. Natl. Acad. Sci. – volume: 47 start-page: 1988 year: 1999 end-page: 1992 ident: bb0520 article-title: Detection and determination of publication-title: J. Agric. Food Chem. – volume: 28 start-page: 50 year: 2002 end-page: 54 ident: bb0030 article-title: Isolation of residual kraft lignin in high yield and purity publication-title: J. Pulp Pap. Sci. – volume: 228 start-page: 919 year: 2008 end-page: 928 ident: bb0300 article-title: A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation publication-title: Planta – volume: 39 start-page: 1426 year: 1991 end-page: 1437 ident: bb0705 article-title: Pyrolysis-Gc-Ms characterization of forage materials publication-title: J. Agric. Food Chem. – volume: 3 start-page: 272 year: 2010 end-page: 277 ident: bb1070 article-title: Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy publication-title: BioEnergy Res. – volume: 56 start-page: 230 year: 2019 end-page: 239 ident: bb0885 article-title: Lignin biosynthesis and its integration into metabolism publication-title: Curr. Opin. Biotechnol. – volume: 377-384 year: 2003 ident: bb0635 article-title: Lignin structures in normal and compression wood publication-title: Evaluation by Thioacidolysis using Ethanethiol and Methanethiol – volume: 43 start-page: 141 year: 2013 end-page: 149 ident: bb1025 article-title: Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo publication-title: Ind. Crop. Prod. – volume: 126 start-page: 9142 year: 2004 end-page: 9147 ident: bb0005 article-title: Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids publication-title: J. Am. Chem. Soc. – volume: 219 start-page: 93 year: 2004 end-page: 98 ident: bb0585 article-title: Room temperature ionic liquids and their mixtures - A review publication-title: Fluid Phase Equilib. – volume: 37 start-page: 91 year: 2003 end-page: 102 ident: bb0350 article-title: The effect of isolation method on the chemical structure of residual lignin publication-title: Wood Sci. Technol. – volume: 136 start-page: 345 year: 2013 end-page: 350 ident: bb1045 article-title: Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: Characterization of lignin and hemicelluloses publication-title: Bioresour. Technol. – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bb0630 article-title: Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls publication-title: Sci. Rep. – volume: 47 start-page: 2991 year: 1999 end-page: 2996 ident: bb0730 article-title: Are lignins optically active? publication-title: J. Agric. Food Chem. – volume: 8 start-page: 2657 year: 2015 end-page: 2663 ident: bb0560 article-title: Lignin monomer production integrated into the γ-valerolactone sugar platform publication-title: Energy Environ. Sci. – volume: 114 start-page: 11060 year: 2014 end-page: 11082 ident: bb0810 article-title: Deep eutectic solvents (DESs) and their applications publication-title: Chem. Rev. – year: 2018 ident: bb0425 article-title: Catalytic Depolymerisation of Lignin: Advanced Model Studies and Sustainable Chemicals Production – volume: 155 start-page: 667 year: 2011 end-page: 682 ident: bb0755 article-title: Lignin composition and structure in young versus adult Eucalyptus globulus plants publication-title: Plant Physiol. – volume: 57 start-page: 1356 year: 2018 end-page: 1360 ident: bb0450 article-title: Protection group effects during α,γ-diol lignin stabilization promote high-selectivity monomer production publication-title: Angew. Chem. Int. Ed. – start-page: 61 year: 2000 end-page: 65 ident: bb0650 article-title: Comparison of Acetic Acid Lignin with Milled Wood and Alkaline Lignins from Wheat Straw – volume: 9 start-page: 1 year: 2016 end-page: 16 ident: bb0920 article-title: Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw publication-title: Biotechnol. Biofuels – volume: 23 start-page: 2868 year: 2021 end-page: 2899 ident: bb0230 article-title: Electrochemical upgrading of depolymerized lignin: a review of model compound studies publication-title: Green Chem. – volume: 29 start-page: 153 year: 1975 end-page: 159 ident: bb0105 article-title: Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-International publication-title: J. Biol. Chem. Phys. Technol. Wood – volume: 71 start-page: 563 year: 2017 end-page: 570 ident: bb0775 article-title: Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements publication-title: Holzforschung – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: bb0805 article-title: Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR publication-title: Nat. Commun. – volume: 29 start-page: 235 year: 2003 end-page: 240 ident: bb0990 article-title: An improved method for lsolating lignin in high yield and purity publication-title: J. Pulp Pap. Sci. – volume: 53 start-page: 368 year: 2008 end-page: 379 ident: bb0745 article-title: Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency) publication-title: Plant J. – volume: 6 start-page: 359 year: 2013 end-page: 391 ident: bb0965 article-title: Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology publication-title: Materials (Basel). – volume: 12 start-page: 4561 year: 2022 ident: bb0600 article-title: Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment publication-title: Sci. Rep. – volume: 40 start-page: 1077 year: 1995 end-page: 1082 ident: bb0250 article-title: Ferulate cross-linking in cell walls isolated from maize cell suspensions publication-title: Phytochemistry – volume: 1 start-page: 626 year: 2008 end-page: 629 ident: bb1020 article-title: Selective degradation of wood lignin over noble-metal catalysts in a two-step process publication-title: ChemSusChem Chem. Sustain. Energy Mater. – volume: 21 start-page: 1573 year: 2019 end-page: 1595 ident: bb0240 article-title: A critical review on the analysis of lignin carbohydrate bonds publication-title: Green Chem. – volume: 176 year: 2022 ident: bb0825 article-title: Light-colored lignin isolated from poplar by ultrasound-assisted ethanol extraction: structural features and anti-ultraviolet and anti-oxidation activities publication-title: Ind. Crop. Prod. – volume: 58 start-page: 2649 year: 2019 end-page: 2654 ident: bb0455 article-title: Highly selective oxidation and depolymerization of α, γ-diol-protected lignin publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 1913 year: 2019 ident: bb1110 article-title: Efficient mild organosolv lignin extraction in a flow-through setup yielding lignin with high β-O-4 content publication-title: Polymers (Basel). – volume: 1 start-page: 56 year: 2008 end-page: 66 ident: bb0395 article-title: Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO- publication-title: BioEnergy Res. – volume: 8 start-page: 1813 year: 2019 end-page: 1822 ident: bb0935 article-title: Structural variations of lignin macromolecules from early growth stages of poplar cell walls publication-title: ACS Sustain. Chem. Eng. – volume: 101 start-page: 747 year: 2017 end-page: 757 ident: bb0125 article-title: Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr publication-title: Int. J. Biol. Macromol. – volume: 22 start-page: 3168 year: 1989 end-page: 3172 ident: bb0345 article-title: Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs publication-title: Macromolecules – year: 2022 ident: bb0960 article-title: Tuning lignin properties by mild ionic-liquid-mediated selective alcohol incorporation publication-title: Chem Catal. – volume: 14 start-page: 163 year: 1999 end-page: 170 ident: bb0235 article-title: Determination of phenolic hydroxyl groups in residual lignin using a modified UV-method publication-title: Nord. Pulp Pap. Res. J. – volume: 360 year: 2022 ident: bb1060 article-title: High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw publication-title: Bioresour. Technol. – volume: 110 start-page: 3 year: 1996 end-page: 13 ident: bb0085 article-title: Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants) publication-title: Plant Physiol. – volume: 9 start-page: 1 year: 2021 end-page: 14 ident: bb0490 article-title: Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in Bagasse publication-title: Processes – volume: 277 start-page: 47412 year: 2002 end-page: 47419 ident: bb0390 article-title: Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms publication-title: J. Biol. Chem. – volume: 3 year: 2017 ident: bb0120 article-title: Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope publication-title: Sci. Adv. – volume: 27 start-page: 3185 year: 2022 ident: bb0645 article-title: Mild organosolv delignification of residual aspen bark after extractives isolation as a step in biorefinery processing schemes publication-title: molecules – volume: 71 start-page: 563 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0775 article-title: Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements publication-title: Holzforschung doi: 10.1515/hf-2016-0182 – volume: 54 start-page: 519 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0055 article-title: Lignin biosynthesis publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.134938 – volume: 73 start-page: 201 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb0115 article-title: Novel seed coat lignins in the Cactaceae: Structure, distribution and implications for the evolution of lignin diversity publication-title: Plant J. doi: 10.1111/tpj.12012 – volume: 175 start-page: 1018 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0875 article-title: Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1 publication-title: Plant Physiol. doi: 10.1104/pp.17.00834 – volume: 1 start-page: 626 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb1020 article-title: Selective degradation of wood lignin over noble-metal catalysts in a two-step process publication-title: ChemSusChem Chem. Sustain. Energy Mater. – volume: 12 start-page: 542 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0660 article-title: Selective primary alcohol oxidation of lignin streams from butanol-pretreated agricultural waste biomass publication-title: ChemSusChem doi: 10.1002/cssc.201801971 – volume: 14 start-page: 123 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0375 article-title: The behaviour of dibenzodioxocin structures in lignin during alkaline pulping processes publication-title: Nord. Pulp Pap. Res. J. doi: 10.3183/npprj-1999-14-02-p123-128 – volume: 222 start-page: 1423 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0155 article-title: A facile and novel lignin isolation procedure–Methanolic hydrochloric acid treatment at ambient temperature publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.09.277 – volume: 7 start-page: ACI-S10799 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0760 article-title: Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis publication-title: Anal. Chem. Insights doi: 10.4137/ACI.S10799 – volume: 101 start-page: 747 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0125 article-title: Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.03.146 – volume: 62 start-page: 139 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0210 article-title: Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: Capillary zone electrophoresis study of pH effect publication-title: Phytochemistry doi: 10.1016/S0031-9422(02)00573-3 – volume: 67 start-page: 968 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0135 article-title: Structural features of alkaline dioxane lignin and residual lignin from Eucalyptus grandis× E. urophylla publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b05760 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0855 article-title: Molecular architecture of softwood revealed by solid-state NMR publication-title: Nat. Commun. doi: 10.1038/s41467-019-12979-9 – volume: 2 start-page: 90 year: 2002 ident: 10.1016/j.biotechadv.2023.108230_bb0525 article-title: Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf publication-title: Chem. Commun. doi: 10.1039/b109876d – volume: 43 start-page: 141 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb1025 article-title: Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2012.07.024 – volume: 50 start-page: 6008 year: 2002 ident: 10.1016/j.biotechadv.2023.108230_bb0260 article-title: Model studies of ferulate - Coniferyl alcohol cross-product formation in primary maize walls: Implications for lignification in grasses publication-title: J. Agric. Food Chem. doi: 10.1021/jf0205312 – volume: 74 start-page: 5061 year: 1952 ident: 10.1016/j.biotechadv.2023.108230_bb0795 article-title: The Solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01140a020 – volume: 57 start-page: 1356 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0450 article-title: Protection group effects during α,γ-diol lignin stabilization promote high-selectivity monomer production publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710838 – volume: 90 start-page: 1821 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0245 article-title: Lignin solubility in non-imidazolium ionic liquids publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4492 – volume: 37 start-page: 190 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0615 article-title: Designer lignins: Harnessing the plasticity of lignification publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.10.009 – volume: 46 start-page: 246 year: 1992 ident: 10.1016/j.biotechadv.2023.108230_bb0220 article-title: Lignin determination by FT-IR publication-title: Appl. Spectrosc. doi: 10.1366/0003702924125456 – volume: 125 start-page: 4362 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0310 article-title: Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029035k – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0380 article-title: Monolignol ferulate conjugates are naturally incorporated into plant lignins publication-title: Sci. Adv. doi: 10.1126/sciadv.1600393 – start-page: 27 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0550 article-title: The DFRC (Derivatization Followed by Reductive Cleavage) method and its applications for lignin characterization publication-title: Lignin Struct. Anal. Appl. Biomater. Ecol. Significance – volume: 5 start-page: 886 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bib1128 article-title: Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique publication-title: Bioenergy Res. doi: 10.1007/s12155-012-9203-5 – volume: 28 start-page: 50 year: 2002 ident: 10.1016/j.biotechadv.2023.108230_bb0030 article-title: Isolation of residual kraft lignin in high yield and purity publication-title: J. Pulp Pap. Sci. – volume: 309 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb1100 article-title: Fractionation and quantitative structural analysis of lignin from a lignocellulosic biorefinery process by gradient acid precipitation publication-title: Fuel doi: 10.1016/j.fuel.2021.122153 – volume: 3 start-page: 79 year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0735 article-title: Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls publication-title: Phytochem. Rev. doi: 10.1023/B:PHYT.0000047811.13837.fb – volume: 18 start-page: 4184 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0405 article-title: Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01223 – volume: 44 start-page: 3965 year: 1996 ident: 10.1016/j.biotechadv.2023.108230_bb0835 article-title: Effects of extraction time and different alkalis on the composition of alkali-soluble wheat straw lignins publication-title: J. Agric. Food Chem. doi: 10.1021/jf9600566 – volume: 254 start-page: 1854 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0160 article-title: The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.04.007 – volume: 16 start-page: 1 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0620 article-title: High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus publication-title: BMC Genomics doi: 10.1186/s12864-015-1215-z – volume: 110 start-page: 3552 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb1065 article-title: The catalytic valorization of lignin for the production of renewable chemicals publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 40 start-page: 1077 year: 1995 ident: 10.1016/j.biotechadv.2023.108230_bb0250 article-title: Ferulate cross-linking in cell walls isolated from maize cell suspensions publication-title: Phytochemistry doi: 10.1016/0031-9422(95)00413-2 – volume: 71 start-page: 461 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0355 article-title: 2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities publication-title: Holzforschung doi: 10.1515/hf-2016-0112 – start-page: 16 year: 2005 ident: 10.1016/j.biotechadv.2023.108230_bb0535 article-title: Novel β-β structures in lignins incorporating acylated monolignols – volume: 6 start-page: 12205 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0145 article-title: High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02541 – volume: 102 start-page: 9020 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0400 article-title: Structural features of lignin macromolecules extracted with ionic liquid from poplar wood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.081 – volume: 47 start-page: 1988 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0520 article-title: Detection and determination of p-coumaroylated units in lignins publication-title: J. Agric. Food Chem. doi: 10.1021/jf981140j – volume: 149 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0200 article-title: In-depth structural characterization of the lignin fraction of a pine-derived pyrolysis oil publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2020.104837 – volume: 17 start-page: 4980 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0460 article-title: The synthesis and analysis of advanced lignin model polymers publication-title: Green Chem. doi: 10.1039/C5GC01334H – volume: 189 start-page: 785 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0035 article-title: Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.04.126 – volume: 354 start-page: 329 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0800 article-title: Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization publication-title: Science (80. ) doi: 10.1126/science.aaf7810 – volume: 5 start-page: 277 year: 1985 ident: 10.1016/j.biotechadv.2023.108230_bb0470 article-title: Thioacidolysis of lignin: comparison with acidolysis publication-title: J. Wood Chem. Technol. doi: 10.1080/02773818508085193 – volume: 16 start-page: 269 year: 1982 ident: 10.1016/j.biotechadv.2023.108230_bb0790 article-title: Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA publication-title: Wood Sci. Technol. doi: 10.1007/BF00353151 – volume: 133 start-page: 241 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb1090 article-title: Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2019.03.027 – volume: 9 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb1120 article-title: Highly efficient semi-continuous extraction and in-line purification of high β-O-4 butanosolv lignin publication-title: Front. Chem. doi: 10.3389/fchem.2021.655983 – volume: 67 start-page: 613 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb0970 article-title: Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens) publication-title: Holzforschung doi: 10.1515/hf-2012-0162 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0785 article-title: Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment publication-title: 3 Biotech doi: 10.1007/s13205-018-1399-4 – volume: 344 start-page: 90 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0985 article-title: Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone publication-title: Science (80-. ). doi: 10.1126/science.1250161 – volume: 27 start-page: 3185 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0645 article-title: Mild organosolv delignification of residual aspen bark after extractives isolation as a step in biorefinery processing schemes publication-title: molecules doi: 10.3390/molecules27103185 – volume: 360 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb1060 article-title: High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127570 – volume: 50 start-page: 129 year: 2002 ident: 10.1016/j.biotechadv.2023.108230_bb0340 article-title: Studies on the effect of ball milling on lignin structure using a modified DFRC method publication-title: J. Agric. Food Chem. doi: 10.1021/jf010870f – volume: 10 start-page: 8135 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0020 article-title: Establishing lignin structure-upgradeability relationships using quantitative 1H–13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy publication-title: Chem. Sci. doi: 10.1039/C9SC02088H – volume: 69 start-page: 2831 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb0590 article-title: Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study publication-title: Phytochemistry doi: 10.1016/j.phytochem.2008.09.005 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0490 article-title: Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in Bagasse publication-title: Processes – volume: c1999 start-page: 55 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0725 article-title: Solution state NMR of lignins – volume: 137 start-page: 7456 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0180 article-title: Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03693 – volume: 7 start-page: 1579 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0575 article-title: Whole plant cell wall characterization using solution-state 2D NMR publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.064 – volume: 56 start-page: 230 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0885 article-title: Lignin biosynthesis and its integration into metabolism publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.02.018 – volume: 116 start-page: 9448 year: 1994 ident: 10.1016/j.biotechadv.2023.108230_bb0720 article-title: Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00100a006 – volume: 8 start-page: 17427 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0860 article-title: Production of p-coumaric acid from corn GVL-lignin publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c05651 – volume: 6 start-page: 359 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb0965 article-title: Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology publication-title: Materials (Basel). doi: 10.3390/ma6010359 – volume: 19 start-page: 25 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0570 article-title: Hot compressed water extraction of lignin by using a flow-through reactor publication-title: Engl. J. doi: 10.4186/ej.2015.19.4.25 – volume: 23 start-page: 5437 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0060 article-title: Flow-through solvolysis enables production of native-like lignin from biomass publication-title: Green Chem. doi: 10.1039/D1GC01591E – volume: 57 start-page: 6167 year: 2009 ident: 10.1016/j.biotechadv.2023.108230_bb0905 article-title: Dissolution of beech and spruce milled woods in LiCl/DMSO publication-title: J. Agric. Food Chem. doi: 10.1021/jf900441q – start-page: 334 year: 1992 ident: 10.1016/j.biotechadv.2023.108230_bb0770 article-title: Thioacidolysis – volume: 14 start-page: 163 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0235 article-title: Determination of phenolic hydroxyl groups in residual lignin using a modified UV-method publication-title: Nord. Pulp Pap. Res. J. doi: 10.3183/npprj-1999-14-02-p163-170 – volume: 219 start-page: 93 year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0585 article-title: Room temperature ionic liquids and their mixtures - A review publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2004.02.003 – volume: 17 start-page: 1909 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bib1131 article-title: Identification of 4–O–5-units in softwood lignins via definitive lignin models and NMR publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00256 – year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0740 – volume: 39 start-page: 1426 year: 1991 ident: 10.1016/j.biotechadv.2023.108230_bb0705 article-title: Pyrolysis-Gc-Ms characterization of forage materials publication-title: J. Agric. Food Chem. doi: 10.1021/jf00008a014 – volume: 54 start-page: 9696 year: 2006 ident: 10.1016/j.biotechadv.2023.108230_bb0270 article-title: Comparative evaluation of three lignin isolation protocols for various wood species publication-title: J. Agric. Food Chem. doi: 10.1021/jf062433c – volume: 27 start-page: 179 year: 2007 ident: 10.1016/j.biotechadv.2023.108230_bb0320 article-title: An NMR comparison of the whole lignin from milled wood, MWL, and REL dissolved by the DMSO/NMI procedure publication-title: J. Wood Chem. Technol. doi: 10.1080/02773810701700828 – volume: 2744–2745 year: 2001 ident: 10.1016/j.biotechadv.2023.108230_bb1075 article-title: NMR observation of a new lignin structure, a spiro-dienone publication-title: Chem. Commun. – volume: 9 start-page: 3660 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0190 article-title: Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass publication-title: BioResources doi: 10.15376/biores.9.2.3660-3687 – volume: 40 start-page: 553 year: 1957 ident: 10.1016/j.biotechadv.2023.108230_bb0690 article-title: Properties of powdered wood and isolation of lignin by cellulytic enzymes publication-title: Tappi – volume: 58 start-page: 2649 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0455 article-title: Highly selective oxidation and depolymerization of α, γ-diol-protected lignin publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811630 – start-page: 34 year: 1981 ident: 10.1016/j.biotechadv.2023.108230_bb1015 article-title: Characterization of residual lignin in kraft pulp – volume: 19 start-page: 202 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0465 article-title: Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation publication-title: Green Chem. doi: 10.1039/C6GC02739C – volume: 13 start-page: 4385 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0830 article-title: Lignin source and structural characterization publication-title: ChemSusChem doi: 10.1002/cssc.202001324 – volume: 8 start-page: 12110 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0275 article-title: New Lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c03491 – year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0960 article-title: Tuning lignin properties by mild ionic-liquid-mediated selective alcohol incorporation publication-title: Chem Catal. – volume: 17 start-page: 244 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0865 article-title: Selective modification of the β-β Linkage in DDQ-treated Kraft lignin analysed by 2D NMR spectroscopy publication-title: Green Chem. doi: 10.1039/C4GC01012D – volume: 20 start-page: 2711 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb1000 article-title: Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass publication-title: Green Chem. doi: 10.1039/C8GC00900G – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0805 article-title: Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR publication-title: Nat. Commun. doi: 10.1038/ncomms13902 – volume: 110 start-page: 3 year: 1996 ident: 10.1016/j.biotechadv.2023.108230_bb0085 article-title: Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants) publication-title: Plant Physiol. doi: 10.1104/pp.110.1.3 – volume: 47 start-page: 2991 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0730 article-title: Are lignins optically active? publication-title: J. Agric. Food Chem. doi: 10.1021/jf9901136 – start-page: 61 year: 2000 ident: 10.1016/j.biotechadv.2023.108230_bb0650 – volume: 7 start-page: 13270 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0225 article-title: Computational evidence for kinetically controlled radical coupling during lignification publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02506 – volume: 30 start-page: 219 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0910 article-title: Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling publication-title: J. Wood Chem. Technol. doi: 10.1080/02773810903477613 – volume: 155 start-page: 667 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0755 article-title: Lignin composition and structure in young versus adult Eucalyptus globulus plants publication-title: Plant Physiol. doi: 10.1104/pp.110.167254 – volume: 50 start-page: 955 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb1005 article-title: Synergistic effects of ionic liquid plus alkaline pretreatments on eucalyptus: lignin structure and cellulose hydrolysis publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.03.014 – volume: 109 start-page: 1772 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0110 article-title: A polymer of caffeyl alcohol in plant seeds publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1120992109 – volume: 3 start-page: 549 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb0595 article-title: Polymerization of different lignins by laccase publication-title: BioResources doi: 10.15376/biores.3.2.549-565 – volume: 125587 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0900 article-title: Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review publication-title: Bioresour. Technol. – volume: 26 start-page: 65 year: 2006 ident: 10.1016/j.biotechadv.2023.108230_bb1080 article-title: NMR studies on the occurrence of spirodienone structures in lignins publication-title: J. Wood Chem. Technol. doi: 10.1080/02773810600580271 – volume: 14 start-page: 5186 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0895 article-title: Catalytic hydrogenolysis of lignin: The influence of minor units and saccharides publication-title: ChemSusChem doi: 10.1002/cssc.202101527 – volume: 66 start-page: 7294 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0185 article-title: Structural characterization of lignins from willow bark and wood publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b02014 – volume: 11 start-page: 1762 year: 2009 ident: 10.1016/j.biotechadv.2023.108230_bb0360 article-title: Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls publication-title: Green Chem. doi: 10.1039/b913609f – volume: 167 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0950 article-title: The effect of ball milling on birch, pine, reed, walnut shell enzymatic hydrolysis recalcitrance and the structure of the isolated residual enzyme lignin publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2021.113493 – volume: 120 year: 2023 ident: 10.1016/j.biotechadv.2023.108230_bb0505 article-title: Lignin with controlled structural properties by N-heterocycle-based deep eutectic solvent extraction publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2307323120 – volume: 5 start-page: 169 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0545 article-title: Solution-state NMR of lignocellulosic biomass publication-title: J. Biobased Mater. Bioenergy doi: 10.1166/jbmb.2011.1131 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0365 article-title: Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR publication-title: Nat. Commun. doi: 10.1038/s41467-018-08252-0 – volume: 4 start-page: eaau2968 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0485 article-title: An “ideal lignin” facilitates full biomass utilization publication-title: Sci. Adv. doi: 10.1126/sciadv.aau2968 – volume: 20 start-page: 205 year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0050 article-title: Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2004.04.022 – volume: 8 start-page: 17839 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0890 article-title: Molecular lignin solubility and structure in organic solvents publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07156 – volume: 192 start-page: 31 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0695 article-title: Deep eutectic solvent pretreatment and subsequent saccharification of corncob publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.053 – volume: 29 start-page: 153 year: 1975 ident: 10.1016/j.biotechadv.2023.108230_bb0105 article-title: Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-International publication-title: J. Biol. Chem. Phys. Technol. Wood – volume: 58 start-page: 3446 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb1085 article-title: Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/N-methylimidazole publication-title: J. Agric. Food Chem. doi: 10.1021/jf903998d – volume: 15 start-page: 120 issue: 2 year: 2000 ident: 10.1016/j.biotechadv.2023.108230_bib1127 article-title: Absolute molar mass of lignins by size exclusion chromatography and MALDI-TOF mass spectroscopy. Nordic pulp & paper publication-title: Res. J. – volume: 6 start-page: 12205 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0140 article-title: High-Solid Lignocellulose Processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02541 – volume: 11 start-page: 3170 year: 2023 ident: 10.1016/j.biotechadv.2023.108230_bb1030 article-title: Solvent-Free Catalytic Hydrotreatment of Alcell lignin using mono-and bimetallic Ni (Mo) catalysts supported on mesoporous alumina publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c04447 – volume: 17 start-page: 4951 issue: 11 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bib1126 article-title: Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria publication-title: Green Chem. doi: 10.1039/C5GC01165E – volume: 8 start-page: 934 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0555 article-title: Naturally p-Hydroxybenzoylated Lignins in Palms publication-title: Bioenergy Res. doi: 10.1007/s12155-015-9583-4 – volume: 60 start-page: 389 year: 2006 ident: 10.1016/j.biotechadv.2023.108230_bb0330 article-title: Elucidation of the structure of cellulolytic enzyme lignin publication-title: Holzforschung doi: 10.1515/HF.2006.061 – volume: 12 start-page: 4561 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0600 article-title: Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment publication-title: Sci. Rep. doi: 10.1038/s41598-022-08717-9 – volume: 126 start-page: 9142 year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0005 article-title: Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048266j – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0920 article-title: Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0552-8 – volume: 84-93 year: 1955 ident: 10.1016/j.biotechadv.2023.108230_bb0010 article-title: The Alkylation of Lignin with alcoholic hydrochloric acid publication-title: Acta Chem. Scand. – year: 1952 ident: 10.1016/j.biotechadv.2023.108230_bb0070 – volume: 52 start-page: 1850 year: 2004 ident: 10.1016/j.biotechadv.2023.108230_bb0090 article-title: A comprehensive approach for quantitative lignin characterization by NMR spectroscopy publication-title: J. Agric. Food Chem. doi: 10.1021/jf035282b – volume: 368 year: 2023 ident: 10.1016/j.biotechadv.2023.108230_bb1035 article-title: Mild pretreatment with Brønsted acidic deep eutectic solvents for fractionating β–O–4 linkage-rich lignin with high sunscreen performance and evaluation of enzymatic saccharification synergism publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128258 – volume: 71 start-page: 1297 year: 1949 ident: 10.1016/j.biotechadv.2023.108230_bb0080 article-title: Native lignin. II. Native aspen lignin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01172a043 – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0510 article-title: Tunable and functional deep eutectic solvents for lignocellulose valorization publication-title: Nat. Commun. – volume: 22 start-page: 3791 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb1095 article-title: Combined lignin defunctionalisation and synthesis gas formation by acceptorless dehydrogenative decarbonylation publication-title: Green Chem. doi: 10.1039/D0GC01209B – volume: 17 start-page: 214 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0290 article-title: The effect of changing the components of an ionic liquid upon the solubility of lignin† publication-title: Green Chem. doi: 10.1039/C4GC01888E – volume: 35 start-page: 535 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0540 article-title: Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR publication-title: Plant J. Cell Mol. Biol. doi: 10.1046/j.1365-313X.2003.01817.x – volume: 7 start-page: 12098 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0665 article-title: Preparation and reaction of β-O-4 γ-aldehyde-containing butanosolv lignins publication-title: ACS Sustain. Chem. Eng. – volume: 12 start-page: 3928 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0165 article-title: Milled wood lignin: A linear oligomer publication-title: Biomacromolecules doi: 10.1021/bm200948r – volume: 164 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb1010 article-title: A flow-through reactor for fast fractionation and production of structure-preserved lignin publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2021.113350 – volume: 174 start-page: 2072 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0095 article-title: Hydroxystilbenes are monomers in palm fruit endocarp lignins publication-title: Plant Physiol. doi: 10.1104/pp.17.00362 – volume: 3 start-page: 272 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb1070 article-title: Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy publication-title: BioEnergy Res. doi: 10.1007/s12155-010-9079-1 – volume: 48 start-page: 6106 year: 2000 ident: 10.1016/j.biotechadv.2023.108230_bb0255 article-title: Cross-linking of maize walls by ferulate dimerization and incorporation into lignin publication-title: J. Agric. Food Chem. doi: 10.1021/jf0006978 – volume: 243–321 year: 1967 ident: 10.1016/j.biotechadv.2023.108230_bb0285 article-title: Lignin-a natural polymeric product of phenol oxidation publication-title: Oxidat. Coupl. Phenols – volume: 55 start-page: 8164 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0765 article-title: Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510351 – start-page: 1 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0820 – volume: 46 start-page: 508 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb1040 article-title: Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.2201 – year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0500 – volume: 179 start-page: 80 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0480 article-title: Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): Comparative characterization of the dissolved lignins with milled wood lignin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.10.060 – volume: 228 start-page: 919 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb0300 article-title: A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation publication-title: Planta doi: 10.1007/s00425-008-0791-4 – volume: 1 start-page: 33 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0100 article-title: Understanding the impact of ionic liquid pretreatment on eucalyptus publication-title: Biofuels doi: 10.4155/bfs.09.5 – volume: 147 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0150 article-title: Lignin extraction and upgrading using deep eutectic solvents publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2020.112241 – year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0315 – volume: 2 start-page: 933 year: 2009 ident: 10.1016/j.biotechadv.2023.108230_bb0305 article-title: Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls publication-title: Mol. Plant doi: 10.1093/mp/ssp047 – volume: 7 start-page: 13062 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0850 article-title: Green process for extraction of lignin by the microwave-assisted ionic liquid approach: toward biomass biorefinery and lignin characterization publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02166 – volume: 37 start-page: 91 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0350 article-title: The effect of isolation method on the chemical structure of residual lignin publication-title: Wood Sci. Technol. doi: 10.1007/s00226-003-0163-y – volume: 175 start-page: 112 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0930 article-title: Green and efficient conversion strategy of Eucalyptus based on mechanochemical pretreatment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.09.002 – volume: 46 start-page: 4616 year: 1998 ident: 10.1016/j.biotechadv.2023.108230_bb0715 article-title: The DFRC method for lignin analysis. 6. A simple modification for identifying natural acetates on lignins publication-title: J. Agric. Food Chem. doi: 10.1021/jf980680d – volume: 35 start-page: 535 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0530 article-title: Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01817.x – volume: 4 start-page: 3154 issue: 9 year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bib1129 article-title: Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01201k – volume: 21 start-page: 1573 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0240 article-title: A critical review on the analysis of lignin carbohydrate bonds publication-title: Green Chem. doi: 10.1039/C8GC03606C – volume: 137–243 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0710 article-title: NMR of lignins publication-title: Lignin Lignans. doi: 10.1201/EBK1574444865-c5 – volume: 176 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0825 article-title: Light-colored lignin isolated from poplar by ultrasound-assisted ethanol extraction: structural features and anti-ultraviolet and anti-oxidation activities publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2021.114359 – volume: 8 start-page: 1813 issue: 4 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0935 article-title: Structural variations of lignin macromolecules from early growth stages of poplar cell walls publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05845 – volume: 5 start-page: 10640 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0655 article-title: Grafting of technical lignins through regioselective triazole formation on β-O-4 linkages publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02575 – volume: 4 start-page: 677 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0420 article-title: Ionic liquids beyond simple solvents: glimpses at the state of the art in organic Chemistry publication-title: ChemistryOpen doi: 10.1002/open.201500113 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0630 article-title: Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls publication-title: Sci. Rep. doi: 10.1038/s41598-018-24328-9 – start-page: 10023 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0605 – volume: 114 start-page: 11060 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0810 article-title: Deep eutectic solvents (DESs) and their applications publication-title: Chem. Rev. doi: 10.1021/cr300162p – volume: 27 start-page: 176 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0205 article-title: Advances in solid-state NMR of cellulose publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.02.002 – volume: 13 start-page: 4238 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0440 article-title: An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies publication-title: ChemSusChem doi: 10.1002/cssc.202000989 – volume: 8 start-page: 5119 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb1115 article-title: Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b07222 – volume: 5 start-page: 11618 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0925 article-title: Structural characteristics of lignin macromolecules from different Eucalyptus species publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02970 – volume: 47 start-page: 723 year: 1969 ident: 10.1016/j.biotechadv.2023.108230_bb0675 article-title: Lignin and related compounds. I. A comparative study of catalysts for lignin hydrogenolysis publication-title: Can. J. Chem. doi: 10.1139/v69-118 – volume: 27 start-page: 23 year: 2007 ident: 10.1016/j.biotechadv.2023.108230_bb0700 article-title: Ionic liquid as a green solvent for lignin publication-title: J. Wood Chem. Technol. doi: 10.1080/02773810701282330 – volume: 45 start-page: 2590 year: 1997 ident: 10.1016/j.biotechadv.2023.108230_bb0515 article-title: Derivatization followed by reductive cleavage (DFRC Method), a new method for lignin analysis: protocol for analysis of DFRC monomers publication-title: J. Agric. Food Chem. doi: 10.1021/jf970258h – volume: 116 start-page: 2275 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0870 article-title: Strategies for the conversion of lignin to high-value polymeric materials: review and perspective publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00345 – volume: 49 start-page: 1391 year: 1957 ident: 10.1016/j.biotechadv.2023.108230_bb0015 article-title: Action of mineral acid on lignin and model substances of guaiacylglycerol-β-aryl ether type publication-title: Ind. Eng. Chem. doi: 10.1021/ie50573a037 – year: 2011 ident: 10.1016/j.biotechadv.2023.108230_bb0195 – volume: 46 start-page: 1423 year: 1998 ident: 10.1016/j.biotechadv.2023.108230_bb0280 article-title: Quantitative analysis of cellulose in tobacco by 13C CPMAS NMR publication-title: J. Agric. Food Chem. doi: 10.1021/jf970813f – volume: 47 start-page: 277 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb0840 article-title: Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2013.03.025 – volume: 61 start-page: 2120 year: 1939 ident: 10.1016/j.biotechadv.2023.108230_bb0065 article-title: Native lignin I. its isolation and methylation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01877a043 – volume: 23 start-page: 2868 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0230 article-title: Electrochemical upgrading of depolymerized lignin: a review of model compound studies publication-title: Green Chem. doi: 10.1039/D0GC04127K – volume: 96 start-page: 8955 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0640 article-title: Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.96.16.8955 – volume: 11 start-page: 1913 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb1110 article-title: Efficient mild organosolv lignin extraction in a flow-through setup yielding lignin with high β-O-4 content publication-title: Polymers (Basel). doi: 10.3390/polym11121913 – volume: 37 start-page: 1241 year: 1959 ident: 10.1016/j.biotechadv.2023.108230_bb0680 article-title: The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane–water medium publication-title: Can. J. Chem. doi: 10.1139/v59-183 – volume: 3 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0120 article-title: Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope publication-title: Sci. Adv. doi: 10.1126/sciadv.1701735 – volume: 53 start-page: 368 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb0745 article-title: Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency) publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03345.x – volume: 13 start-page: 4702 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0625 article-title: Willow Lignin Recovered from hot-water extraction for the production of hydrogels and thermoplastic blends publication-title: ChemSusChem doi: 10.1002/cssc.202001259 – volume: 5 start-page: 2544 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb0610 article-title: Ammonia pretreatment of corn stover enables facile lignin extraction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02892 – volume: 11 start-page: 3259 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb1125 article-title: Getting closer to absolute molar masses of technical lignins publication-title: ChemSusChem doi: 10.1002/cssc.201801177 – volume: 56 start-page: 240 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0750 article-title: Lignin structure and its engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.02.019 – volume: 7 start-page: 2553 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0580 article-title: Impact of expressing p-coumaryl transferase in Medicago sativa L. on cell wall chemistry and digestibility publication-title: Am. J. Plant Sci. doi: 10.4236/ajps.2016.717221 – volume: 136 start-page: 345 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb1045 article-title: Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: Characterization of lignin and hemicelluloses publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.042 – volume: 77 start-page: 713 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0685 article-title: P-Coumaroyl-CoA: Monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon publication-title: Plant J. doi: 10.1111/tpj.12420 – volume: 17 start-page: 1492 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0670 article-title: A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass publication-title: Green Chem. doi: 10.1039/C4GC01911C – volume: 170 start-page: 499 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0915 article-title: Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.020 – volume: 9 start-page: 1090 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bib1130 article-title: Elucidating structural characteristics of biomass using solution‐state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide publication-title: ChemSusChem doi: 10.1002/cssc.201600135 – volume: 4 start-page: 7549 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0385 article-title: A gel-state 2D-NMR method for plant cell wall profiling and analysis: A model study with the amorphous cellulose and xylan from ball-milled cotton linters publication-title: RSC Adv. doi: 10.1039/C3RA46338A – volume: 10 start-page: 830 year: 2017 ident: 10.1016/j.biotechadv.2023.108230_bb1050 article-title: Lignin-derived thioacidolysis dimers: reevaluation, new products, authentication, and quantification publication-title: ChemSusChem doi: 10.1002/cssc.201700101 – volume: 1 start-page: 56 year: 2008 ident: 10.1016/j.biotechadv.2023.108230_bb0395 article-title: Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6 publication-title: BioEnergy Res. doi: 10.1007/s12155-008-9004-z – volume: 13 start-page: 4394 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0415 article-title: Nucleophilic thiols reductively cleave ether linkages in lignin model polymers and lignin publication-title: ChemSusChem doi: 10.1002/cssc.202001238 – volume: 16 start-page: 1976 year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0435 article-title: Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB03087H – volume: 306 start-page: 510 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0175 article-title: From models to lignin: Transition metal catalysis for selective bond cleavage reactions publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.004 – volume: 169 start-page: 2992 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0815 article-title: Engineering monolignol p-coumarate conjugates into poplar and arabidopsis lignins publication-title: Plant Physiol. – start-page: 34 year: 1911 ident: 10.1016/j.biotechadv.2023.108230_bb0410 – volume: 22 start-page: 3168 year: 1989 ident: 10.1016/j.biotechadv.2023.108230_bb0345 article-title: Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs publication-title: Macromolecules doi: 10.1021/ma00197a045 – volume: 12 start-page: 1 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0945 article-title: Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst publication-title: Nat. Commun. – volume: 8 start-page: 2657 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0560 article-title: Lignin monomer production integrated into the γ-valerolactone sugar platform publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01322D – volume: 22 start-page: 3985 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0040 article-title: Spruce milled wood lignin: linear, branched or cross-linked? publication-title: Green Chem. doi: 10.1039/D0GC00926A – volume: 10 start-page: 12569 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0955 article-title: The effect of acidic ternary deep eutectic solvent treatment on native lignin publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c02954 – volume: 15 start-page: 1157 year: 1976 ident: 10.1016/j.biotechadv.2023.108230_bb0295 article-title: Diferulic acid as a component of cell walls of Lolium multiflorum publication-title: Phytochemistry doi: 10.1016/0031-9422(76)85121-7 – volume: 140 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0845 article-title: Structural elucidation of tobacco stalk lignin isolated by different integrated processes publication-title: Ind. Crop. and Prod. doi: 10.1016/j.indcrop.2019.111631 – volume: 17 start-page: 1589 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0980 article-title: Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis publication-title: Green Chem. doi: 10.1039/C4GC01889C – volume: 138 start-page: 8900 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0430 article-title: Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04144 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0025 article-title: Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields publication-title: Nat. Commun. doi: 10.1038/s41467-019-09986-1 – volume: 15 start-page: 3031 year: 2013 ident: 10.1016/j.biotechadv.2023.108230_bb0265 article-title: An efficient and flexible synthesis of model lignin oligomers publication-title: Green Chem. doi: 10.1039/c3gc41110a – volume: 277 start-page: 47412 year: 2002 ident: 10.1016/j.biotechadv.2023.108230_bb0390 article-title: Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208860200 – volume: 16 start-page: 181 year: 2014 ident: 10.1016/j.biotechadv.2023.108230_bb0975 article-title: Understanding the chemical transformations of lignin during ionic liquid pretreatment publication-title: Green Chem. doi: 10.1039/C3GC41752B – year: 1968 ident: 10.1016/j.biotechadv.2023.108230_bb0215 – volume: 21 start-page: 4625 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb1105 article-title: Rapid flow-through fractionation of biomass to preserve labile aryl ether bonds in native lignin publication-title: Green Chem. doi: 10.1039/C9GC02315A – volume: 7 start-page: 10808 year: 2019 ident: 10.1016/j.biotechadv.2023.108230_bb0940 article-title: Preserving both lignin and cellulose chemical structures: flow-through acid hydrotropic fractionation at atmospheric pressure for complete wood valorization publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01634 – volume: 68 start-page: 15074 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb1055 article-title: Comparison of lignin fractions isolated from wheat straw using alkaline and acidic deep eutectic solvents publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c04981 – volume: 36 start-page: 169 year: 1995 ident: 10.1016/j.biotechadv.2023.108230_bb0370 article-title: Dibenzodioxocins; a novel type of linkage in softwood lignins publication-title: Tetrahedron Lett. doi: 10.1016/0040-4039(94)02203-N – volume: 193 start-page: 319 year: 2021 ident: 10.1016/j.biotechadv.2023.108230_bb0495 article-title: Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: Lignin structural features and modification mechanism publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.10.134 – volume: 49 start-page: 3573 year: 2001 ident: 10.1016/j.biotechadv.2023.108230_bb0995 article-title: Quantitative 13C NMR analysis of lignins with internal standards publication-title: J. Agric. Food Chem. doi: 10.1021/jf010333v – volume: 377-384 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0635 article-title: Lignin structures in normal and compression wood – volume: 10 start-page: 131 year: 1998 ident: 10.1016/j.biotechadv.2023.108230_bb0075 – volume: 122 start-page: 5608 year: 2010 ident: 10.1016/j.biotechadv.2023.108230_bb0780 article-title: Label-free, real-time monitoring of biomass processing with stimulated raman scattering microscopy publication-title: Angew. Chem. doi: 10.1002/ange.201000900 – volume: 8 start-page: 1748 year: 2015 ident: 10.1016/j.biotechadv.2023.108230_bb0880 article-title: Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00204D – volume: 352 year: 2022 ident: 10.1016/j.biotechadv.2023.108230_bb0565 article-title: Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127065 – year: 2018 ident: 10.1016/j.biotechadv.2023.108230_bb0425 – volume: 29 start-page: 235 year: 2003 ident: 10.1016/j.biotechadv.2023.108230_bb0990 article-title: An improved method for lsolating lignin in high yield and purity publication-title: J. Pulp Pap. Sci. – volume: 60 start-page: 5922 year: 2012 ident: 10.1016/j.biotechadv.2023.108230_bb0170 article-title: Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods publication-title: J. Agric. Food Chem. doi: 10.1021/jf301002n – volume: 96 start-page: 10045 year: 1999 ident: 10.1016/j.biotechadv.2023.108230_bb0335 article-title: Ferulate 5-hydroxylase from Arabidopsis is a multifunctional cytochrome P450-dependent monooxygenase catalyzing parallel hydroxylations in phenylpropanoid metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.18.10045 – volume: 22 start-page: 7219 year: 2020 ident: 10.1016/j.biotechadv.2023.108230_bb0325 article-title: Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation publication-title: Green Chem. doi: 10.1039/D0GC02439B – volume: 102 start-page: 1368 year: 2009 ident: 10.1016/j.biotechadv.2023.108230_bb0475 article-title: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22179 – volume: 174 start-page: 1057 year: 1954 ident: 10.1016/j.biotechadv.2023.108230_bb0045 article-title: Isolation of lignin from finely divided wood with neutral solvents publication-title: Nature doi: 10.1038/1741057a0 – volume: 171 start-page: 810 year: 2016 ident: 10.1016/j.biotechadv.2023.108230_bb0445 article-title: Maize tricin-oligolignol metabolites and their implications for monocot lignification publication-title: Plant Physiol. |
| SSID | ssj0015053 |
| Score | 2.628465 |
| SecondaryResourceType | review_article |
| Snippet | Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108230 |
| SubjectTerms | aromatic compounds bioethanol biomass biorefining biotechnology carbon Characterization Extraction Fractionation Isolation Lignin lignocellulose Lignocellulosic biomass Native-like structure sustainable communities |
| Title | The isolation of lignin with native-like structure |
| URI | https://dx.doi.org/10.1016/j.biotechadv.2023.108230 https://www.ncbi.nlm.nih.gov/pubmed/37558187 https://www.proquest.com/docview/2848844735 https://www.proquest.com/docview/2888005358 |
| Volume | 68 |
| WOSCitedRecordID | wos001063340100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-1899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015053 issn: 0734-9750 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xDSH2gGD8KoMpSIi3VE2cxI54mkYnQKPw0ImIFytOnJFRpYV2Y38-d7HjDKlD5YGXKLLi2LovvpzvzvcBvNJaJ6GqEIFYU5gxyX2VVpEvilgFmgmR50VLNsEnE5Fl6WfLKLhs6QR404irq3TxX6HGNgSbjs7-A9zupdiA9wg6XhF2vG4MfI1DOFtwVp9RBdXW49q0db79Wf2dKstS6VhbUcQFduv5ynnbuwwBZ3d_sd7lr9_qX_0Zsrf6wlCvt8m-NtBkPQkhs0fqeuUnOLYJQ1g01GvarMY0RDhW5QVtrG6tNjaOgfOhMlPHOQ9p3GHf5c8C2JNP8vj05EROx9n09eKHT9xgFEO3RClbsBPyOEXdtXP4fpx9cNEitOLagxTdXG3GlsnjWz_4TWbITduM1tyY3od7dp_gHRp8H8At3ezB7rXqkXtw56PNi3gIIYLuOdC9eeUZ0D0C3bsGuudAfwSnx-Pp0TvfsmH4RRTzlS-CKi-UZjzEZUfpuSofsQoXFytxSx-UXJRRoRL8YSgRFSFXpUrjmEXpKMyjEePsMWw380Y_BU8lOS7QRIiq1JQFkBJxp06CpFJBiibhAHgnHFnYUvHEWDKTXU7guezFKkms0oh1AIHruTDlUjbo86aTv7RmnzHnJH5HG_R-2UEmUTNSuCtv9PxiKdHwEiIiau2_PYP_LypxJAbwxODt5s14HKM5y59tMMI-3O1X1HPYRiz1C7hdXK7q5c8D2OKZOLBf7W-jw5l2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+isolation+of+lignin+with+native-like+structure&rft.jtitle=Biotechnology+advances&rft.au=Wang%2C+Zhiwen&rft.au=Deuss%2C+Peter+J&rft.date=2023-11-01&rft.issn=1873-1899&rft.eissn=1873-1899&rft.volume=68&rft.spage=108230&rft_id=info:doi/10.1016%2Fj.biotechadv.2023.108230&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon |