Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?

Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A 3 Bi 2 I 9 ) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely repl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research Jg. 36; H. 9; S. 1794 - 1804
Hauptverfasser: Ünlü, Feray, Kulkarni, Ashish, Lê, Khan, Bohr, Christoph, Bliesener, Andrea, Öz, Seren Dilara, Jena, Ajay Kumar, Ando, Yoichi, Miyasaka, Tsutomu, Kirchartz, Thomas, Mathur, Sanjay
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 14.05.2021
Springer Nature B.V
Schlagworte:
ISSN:0884-2914, 2044-5326
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A 3 Bi 2 I 9 ) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH 3 NH 3 + (methylammonium, MA + ) in MA 3 Bi 2 I 9 with various organic cations such as CH(NH 2 ) 2 + (formamidinium, FA + ), (CH 3 ) 2 NH 2 + (dimethylammonium, DMA + ), C(NH 2 ) 3 + (guanidinium, GA + ) and inorganic cations such as cesium (Cs + ), rubidium (Rb + ), potassium (K + ), sodium (Na + ) and lithium (Li + ) and (2) partially replacing MA + with Cs + in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance. Graphic Abstract
AbstractList Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance.Graphic Abstract
Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A 3 Bi 2 I 9 ) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH 3 NH 3 + (methylammonium, MA + ) in MA 3 Bi 2 I 9 with various organic cations such as CH(NH 2 ) 2 + (formamidinium, FA + ), (CH 3 ) 2 NH 2 + (dimethylammonium, DMA + ), C(NH 2 ) 3 + (guanidinium, GA + ) and inorganic cations such as cesium (Cs + ), rubidium (Rb + ), potassium (K + ), sodium (Na + ) and lithium (Li + ) and (2) partially replacing MA + with Cs + in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance. Graphic Abstract
Author Kirchartz, Thomas
Ünlü, Feray
Miyasaka, Tsutomu
Jena, Ajay Kumar
Kulkarni, Ashish
Lê, Khan
Öz, Seren Dilara
Ando, Yoichi
Bohr, Christoph
Bliesener, Andrea
Mathur, Sanjay
Author_xml – sequence: 1
  givenname: Feray
  surname: Ünlü
  fullname: Ünlü, Feray
  organization: Department for Chemistry, Institute of Inorganic Chemistry, University of Cologne
– sequence: 2
  givenname: Ashish
  surname: Kulkarni
  fullname: Kulkarni, Ashish
  organization: IEK5-Photovoltaics, Forschungszentrum Jülich
– sequence: 3
  givenname: Khan
  surname:
  fullname: Lê, Khan
  organization: Department for Chemistry, Institute of Inorganic Chemistry, University of Cologne
– sequence: 4
  givenname: Christoph
  surname: Bohr
  fullname: Bohr, Christoph
  organization: Department for Chemistry, Institute of Inorganic Chemistry, University of Cologne
– sequence: 5
  givenname: Andrea
  surname: Bliesener
  fullname: Bliesener, Andrea
  organization: Physics Institute II, University of Cologne
– sequence: 6
  givenname: Seren Dilara
  surname: Öz
  fullname: Öz, Seren Dilara
  organization: Department for Chemistry, Institute of Inorganic Chemistry, University of Cologne
– sequence: 7
  givenname: Ajay Kumar
  surname: Jena
  fullname: Jena, Ajay Kumar
  organization: Graduate School of Engineering, Toin University of Yokohama
– sequence: 8
  givenname: Yoichi
  surname: Ando
  fullname: Ando, Yoichi
  organization: Physics Institute II, University of Cologne
– sequence: 9
  givenname: Tsutomu
  surname: Miyasaka
  fullname: Miyasaka, Tsutomu
  organization: Graduate School of Engineering, Toin University of Yokohama
– sequence: 10
  givenname: Thomas
  surname: Kirchartz
  fullname: Kirchartz, Thomas
  organization: IEK5-Photovoltaics, Forschungszentrum Jülich, Faculty of Engineering and CENIDE, University of Duisburg-Essen
– sequence: 11
  givenname: Sanjay
  surname: Mathur
  fullname: Mathur, Sanjay
  email: sanjay.mathur@uni-koeln.de
  organization: Department for Chemistry, Institute of Inorganic Chemistry, University of Cologne
BookMark eNp9kMFqGzEURUVxoHbSH-hKkLVaSSONNN0EN6SJIZBFWroqQqN5tuU6I0fSBOKvjyYOBLLwSvA49z69M0OTPvSA0FdGvzEp1fckKqk0oZwRSsuE7D-hKadCEFnxeoKmVGtBeMPEZzRLaTNCVIkp-nfv-9UWCA4Rd2Fot4DnJPkM2NnsQ5-w7_G8-un5osGtTw9DXuMdxPCU_hcq_cB_1zZjn3BeA06Dz3bscOvgHVycoZOl3Sb48vaeoj-_rn5f3pDbu-vF5fyWOCFVJqp2bcetW0omZAMNMMm7Rgnd0LZjtdNUKA1Qd61yDjSnoCVABbTmrLOWVafo_NC7i-FxgJTNJgyxLytNOV-JqmaKHqO4opqXNWLs0gfKxZBShKVx5ajRRY7Wbw2jZlRuDspNUW5elZt9ifIP0V30DzY-Hw9Vh1AqcL-C-P6rI6kXytaU6w
CitedBy_id crossref_primary_10_1016_j_solener_2022_06_021
crossref_primary_10_1016_j_jallcom_2022_164725
crossref_primary_10_5796_electrochemistry_25_72102
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1002_solr_202300984
crossref_primary_10_3390_nano12213751
crossref_primary_10_3390_su152416835
crossref_primary_10_1039_D4QM00878B
crossref_primary_10_1002_slct_202301582
crossref_primary_10_1088_1361_6528_ac88db
crossref_primary_10_1002_solr_202300770
crossref_primary_10_1002_pssa_202400512
crossref_primary_10_1016_j_ica_2022_121003
crossref_primary_10_1007_s10854_022_09574_y
crossref_primary_10_1016_j_saa_2024_124715
crossref_primary_10_1002_adma_202307534
crossref_primary_10_1039_D5QI01090J
crossref_primary_10_1088_1361_6463_ac3033
crossref_primary_10_1149_2162_8777_adfee7
crossref_primary_10_3390_nano14070626
crossref_primary_10_1016_j_matlet_2024_137261
Cites_doi 10.1063/5.0011851
10.1038/nmat4150
10.1039/C9TA12263J
10.1021/acsami.6b02843
10.1038/s41598-020-67606-1
10.1021/acs.jpcc.7b03501
10.1039/C9CS00848A
10.1021/acs.chemmater.8b00676
10.1088/0953-8984/20/25/255221
10.1007/s12274-015-0948-y
10.1021/acs.jpclett.9b00969
10.1021/acsenergylett.8b01906
10.1038/nature14133
10.1038/s41598-019-57015-4
10.1038/ncomms15684
10.1021/acs.jpclett.6b00002
10.1246/bcsj.20170423
10.1039/c3ee43822h
10.1038/s41467-019-13993-7
10.1038/s42004-019-0195-3
10.1038/nmat4572
10.1016/j.solener.2018.11.050
10.1021/ja5033259
10.1039/C6RA28190G
10.1021/acsenergylett.0c00244
10.1021/acs.nanolett.6b03114
10.1002/admi.202000118
10.1021/acs.jpclett.7b01952
10.1002/aenm.202000310
10.1039/C9EE02268F
10.1143/JPSJ.65.1464
10.1039/C5CC10455F
10.1557/mrc.2015.26
10.1021/acs.chemmater.5b03147
10.1021/ja809598r
10.1021/jp411112k
10.1002/aenm.201902467
10.1002/adma.201501978
10.1002/aenm.201904134
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SR
8BQ
8FD
JG9
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
KB.
L.-
L.0
M0C
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0W
DOI 10.1557/s43578-021-00155-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest ABI/INFORM Global
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Materials Research Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2044-5326
EndPage 1804
ExternalDocumentID 10_1557_s43578_021_00155_z
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SPP 2196; SPP 2196
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Helmholtz-Gemeinschaft
  grantid: Peroseed; Peroseed
  funderid: http://dx.doi.org/10.13039/501100001656
– fundername: Universität zu Köln (1017)
GroupedDBID -E.
-~X
.DC
.FH
0E1
0R~
2JN
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8UJ
8WZ
A6W
AAAZR
AACDK
AACJH
AAGFV
AAHNG
AAIKC
AAJBT
AAKTX
AAMNW
AARAB
AASML
AATNV
ABAKF
ABBXD
ABECU
ABEFU
ABGDZ
ABJNI
ABKKG
ABMQK
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACDTI
ACGFO
ACGFS
ACHSB
ACIHN
ACIMK
ACIWK
ACPIV
ACUIJ
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
AEAQA
AEFQL
AEMSY
AEMTW
AENEX
AESKC
AEYYC
AFBBN
AFFUJ
AFKRA
AFLOS
AFLVW
AFUTZ
AGMZJ
AGQEE
AIGIU
AISIE
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
C6C
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
EBLON
EBS
F5P
FIGPU
HG-
HST
HZ~
I.6
I.9
IH6
IKXTQ
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JZLTJ
K60
K6~
KB.
KC.
L98
LLZTM
M-V
M0C
NIKVX
NPVJJ
NQJWS
O9-
P2P
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
ROL
RR0
RSV
S0W
S6-
S6U
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
YQT
~02
8FL
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CCPQU
CITATION
DWQXO
HCIFZ
KOV
PDBOC
PHGZM
PHGZT
PQBZA
PQGLB
7SR
8BQ
8FD
JG9
3V.
7XB
8FK
FRNLG
L.-
L.0
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c457t-76cbd2acf51459e9e152d974890bd16c80478ee6db7cce820e85ee3e0621daa13
IEDL.DBID 7WY
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635073400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-2914
IngestDate Sat Nov 01 15:00:58 EDT 2025
Thu Sep 18 00:06:50 EDT 2025
Sat Nov 29 05:54:50 EST 2025
Tue Nov 18 21:27:28 EST 2025
Fri Feb 21 02:47:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Energy generation
Photovoltaic
Perovskites
Chemical composition
Sustainability
Bi
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-76cbd2acf51459e9e152d974890bd16c80478ee6db7cce820e85ee3e0621daa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1557/s43578-021-00155-z
PQID 3267436170
PQPubID 626330
PageCount 11
ParticipantIDs proquest_journals_3267436170
proquest_journals_2708280441
crossref_citationtrail_10_1557_s43578_021_00155_z
crossref_primary_10_1557_s43578_021_00155_z
springer_journals_10_1557_s43578_021_00155_z
PublicationCentury 2000
PublicationDate 2021-05-14
PublicationDateYYYYMMDD 2021-05-14
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Warrendale
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LiuXWangYWuTHeXMengXBarbaudJChenHSegawaHYangXHanLNat. Commun.20201111:CAS:528:DC%2BB3cXit1Sisb7I
ChaudharyBKohTMFebriansyahBBrunoAMathewsNMhaisalkarSGSociCSci. Rep.2020104291:CAS:528:DC%2BB3cXjsVSjs7c%3D10.1038/s41598-019-57015-4
LyuMYunJHCaiMJiaoYBernhardtPVZhangMWangQDuAWangHLiuGWangLNano Res.201696921:CAS:528:DC%2BC28XmtVajsA%3D%3D10.1007/s12274-015-0948-y
LehnerAJFabiniDHEvansHAHébertCASmockSRHuJWangHZwanzigerJWChabinycMLSeshadriRChem. Mater.20152771371:CAS:528:DC%2BC2MXhs1CqsbbJ10.1021/acs.chemmater.5b03147
CortecchiaDDewiHAYinJBrunoAChenSBaikieTBoixPPGrätzelMMhaisalkarSSociCMathewsNInorg. Chem.20161044
GranciniGRoldán-CarmonaCZimmermannIMosconiELeeXMartineauDNarbeySOswaldFDe AngelisFGraetzelMNazeeruddinMKNat. Commun.20178110.1038/ncomms156841:CAS:528:DC%2BC2sXpt1Krs74%3D
ÖzSHebigJCJungESinghTLepchaAOlthofSJanFGaoYGermanRvan LoosdrechtPHMMeerholzKKirchartzTMathurSSol. Energy Mater. Sol. Cells2016120
BealRESlotcavageDJLeijtensTBowringARBelisleRANguyenWHBurkhardGFHokeETMcGeheeMDJ. Phys. Chem. Lett.201677461:CAS:528:DC%2BC28XitlCjsr8%3D10.1021/acs.jpclett.6b00002
NastiGAbateAAdv. Energy Mater.20201019024671:CAS:528:DC%2BC1MXhvVGnur7N10.1002/aenm.201902467
NREL, “Best research-cell efficiencies,” can be found under https://www.nrel.gov/pv/cell-efficiency.html, 2020.
KirchartzTMárquezJAStolterfohtMUnoldTAdv. Energy Mater.20201015610.1002/aenm.2019041341:CAS:528:DC%2BB3cXosV2ntLo%3D
EperonGEStranksSDMenelaouCJohnstonMBHerzLMSnaithHJEnergy Environ. Sci.201479821:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h
ZhuYPoddarSShuLFuYFanZAdv. Mater. Interfaces2020720001181:CAS:528:DC%2BB3cXhtFSqtrfO10.1002/admi.202000118
ChatterjeeSPayneJIrvineJTSPalAJJ. Mater. Chem. A2020844161:CAS:528:DC%2BB3cXjvVKmtrw%3D10.1039/C9TA12263J
KohTMFuKFangYChenSSumTCMathewsNMhaisalkarSGBoixPPBaikieTJ. Phys. Chem. C2014118164581:CAS:528:DC%2BC3sXhvFejtrzO10.1021/jp411112k
MomblonaCKandaHSutantoAAMensiMRoldán-CarmonaCNazeeruddinMKSci. Rep.202010110.1038/s41598-020-67606-11:CAS:528:DC%2BB3cXhtlWqur%2FO
HaoFStoumposCCChangRPHKanatzidisMGJ. Am. Chem. Soc.201413680941:CAS:528:DC%2BC2cXotVahurw%3D10.1021/ja5033259
MilotRLSuttonRJEperonGEHaghighiradAAMartinez-HardigreeJMirandaLSnaithHJJohnstonMBHerzLMNano Lett.20161670011:CAS:528:DC%2BC28Xhs1SjsbbE10.1021/acs.nanolett.6b03114
KulkarniASinghTIkegamiMMiyasakaTRSC Adv.2017794561:CAS:528:DC%2BC2sXhvVShu78%3D10.1039/C6RA28190G
ParkBWPhilippeBZhangXRensmoHBoschlooGJohanssonEMJAdv. Mater.20152768061:CAS:528:DC%2BC2MXhsFyqs7nP10.1002/adma.201501978
GhoshBChakrabortySWeiHGuetCLiSMhaisalkarSMathewsNJ. Phys. Chem. C2017121170621:CAS:528:DC%2BC2sXhtFSjtrnM10.1021/acs.jpcc.7b03501
LiuZKrückemeierLKrogmeierBKlingebielBMárquezJALevcenkoSÖzSMathurSRauUUnoldTKirchartzTACS Energy Lett.201941101:CAS:528:DC%2BC1cXisVWisb7J10.1021/acsenergylett.8b01906
Al-AshouriAMagomedovARoßMJoštMTalaikisMChistiakovaGBertramTMárquezJAKöhnenEKasparavičiusELevcencoSGil-EscrigLHagesCJSchlatmannRRechBMalinauskasTUnoldTKaufmannCAKorteLNiauraGGetautisVAlbrechtSEnergy Environ. Sci.20191233561:CAS:528:DC%2BC1MXhvV2iurzJ10.1039/C9EE02268F
KojimaATeshimaKShiraiYMiyasakaTJ. Am. Chem. Soc.200913160501:CAS:528:DC%2BD1MXksV2iurc%3D10.1021/ja809598r
KawaiTIshiiAKitamuhaTShimanukiSIwataMIshibashiYJ. Phys. Soc. Japan19966514641:CAS:528:DyaK28XjsVKrtLo%3D10.1143/JPSJ.65.1464
PoorkazemKKellyTLApplACSEnergy Mater. Energy Mater.201811811:CAS:528:DC%2BC2sXhvFahsLbE
ZhangZLiXXiaXWangZHuangZLeiBGaoYJ. Phys. Chem. Lett.2017843001:CAS:528:DC%2BC2sXhtlyhsLvJ10.1021/acs.jpclett.7b01952
BabayigitAEthirajanAMullerMConingsBNat. Mater.2016152471:CAS:528:DC%2BC28Xjt1entro%3D10.1038/nmat4572
LanCLiangGZhaoSLanHPengHZhangDSunHLuoJFanPSol. Energy20191775011:CAS:528:DC%2BC1cXisVSqu7%2FM10.1016/j.solener.2018.11.050
Di GirolamoDPhungNKosasihFUDi GiacomoFMatteocciFSmithJAFlatkenMAKöblerHTurren-CruzSHMattoniACinàLRechBLatiniADivitiniGDucatiCDi CarloADiniDAbateAAdv. Energy Mater.2020104610.1002/aenm.2020003101:CAS:528:DC%2BB3cXhtVCqsbzK
LiTHuYMorrisonCAWuWHanHRobertsonNSustainEnergy Fuels201713081:CAS:528:DC%2BC2sXhs1Crs7rK
JainSMEdvinssonTDurrantJRCommun. Chem.2019211:CAS:528:DC%2BC1MXhsFCgs73J10.1038/s42004-019-0195-3
SzklarzPPietraszkoAJakubasRBatorGZielińskiPGałazkaMJ. Phys. Condens. Matter2008204510.1088/0953-8984/20/25/2552211:CAS:528:DC%2BD1cXosVKmtLg%3D
BrandtREStevanovićVGinleyDSBuonassisiTMRS Commun.201552651:CAS:528:DC%2BC2MXhtFGmur3F10.1557/mrc.2015.26
ÖzSJenaAKKulkarniAMouriKYokoyamaTTakeiIÜnlüFMathurSMiyasakaTACS Energy Lett.20205129210.1021/acsenergylett.0c002441:CAS:528:DC%2BB3cXltl2ntr4%3D
SalibaMMatsuiTSeoJYDomanskiKCorrea-BaenaJPMohammadNZakeeruddinKSMTressWAbateAHagfeldtAGratzelMNazeeruddinMKZakeeruddinSMTressWAbateAHagfeldtAGrätzelMEnergy Environ. Sci.198920169
ChouhanLGhimireSSubrahmanyamCMiyasakaTBijuVChem. Soc. Rev.20204928691:CAS:528:DC%2BB3cXnvVyitL8%3D10.1039/C9CS00848A
ÜnlüFJungEHaddadJKulkarniAÖzSChoiHFischerTChakrabortySKirchartzTMathurSAPL Mater.2020807090110.1063/5.00118511:CAS:528:DC%2BB3cXhtlKqu7rP
JeonNJNohJHYangWSKimYCRyuSSeoJSeokSIINature20155174761:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133
PinpithakPKulkarniAChenHWIkegamiMMiyasakaTBull. Chem. Soc. Jpn.2018917541:CAS:528:DC%2BC1cXhtVOhu7nM10.1246/bcsj.20170423
DeQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSSci. Rep.20153486831:CAS:528:DC%2BC2MXnslGjtL4%3D
Correa-BaenaJPNienhausLKurchinRCShinSSWiegholdSPutri-HartonoNTLayurovaMKleinNDPoindexterJRPolizzottiASunSBawendiMGBuonassisiTChem. Mater.20183037341:CAS:528:DC%2BC1cXpvVars7w%3D10.1021/acs.chemmater.8b00676
HamdehUHRyanBJNelsonRDZembrzuskiMSlobidskyJPrinceKJClevelandIVela-RamirezAHillierACPanthaniMGJ. Phys. Chem. Lett.20191031341:CAS:528:DC%2BC1MXpvVCls78%3D10.1021/acs.jpclett.9b00969
SinghTKulkarniAIkegamiMMiyasakaTApplACSMater. Interfaces20168145421:CAS:528:DC%2BC28Xos1Srt7c%3D10.1021/acsami.6b02843
EckhardtKBonVGetzschmannJGrotheJWisserFMKaskelSChem. Commun.20165230581:CAS:528:DC%2BC28XhtF2is70%3D10.1039/C5CC10455F
XiaoZYuanYShaoYWangQDongQBiCSharmaPGruvermanAHuangJNat. Mater.2015141931:CAS:528:DC%2BC2cXitVCks77I10.1038/nmat4150
S Chatterjee (155_CR44) 2020; 8
A Kojima (155_CR2) 2009; 131
S Öz (155_CR19) 2020; 5
M Saliba (155_CR42) 1989; 2016
C Lan (155_CR29) 2019; 177
Z Zhang (155_CR30) 2017; 8
M Lyu (155_CR23) 2016; 9
JP Correa-Baena (155_CR39) 2018; 30
X Liu (155_CR21) 2020; 11
SM Jain (155_CR28) 2019; 2
T Singh (155_CR25) 2016; 8
P Szklarz (155_CR36) 2008; 20
K Poorkazem (155_CR14) 2018; 1
F Hao (155_CR43) 2014; 136
A Al-Ashouri (155_CR7) 2019; 12
D Cortecchia (155_CR20) 2016; 10
P Pinpithak (155_CR46) 2018; 91
K Eckhardt (155_CR35) 2016; 52
T Kawai (155_CR37) 1996; 65
B Chaudhary (155_CR13) 2020; 10
RE Beal (155_CR18) 2016; 7
UH Hamdeh (155_CR45) 2019; 10
T Li (155_CR34) 2017; 1
GE Eperon (155_CR16) 2014; 7
RL Milot (155_CR38) 2016; 16
B Ghosh (155_CR33) 2017; 121
Z Liu (155_CR6) 2019; 4
155_CR1
S Öz (155_CR32) 2016; 1
C Momblona (155_CR26) 2020; 10
Z Xiao (155_CR40) 2015; 14
F Ünlü (155_CR9) 2020; 8
A Kulkarni (155_CR27) 2017; 7
NJ Jeon (155_CR15) 2015; 517
TM Koh (155_CR17) 2014; 118
G Nasti (155_CR22) 2020; 10
D Di Girolamo (155_CR41) 2020; 10
DW DeQuilettes (155_CR4) 2015; 348
L Chouhan (155_CR3) 2020; 49
BW Park (155_CR24) 2015; 27
AJ Lehner (155_CR31) 2015; 27
RE Brandt (155_CR8) 2015; 5
A Babayigit (155_CR10) 2016; 15
Y Zhu (155_CR12) 2020; 7
T Kirchartz (155_CR5) 2020; 10
G Grancini (155_CR11) 2017; 8
References_xml – reference: ParkBWPhilippeBZhangXRensmoHBoschlooGJohanssonEMJAdv. Mater.20152768061:CAS:528:DC%2BC2MXhsFyqs7nP10.1002/adma.201501978
– reference: KojimaATeshimaKShiraiYMiyasakaTJ. Am. Chem. Soc.200913160501:CAS:528:DC%2BD1MXksV2iurc%3D10.1021/ja809598r
– reference: LehnerAJFabiniDHEvansHAHébertCASmockSRHuJWangHZwanzigerJWChabinycMLSeshadriRChem. Mater.20152771371:CAS:528:DC%2BC2MXhs1CqsbbJ10.1021/acs.chemmater.5b03147
– reference: EperonGEStranksSDMenelaouCJohnstonMBHerzLMSnaithHJEnergy Environ. Sci.201479821:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h
– reference: SinghTKulkarniAIkegamiMMiyasakaTApplACSMater. Interfaces20168145421:CAS:528:DC%2BC28Xos1Srt7c%3D10.1021/acsami.6b02843
– reference: SzklarzPPietraszkoAJakubasRBatorGZielińskiPGałazkaMJ. Phys. Condens. Matter2008204510.1088/0953-8984/20/25/2552211:CAS:528:DC%2BD1cXosVKmtLg%3D
– reference: ÖzSJenaAKKulkarniAMouriKYokoyamaTTakeiIÜnlüFMathurSMiyasakaTACS Energy Lett.20205129210.1021/acsenergylett.0c002441:CAS:528:DC%2BB3cXltl2ntr4%3D
– reference: SalibaMMatsuiTSeoJYDomanskiKCorrea-BaenaJPMohammadNZakeeruddinKSMTressWAbateAHagfeldtAGratzelMNazeeruddinMKZakeeruddinSMTressWAbateAHagfeldtAGrätzelMEnergy Environ. Sci.198920169
– reference: Al-AshouriAMagomedovARoßMJoštMTalaikisMChistiakovaGBertramTMárquezJAKöhnenEKasparavičiusELevcencoSGil-EscrigLHagesCJSchlatmannRRechBMalinauskasTUnoldTKaufmannCAKorteLNiauraGGetautisVAlbrechtSEnergy Environ. Sci.20191233561:CAS:528:DC%2BC1MXhvV2iurzJ10.1039/C9EE02268F
– reference: LiuXWangYWuTHeXMengXBarbaudJChenHSegawaHYangXHanLNat. Commun.20201111:CAS:528:DC%2BB3cXit1Sisb7I
– reference: JainSMEdvinssonTDurrantJRCommun. Chem.2019211:CAS:528:DC%2BC1MXhsFCgs73J10.1038/s42004-019-0195-3
– reference: XiaoZYuanYShaoYWangQDongQBiCSharmaPGruvermanAHuangJNat. Mater.2015141931:CAS:528:DC%2BC2cXitVCks77I10.1038/nmat4150
– reference: CortecchiaDDewiHAYinJBrunoAChenSBaikieTBoixPPGrätzelMMhaisalkarSSociCMathewsNInorg. Chem.20161044
– reference: BabayigitAEthirajanAMullerMConingsBNat. Mater.2016152471:CAS:528:DC%2BC28Xjt1entro%3D10.1038/nmat4572
– reference: GhoshBChakrabortySWeiHGuetCLiSMhaisalkarSMathewsNJ. Phys. Chem. C2017121170621:CAS:528:DC%2BC2sXhtFSjtrnM10.1021/acs.jpcc.7b03501
– reference: PoorkazemKKellyTLApplACSEnergy Mater. Energy Mater.201811811:CAS:528:DC%2BC2sXhvFahsLbE
– reference: LyuMYunJHCaiMJiaoYBernhardtPVZhangMWangQDuAWangHLiuGWangLNano Res.201696921:CAS:528:DC%2BC28XmtVajsA%3D%3D10.1007/s12274-015-0948-y
– reference: NastiGAbateAAdv. Energy Mater.20201019024671:CAS:528:DC%2BC1MXhvVGnur7N10.1002/aenm.201902467
– reference: EckhardtKBonVGetzschmannJGrotheJWisserFMKaskelSChem. Commun.20165230581:CAS:528:DC%2BC28XhtF2is70%3D10.1039/C5CC10455F
– reference: BrandtREStevanovićVGinleyDSBuonassisiTMRS Commun.201552651:CAS:528:DC%2BC2MXhtFGmur3F10.1557/mrc.2015.26
– reference: GranciniGRoldán-CarmonaCZimmermannIMosconiELeeXMartineauDNarbeySOswaldFDe AngelisFGraetzelMNazeeruddinMKNat. Commun.20178110.1038/ncomms156841:CAS:528:DC%2BC2sXpt1Krs74%3D
– reference: HaoFStoumposCCChangRPHKanatzidisMGJ. Am. Chem. Soc.201413680941:CAS:528:DC%2BC2cXotVahurw%3D10.1021/ja5033259
– reference: DeQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSSci. Rep.20153486831:CAS:528:DC%2BC2MXnslGjtL4%3D
– reference: ZhuYPoddarSShuLFuYFanZAdv. Mater. Interfaces2020720001181:CAS:528:DC%2BB3cXhtFSqtrfO10.1002/admi.202000118
– reference: ChaudharyBKohTMFebriansyahBBrunoAMathewsNMhaisalkarSGSociCSci. Rep.2020104291:CAS:528:DC%2BB3cXjsVSjs7c%3D10.1038/s41598-019-57015-4
– reference: PinpithakPKulkarniAChenHWIkegamiMMiyasakaTBull. Chem. Soc. Jpn.2018917541:CAS:528:DC%2BC1cXhtVOhu7nM10.1246/bcsj.20170423
– reference: LiuZKrückemeierLKrogmeierBKlingebielBMárquezJALevcenkoSÖzSMathurSRauUUnoldTKirchartzTACS Energy Lett.201941101:CAS:528:DC%2BC1cXisVWisb7J10.1021/acsenergylett.8b01906
– reference: BealRESlotcavageDJLeijtensTBowringARBelisleRANguyenWHBurkhardGFHokeETMcGeheeMDJ. Phys. Chem. Lett.201677461:CAS:528:DC%2BC28XitlCjsr8%3D10.1021/acs.jpclett.6b00002
– reference: KulkarniASinghTIkegamiMMiyasakaTRSC Adv.2017794561:CAS:528:DC%2BC2sXhvVShu78%3D10.1039/C6RA28190G
– reference: KirchartzTMárquezJAStolterfohtMUnoldTAdv. Energy Mater.20201015610.1002/aenm.2019041341:CAS:528:DC%2BB3cXosV2ntLo%3D
– reference: ChatterjeeSPayneJIrvineJTSPalAJJ. Mater. Chem. A2020844161:CAS:528:DC%2BB3cXjvVKmtrw%3D10.1039/C9TA12263J
– reference: MomblonaCKandaHSutantoAAMensiMRoldán-CarmonaCNazeeruddinMKSci. Rep.202010110.1038/s41598-020-67606-11:CAS:528:DC%2BB3cXhtlWqur%2FO
– reference: HamdehUHRyanBJNelsonRDZembrzuskiMSlobidskyJPrinceKJClevelandIVela-RamirezAHillierACPanthaniMGJ. Phys. Chem. Lett.20191031341:CAS:528:DC%2BC1MXpvVCls78%3D10.1021/acs.jpclett.9b00969
– reference: MilotRLSuttonRJEperonGEHaghighiradAAMartinez-HardigreeJMirandaLSnaithHJJohnstonMBHerzLMNano Lett.20161670011:CAS:528:DC%2BC28Xhs1SjsbbE10.1021/acs.nanolett.6b03114
– reference: JeonNJNohJHYangWSKimYCRyuSSeoJSeokSIINature20155174761:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133
– reference: ÖzSHebigJCJungESinghTLepchaAOlthofSJanFGaoYGermanRvan LoosdrechtPHMMeerholzKKirchartzTMathurSSol. Energy Mater. Sol. Cells2016120
– reference: LiTHuYMorrisonCAWuWHanHRobertsonNSustainEnergy Fuels201713081:CAS:528:DC%2BC2sXhs1Crs7rK
– reference: Di GirolamoDPhungNKosasihFUDi GiacomoFMatteocciFSmithJAFlatkenMAKöblerHTurren-CruzSHMattoniACinàLRechBLatiniADivitiniGDucatiCDi CarloADiniDAbateAAdv. Energy Mater.2020104610.1002/aenm.2020003101:CAS:528:DC%2BB3cXhtVCqsbzK
– reference: ZhangZLiXXiaXWangZHuangZLeiBGaoYJ. Phys. Chem. Lett.2017843001:CAS:528:DC%2BC2sXhtlyhsLvJ10.1021/acs.jpclett.7b01952
– reference: KawaiTIshiiAKitamuhaTShimanukiSIwataMIshibashiYJ. Phys. Soc. Japan19966514641:CAS:528:DyaK28XjsVKrtLo%3D10.1143/JPSJ.65.1464
– reference: KohTMFuKFangYChenSSumTCMathewsNMhaisalkarSGBoixPPBaikieTJ. Phys. Chem. C2014118164581:CAS:528:DC%2BC3sXhvFejtrzO10.1021/jp411112k
– reference: ChouhanLGhimireSSubrahmanyamCMiyasakaTBijuVChem. Soc. Rev.20204928691:CAS:528:DC%2BB3cXnvVyitL8%3D10.1039/C9CS00848A
– reference: ÜnlüFJungEHaddadJKulkarniAÖzSChoiHFischerTChakrabortySKirchartzTMathurSAPL Mater.2020807090110.1063/5.00118511:CAS:528:DC%2BB3cXhtlKqu7rP
– reference: NREL, “Best research-cell efficiencies,” can be found under https://www.nrel.gov/pv/cell-efficiency.html, 2020.
– reference: Correa-BaenaJPNienhausLKurchinRCShinSSWiegholdSPutri-HartonoNTLayurovaMKleinNDPoindexterJRPolizzottiASunSBawendiMGBuonassisiTChem. Mater.20183037341:CAS:528:DC%2BC1cXpvVars7w%3D10.1021/acs.chemmater.8b00676
– reference: LanCLiangGZhaoSLanHPengHZhangDSunHLuoJFanPSol. Energy20191775011:CAS:528:DC%2BC1cXisVSqu7%2FM10.1016/j.solener.2018.11.050
– volume: 8
  start-page: 070901
  year: 2020
  ident: 155_CR9
  publication-title: APL Mater.
  doi: 10.1063/5.0011851
– volume: 14
  start-page: 193
  year: 2015
  ident: 155_CR40
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4150
– volume: 8
  start-page: 4416
  year: 2020
  ident: 155_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12263J
– volume: 8
  start-page: 14542
  year: 2016
  ident: 155_CR25
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.6b02843
– volume: 10
  start-page: 1
  year: 2020
  ident: 155_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67606-1
– volume: 121
  start-page: 17062
  year: 2017
  ident: 155_CR33
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03501
– volume: 49
  start-page: 2869
  year: 2020
  ident: 155_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00848A
– volume: 1
  start-page: 181
  year: 2018
  ident: 155_CR14
  publication-title: Energy Mater. Energy Mater.
– volume: 348
  start-page: 683
  year: 2015
  ident: 155_CR4
  publication-title: Sci. Rep.
– volume: 30
  start-page: 3734
  year: 2018
  ident: 155_CR39
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00676
– volume: 20
  start-page: 45
  year: 2008
  ident: 155_CR36
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/25/255221
– volume: 2016
  start-page: 9
  year: 1989
  ident: 155_CR42
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 692
  year: 2016
  ident: 155_CR23
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0948-y
– volume: 10
  start-page: 3134
  year: 2019
  ident: 155_CR45
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00969
– volume: 4
  start-page: 110
  year: 2019
  ident: 155_CR6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01906
– volume: 517
  start-page: 476
  year: 2015
  ident: 155_CR15
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 10
  start-page: 429
  year: 2020
  ident: 155_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-57015-4
– volume: 1
  start-page: 20
  year: 2016
  ident: 155_CR32
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 1
  year: 2017
  ident: 155_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15684
– volume: 7
  start-page: 746
  year: 2016
  ident: 155_CR18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00002
– volume: 1
  start-page: 308
  year: 2017
  ident: 155_CR34
  publication-title: Energy Fuels
– volume: 91
  start-page: 754
  year: 2018
  ident: 155_CR46
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20170423
– volume: 7
  start-page: 982
  year: 2014
  ident: 155_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 11
  start-page: 1
  year: 2020
  ident: 155_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 2
  start-page: 1
  year: 2019
  ident: 155_CR28
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0195-3
– volume: 15
  start-page: 247
  year: 2016
  ident: 155_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4572
– ident: 155_CR1
– volume: 177
  start-page: 501
  year: 2019
  ident: 155_CR29
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.11.050
– volume: 136
  start-page: 8094
  year: 2014
  ident: 155_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033259
– volume: 7
  start-page: 9456
  year: 2017
  ident: 155_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28190G
– volume: 5
  start-page: 1292
  year: 2020
  ident: 155_CR19
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00244
– volume: 10
  start-page: 44
  year: 2016
  ident: 155_CR20
  publication-title: Inorg. Chem.
– volume: 16
  start-page: 7001
  year: 2016
  ident: 155_CR38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03114
– volume: 7
  start-page: 2000118
  year: 2020
  ident: 155_CR12
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000118
– volume: 8
  start-page: 4300
  year: 2017
  ident: 155_CR30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01952
– volume: 10
  start-page: 46
  year: 2020
  ident: 155_CR41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000310
– volume: 12
  start-page: 3356
  year: 2019
  ident: 155_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02268F
– volume: 65
  start-page: 1464
  year: 1996
  ident: 155_CR37
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.65.1464
– volume: 52
  start-page: 3058
  year: 2016
  ident: 155_CR35
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC10455F
– volume: 5
  start-page: 265
  year: 2015
  ident: 155_CR8
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2015.26
– volume: 27
  start-page: 7137
  year: 2015
  ident: 155_CR31
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03147
– volume: 131
  start-page: 6050
  year: 2009
  ident: 155_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 118
  start-page: 16458
  year: 2014
  ident: 155_CR17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411112k
– volume: 10
  start-page: 1902467
  year: 2020
  ident: 155_CR22
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902467
– volume: 27
  start-page: 6806
  year: 2015
  ident: 155_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501978
– volume: 10
  start-page: 156
  year: 2020
  ident: 155_CR5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904134
SSID ssj0015074
Score 2.4809024
Snippet Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A 3 Bi 2 I...
Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1794
SubjectTerms Applied and Technical Physics
Biomaterials
Bismuth
Cations
Cesium
Chemistry and Materials Science
Crystal structure
Efficiency
Energy conversion efficiency
Energy gap
Engineering
Inorganic Chemistry
Invited Paper
Lithium
Materials Engineering
Materials research
Materials Science
Morphology
Nanotechnology
Perovskites
Reduction
Rubidium
Sodium
Thin films
Toxicity
SummonAdditionalLinks – databaseName: Springer Nature Link Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SnDgMUAMBsqBG0TqI01bLmggEFwQEg_tgqo0yUSlsaGl24Ffj5O14yFAgmuTPuSk9ufY_gxw4CsR5JIpGkU6osxnORWKKyrCWOWcp3HQla7ZRHx9nXQ66U1VFGbqbPc6JOk0tevRg267YZaYhdqUAmfo6esszEeWbcb66LcP09gBIhw2wY6MBqnPqlKZ75_x2Ry9Y8wvYVFnbS5W__eda7BSoUvSnmyHdZjR_QYsf-AcbMCiy_mUZgMeb_FCT1MyGBI1GOU9TdrUBpNJdYxHij5ph6dFcJWSvDDPo_KJWF7xsbFHvuaYWN5vUhiCIJKYUVHaMiyC-hSVz8km3F-c351d0qrbApUsiksac5mrQMguQqgo1alGy65SS07j5crnMrE8PlpzlcdSagQOOom0DrXHA1xw4YdbMNcf9PU2EN21JDJdEXqSMwQ4iUhi4YWhUCGqEC6b4NdCz2RFRW47YvQy65KgELOJEDMUYuaEmL024XB6z8uEiOPX2a16LbPqpzRZEFu-Pg8B4LfDCGQRTlmC-iYc1Uv7Pvzzy3b-Nn0XlgK3OyLqsxbMlcOR3oMFOS4LM9x3e_kNkxjs7g
  priority: 102
  providerName: Springer Nature
Title Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?
URI https://link.springer.com/article/10.1557/s43578-021-00155-z
https://www.proquest.com/docview/2708280441
https://www.proquest.com/docview/3267436170
Volume 36
WOSCitedRecordID wos000635073400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: 7WY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: KB.
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Global
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: M0C
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIcChQQC23lAzcwzcOPhEu1W7UCIVZVy6McUOTYXhFp2S3rbA_99cxkvd0WQS9cLCVOnCgzmfk8Hn8D8DJ1JqutcFxKL7lIRc2NU46bXLtaqVJnI9sVm9DDYXF6Wh7FgFuIaZVLm9gZaje1FCPfRZiBzo7ow_fOfnGqGkWrq7GExm1YR0ctqYKB_vrtchUBsY5YoEjBszIVcdOMlHo3CKJ54ZSg0MEGfnHdMa3Q5h8LpJ3fOXzwv2_8EDYi4mT9hYo8glt-sgn3r_AQbsLdLg_Uhsfw_QRPjD1n0xlz03k99qzPaUAWQ3usmbB-Pmiy9yWrm_Bz3v5gxDV-HigMHN4y4gJnTWAILFmYNy1tzWJoY9Eg7T2Bz4cHn_bf8ViBgVshdcu1srXLjB0hrJKlLz16e1cSYU1Su1TZgrh9vFeu1tZ6BBO-kN7nPlEZKoFJ86ewNplO_DNgfkTEMiOTJ1YJBD2FKbRJ8ty4HM2Ksj1Il5-_spGenKpkjCuapqDIqoXIKhRZ1YmsuujBq8t7zhbkHDdevbWUUxV_1FBlmjj8EgSFf-1eybAHr5eKsOr-98Oe3zzaC7iXdboneSq2YK2dzf023LHnbRNmO50W78D64GB4dIxHHwZvsP2Y7GN7fPLlN6nj-pI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAgIOfBQQCwV8gBNYTRwnTiqhailUXbVdIVGkXiqT2F4Radkt62yr9kf1NzKTjy4g6K0HrnHiyPbzzLPHfgPwKrS5KIy0PI5dzGUoC57bxPI8UrZIkkyJkamTTajhMD04yD4twXl3F4aOVXY2sTbUdmpoj3wNaQY6O5IP3zj6wSlrFEVXuxQaDSx23OkJLtn8u8EHHN_XQmx93N_c5m1WAW5krCquElNYkZsRUoU4c5lDD2YzEmEJChsmJiW9GucSWyhjHDpIl8bORS5IBDYsDyOs9xpcl7jwonm1F2xeRC2QW8mGtUouslC2l3TiWK15SbIynA5E1DSFn_3uCBfs9o-AbO3ntu79bz10H-62jJr1mynwAJbcZAXu_KKzuAI363Ouxj-Ew8_4YOw4m86Ync6LsWN9Tg1g7dYlKyesH70vxSBjRem_z6tvjLTUjz1tc_t1RlrnrPQMiTPz87Kiq2cMfQga3I1H8OVKWvoYlifTiXsCzI1IOGeUR4FJJJK6NE9VHkRRbiM0m4npQdgNtzat_DplARlrWoYhRHQDEY0Q0TVE9FkP3lx8c9SIj1z69mqHC90aIq-FIo3CAEnvX4sXmOnB2w54i-J__-zp5bW9hFvb-3u7encw3HkGt0WN-5iHchWWq9ncPYcb5rgq_exFPYMYfL1qQP4ENglTwQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSB44DJAFAb4AZ7AauI4doKEpo6tohqqKi7SXqbg2I6IVNpRp0Psp_HrOM5lBQR72wOvceLI9udzPtvH3wF4GhrFcs0NjWMbUx7ynCojDFWRNLkQqWSFrpNNyMkkOTxMpxvwo7sL48MqO5tYG2qz0H6PfIA0A52dlw8fFG1YxHRvtHP8lfoMUv6ktUun0UDkwH7_hss392q8h2P9jLHR_ofXb2ibYYBqHsuKSqFzw5QukDbEqU0tejOTekGWIDeh0InXrrFWmFxqbdFZ2iS2NrKBYNhIFUZY7yXYlBEuenqwubs_mb47O8NApsUbDsspS0PeXtmJYzlw3IvMUB8eUZMWevq7W1xz3T-OZ2uvN7r5P_fXLbjRcm0ybCbHbdiw8y24_osC4xZcqSNgtbsDR-_xwcxSslgSs1jlM0uG1DeAtJuapJyTYbRbsnFK8tJ9WVWfiVdZP3F-A9y9JF4FnZSOIKUmblVW_lIaQe-CpnjnLny8kJbeg958Mbf3gdjCS-oUKgq04Ej3EpVIFUSRMhEaVKH7EHZDn-lWmN3nB5llfoGGcMkauGQIl6yGS3bah-dn3xw3siTnvr3dYSRrTZTLmPTqhQHS4b8Wr_HThxcdCNfF__7Zg_NrewJXEYfZ2_Hk4CFcY_UUiGnIt6FXLVf2EVzWJ1Xplo_b6UTg00Uj8icKA13_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-+or+double+A-site+cations+in+A3Bi2I9+bismuth+perovskites%3A+What+is+the+suitable+choice%3F&rft.jtitle=Journal+of+materials+research&rft.au=%C3%9Cnl%C3%BC%2C+Feray&rft.au=Kulkarni%2C+Ashish&rft.au=L%C3%AA%2C+Khan&rft.au=Bohr%2C+Christoph&rft.date=2021-05-14&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=36&rft.issue=9&rft.spage=1794&rft.epage=1804&rft_id=info:doi/10.1557%2Fs43578-021-00155-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_s43578_021_00155_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon