The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing

When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 149; číslo 6; s. 1221
Hlavní autoři: Hu, Jiazhi, Sun, Lei, Shen, Fenfen, Chen, Yufei, Hua, Yu, Liu, Yang, Zhang, Mian, Hu, Yiren, Wang, Qingsong, Xu, Wei, Sun, Fei, Ji, Jianguo, Murray, Johanne M, Carr, Antony M, Kong, Daochun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 08.06.2012
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.
AbstractList When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.
When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.
Author Shen, Fenfen
Sun, Fei
Zhang, Mian
Kong, Daochun
Hu, Yiren
Liu, Yang
Ji, Jianguo
Xu, Wei
Murray, Johanne M
Wang, Qingsong
Chen, Yufei
Hua, Yu
Sun, Lei
Hu, Jiazhi
Carr, Antony M
Author_xml – sequence: 1
  givenname: Jiazhi
  surname: Hu
  fullname: Hu, Jiazhi
  organization: The National Laboratory of Protein Engineering and Plant Genetic Engineering, The College of Life Sciences, Peking University, Beijing, China
– sequence: 2
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
– sequence: 3
  givenname: Fenfen
  surname: Shen
  fullname: Shen, Fenfen
– sequence: 4
  givenname: Yufei
  surname: Chen
  fullname: Chen, Yufei
– sequence: 5
  givenname: Yu
  surname: Hua
  fullname: Hua, Yu
– sequence: 6
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 7
  givenname: Mian
  surname: Zhang
  fullname: Zhang, Mian
– sequence: 8
  givenname: Yiren
  surname: Hu
  fullname: Hu, Yiren
– sequence: 9
  givenname: Qingsong
  surname: Wang
  fullname: Wang, Qingsong
– sequence: 10
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
– sequence: 11
  givenname: Fei
  surname: Sun
  fullname: Sun, Fei
– sequence: 12
  givenname: Jianguo
  surname: Ji
  fullname: Ji, Jianguo
– sequence: 13
  givenname: Johanne M
  surname: Murray
  fullname: Murray, Johanne M
– sequence: 14
  givenname: Antony M
  surname: Carr
  fullname: Carr, Antony M
– sequence: 15
  givenname: Daochun
  surname: Kong
  fullname: Kong, Daochun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22682245$$D View this record in MEDLINE/PubMed
BookMark eNpNkE9Lw0AUxBepWFv9Ah5kj14S326ySXqU-hcKHqxHCS-bt23aNBt3t4Lf3hQryBxmGH7MYSZs1NmOGLsSEAsQ2e0m1tS2sQQhY0hjSOCEnQuY5VEqcjn6l8ds4v0GAAql1BkbS5kVUqbqnH0s18SbLjiM3ni_Rk9cr0lvezuUPKBbUfD8vkPJg-W9oy8aeh-wbanmjvq20Rga23Fj3dZz4-yOHyjnm251wU4Ntp4ujz5l748Py_lztHh9epnfLSKdqjxEGekEiHJUiDKRqjKYZbNaVaDyDAcRFFpXqEQt6yKfVQWmlSkANWXGJEZO2c3vbu_s5558KHeNP5yDHdm9LwVIgDRXQg3o9RHdVzuqy941O3Tf5d8l8gcabWex
CitedBy_id crossref_primary_10_1093_nar_gkaa524
crossref_primary_10_1242_jcs_260828
crossref_primary_10_1080_13543784_2017_1360275
crossref_primary_10_1016_j_ebiom_2016_02_043
crossref_primary_10_3390_biomedicines11051450
crossref_primary_10_1016_j_cell_2012_05_021
crossref_primary_10_1074_jbc_RA118_005415
crossref_primary_10_1038_s41586_025_09470_5
crossref_primary_10_1093_nar_gkab344
crossref_primary_10_1007_s00294_020_01106_7
crossref_primary_10_1038_ncomms13157
crossref_primary_10_1093_nar_gkaf707
crossref_primary_10_1016_j_pbiomolbio_2021_03_007
crossref_primary_10_1038_nrm3935
crossref_primary_10_3390_biom5032123
crossref_primary_10_1128_JVI_03396_12
crossref_primary_10_3390_genes7080048
crossref_primary_10_1016_j_pbiomolbio_2020_11_005
crossref_primary_10_1016_j_dnarep_2022_103418
crossref_primary_10_4161_cc_28476
crossref_primary_10_1007_s11427_014_4631_4
crossref_primary_10_15252_embj_2019101516
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1073_pnas_1300390110
crossref_primary_10_1038_ncb2897
crossref_primary_10_1074_jbc_M117_781211
crossref_primary_10_4161_cc_22807
crossref_primary_10_1016_j_dnarep_2018_08_017
crossref_primary_10_1074_jbc_M116_745646
crossref_primary_10_1016_j_bbrc_2013_05_072
crossref_primary_10_1093_nar_gkz1101
crossref_primary_10_15252_embr_201744910
crossref_primary_10_1534_g3_114_011346
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_1101_gad_204750_112
crossref_primary_10_1042_BST20180308
crossref_primary_10_1038_s41594_022_00871_y
crossref_primary_10_1360_SSV_2025_0085
crossref_primary_10_1128_MCB_00033_20
crossref_primary_10_1016_j_molcel_2019_05_026
crossref_primary_10_3390_cimb47090756
crossref_primary_10_1007_s42764_020_00028_5
crossref_primary_10_1128_MCB_01077_14
crossref_primary_10_3390_ijms22083984
crossref_primary_10_1002_path_4828
crossref_primary_10_1093_nar_gkad624
crossref_primary_10_1038_s41467_023_43494_7
crossref_primary_10_1093_nar_gkw858
crossref_primary_10_1111_bcp_12139
crossref_primary_10_1074_jbc_M112_418715
crossref_primary_10_1182_bloodadvances_2019000391
crossref_primary_10_1038_oncsis_2017_15
crossref_primary_10_1073_pnas_2413732122
crossref_primary_10_7554_eLife_18574
crossref_primary_10_1016_j_molcel_2023_02_008
crossref_primary_10_1038_s42003_020_1048_4
crossref_primary_10_1016_j_gde_2012_11_009
crossref_primary_10_1016_j_molcel_2021_05_027
crossref_primary_10_1073_pnas_2019183118
crossref_primary_10_3389_fgene_2018_00390
crossref_primary_10_1242_jcs_152678
crossref_primary_10_3390_genes4030388
crossref_primary_10_15252_embj_201796729
crossref_primary_10_1093_nar_gkz537
crossref_primary_10_1016_j_dnarep_2017_09_001
crossref_primary_10_1016_j_tcb_2022_06_007
crossref_primary_10_1074_jbc_M116_755991
crossref_primary_10_1016_j_dnarep_2022_103332
crossref_primary_10_1093_nar_gkaa054
crossref_primary_10_1016_j_molcel_2017_05_001
crossref_primary_10_1016_j_chemosphere_2017_06_049
crossref_primary_10_1016_j_molcel_2021_05_014
crossref_primary_10_1038_s10038_022_01075_4
crossref_primary_10_1016_j_dnarep_2015_04_009
crossref_primary_10_1101_gad_336446_120
crossref_primary_10_1007_s00412_017_0658_1
crossref_primary_10_1007_s00412_013_0398_9
crossref_primary_10_1371_journal_pgen_1004594
crossref_primary_10_3390_cells14060442
crossref_primary_10_1534_genetics_116_191536
crossref_primary_10_1016_j_semcdb_2020_07_004
crossref_primary_10_1074_jbc_M116_758599
crossref_primary_10_1007_s00412_014_0471_z
crossref_primary_10_1371_journal_pgen_1011044
crossref_primary_10_1016_j_cell_2021_01_048
crossref_primary_10_1073_pnas_1821475116
crossref_primary_10_1038_s41467_018_07378_5
crossref_primary_10_1093_nar_gkv836
crossref_primary_10_1126_sciadv_adr3673
crossref_primary_10_15252_embr_201846263
crossref_primary_10_4161_cc_22215
crossref_primary_10_1146_annurev_biochem_013118_110644
crossref_primary_10_7554_eLife_09832
crossref_primary_10_1016_j_semcdb_2014_03_017
crossref_primary_10_1101_gad_213306_113
crossref_primary_10_3390_ijms160510870
crossref_primary_10_1016_j_molcel_2015_12_016
crossref_primary_10_1016_j_molcel_2021_04_006
crossref_primary_10_1128_microbiolspec_FUNK_0025_2016
crossref_primary_10_1093_nar_gkae1159
crossref_primary_10_1091_mbc_E19_03_0156
crossref_primary_10_1093_nar_gkae192
crossref_primary_10_1038_cdd_2016_124
crossref_primary_10_1038_s42003_019_0428_0
crossref_primary_10_1038_s41467_022_32583_8
crossref_primary_10_3390_biom3010039
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_3390_genes8020074
crossref_primary_10_1016_j_dnarep_2015_04_026
crossref_primary_10_1093_nar_gkt820
crossref_primary_10_1534_g3_115_019208
crossref_primary_10_1038_s41586_018_0769_8
crossref_primary_10_1186_s13059_021_02390_3
crossref_primary_10_3390_genes8010037
crossref_primary_10_1093_abbs_gmw043
crossref_primary_10_1371_journal_pone_0092936
crossref_primary_10_1534_genetics_118_300809
crossref_primary_10_1371_journal_pgen_1008933
crossref_primary_10_1093_nar_gkaa562
crossref_primary_10_1093_nar_gku190
crossref_primary_10_1016_j_molcel_2014_09_013
crossref_primary_10_1083_jcb_201406100
ContentType Journal Article
Copyright Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2012.04.030
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 22682245
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G600233
– fundername: Cancer Research UK
  grantid: C9601/A9484
– fundername: Medical Research Council
  grantid: G1100074
– fundername: Medical Research Council
  grantid: G0901011
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6J9
7-5
85S
9M8
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYJJ
AAYWO
ABCQX
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
ADXHL
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YYQ
YZZ
ZCA
ZY4
7X8
ID FETCH-LOGICAL-c457t-6ec30ee7a5aa2325bfa669d5b0576a6a6e08ccba51d2d879b8a4bf80ace6ff3f2
IEDL.DBID 7X8
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305119600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Sat Sep 27 19:00:02 EDT 2025
Mon Jul 21 05:20:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-6ec30ee7a5aa2325bfa669d5b0576a6a6e08ccba51d2d879b8a4bf80ace6ff3f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cell.2012.04.030
PMID 22682245
PQID 1020047515
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1020047515
pubmed_primary_22682245
PublicationCentury 2000
PublicationDate 2012-06-08
PublicationDateYYYYMMDD 2012-06-08
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
References 22682239 - Cell. 2012 Jun 8;149(6):1181-3. doi: 10.1016/j.cell.2012.05.021.
References_xml – reference: 22682239 - Cell. 2012 Jun 8;149(6):1181-3. doi: 10.1016/j.cell.2012.05.021.
SSID ssj0008555
Score 2.448126
Snippet When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1221
SubjectTerms Checkpoint Kinase 2
DNA Replication
Epistasis, Genetic
Flap Endonucleases - metabolism
Genomic Instability
Phosphorylation
Protein Serine-Threonine Kinases - metabolism
S Phase Cell Cycle Checkpoints
Schizosaccharomyces - cytology
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe Proteins - metabolism
Title The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing
URI https://www.ncbi.nlm.nih.gov/pubmed/22682245
https://www.proquest.com/docview/1020047515
Volume 149
WOSCitedRecordID wos000305119600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qFHzx-2N-EcHXQJe2SfYkog5fHAMV9iIjSS84Ntq6TsH_3kvauSdBkEIfSkpL7pL7cffL_Qi5SjLd0YmImVUxsMTyjCluOBMchNLW1zx1EJuQ_b4aDruDJuFWNbTKxZ4YNuqssD5Hjqvb21Ni-L0u35lXjfLV1UZCY5W0YoQy3qvlcNktXKVB9dR_kCUYqZtDMzW_yyfGPbWLh1ancfQ7xAyhprf935_cIVsNyKQ3tVfskhXI98hGLTv5tU9e0Tfo2Gd12RMt3zCOUTSdnZQFPqQ1N7yid7nmdF7Qsm7yRBFGTqeQ0Rn8lLwpIt5JRf0RFepHhcTDAXnp3T_fPrBGZoHZJJVzJsDGEYDUqdaIr1LjtBDdLDUI5YTGCyJlrdFpJ-OZkl2jdGKcirQF4Vzs-CFZy4scjgmNuQKLEMxFgMggkUqYCGIjnTYCjFFtcrmYtxG6sTeBzqH4qEbLmWuTo3ryR2Xdb2OECNFzXdOTP7x9Sja9TQOZS52RlsNFDOdk3X7Ox9XsIvgH3vuDx28WxMZ4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+intra-S+phase+checkpoint+targets+Dna2+to+prevent+stalled+replication+forks+from+reversing&rft.jtitle=Cell&rft.au=Hu%2C+Jiazhi&rft.au=Sun%2C+Lei&rft.au=Shen%2C+Fenfen&rft.au=Chen%2C+Yufei&rft.date=2012-06-08&rft.eissn=1097-4172&rft.volume=149&rft.issue=6&rft.spage=1221&rft_id=info:doi/10.1016%2Fj.cell.2012.04.030&rft_id=info%3Apmid%2F22682245&rft_id=info%3Apmid%2F22682245&rft.externalDocID=22682245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon