The extremal solution for the fractional Laplacian

We study the extremal solution for the problem ( - Δ ) s u = λ f ( u ) in Ω , u ≡ 0 in R n ∖ Ω , where λ > 0 is a parameter and s ∈ ( 0 , 1 ) . We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations Jg. 50; H. 3-4; S. 723 - 750
Hauptverfasser: Ros-Oton, Xavier, Serra, Joaquim
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2014
Springer Nature B.V
Schlagworte:
ISSN:0944-2669, 1432-0835
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the extremal solution for the problem ( - Δ ) s u = λ f ( u ) in Ω , u ≡ 0 in R n ∖ Ω , where λ > 0 is a parameter and s ∈ ( 0 , 1 ) . We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions n < 4 s . We also show that, for exponential and power-like nonlinearities, the extremal solution is bounded whenever n < 10 s . In the limit s ↑ 1 , n < 10 is optimal. In addition, we show that the extremal solution is H s ( R n ) in any dimension whenever the domain is convex. To obtain some of these results we need L q estimates for solutions to the linear Dirichlet problem for the fractional Laplacian with L p data. We prove optimal L q and C β estimates, depending on the value of p . These estimates follow from classical embedding results for the Riesz potential in R n . Finally, to prove the H s regularity of the extremal solution we need an L ∞ estimate near the boundary of convex domains, which we obtain via the moving planes method. For it, we use a maximum principle in small domains for integro-differential operators with decreasing kernels.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-013-0653-1