A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings

How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by...

Full description

Saved in:
Bibliographic Details
Published in:Consciousness and cognition Vol. 21; no. 1; pp. 422 - 430
Main Authors: Maniscalco, Brian, Lau, Hakwan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier 01.03.2012
Elsevier BV
Subjects:
ISSN:1053-8100, 1090-2376, 1090-2376
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga, and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis.
AbstractList How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga, and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis.How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga, and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis.
Signal detection theory (SDT) predicts that task performance affects metacognition. Current measures of metacognition do not account for these confounds. Our new SDT method measures metacognitive performance without these confounds. Applying the method to data, we find observers are below SDT-optimal metacognition. We provide free Matlab code for performing the analysis. How should we measure metacognitive ("type 2â[euro]) sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga, and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d ', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis.
Highlights Signal detection theory (SDT) predicts that task performance affects metacognition. Current measures of metacognition do not account for these confounds. Our new SDT method measures metacognitive performance without these confounds. Applying the method to data, we find observers are below SDT-optimal metacognition. We provide free Matlab code for performing the analysis. How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of , we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis. [PUBLICATION ABSTRACT]
How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct and incorrect stimulus classifications? We argue that currently available methods are inadequate because they are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distinguish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga, and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free from these confounds. We call our measure meta-d', which reflects how much information, in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-interval forced choice visual task, we found that subjects' metacognitive sensitivity was close to, but significantly below, optimality. We discuss the theoretical implications of these findings, as well as related computational issues of the method. We also provide free Matlab code for implementing the analysis.
Author Maniscalco, Brian
Lau, Hakwan
Author_xml – sequence: 1
  givenname: Brian
  surname: Maniscalco
  fullname: Maniscalco, Brian
– sequence: 2
  givenname: Hakwan
  surname: Lau
  fullname: Lau, Hakwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25726448$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22071269$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNU7If-ByJBEVczJpl8zLgrRa1Q6KauQyZz85rHTPJM8oT-92Z8rwgFu8pd_M69J-eco5MQAyD0lpKWEio_b1sbg42blhFKWzK0hNEX6IySgTSsU_JknUXX9JSQU3Se85YQ0isuXqFTxoiiTA5nyF3i7DfBzHiCArb4GHC5h5igeIvNbpeisffYxYQhF7-Y4sMGL1BMPR188b8BZwh5nXx5wC7FBVdjzk8QLOD0V5Bfo5fOzBneHN8L9PPb17ur6-bm9vuPq8ubxnKhStNNnZrsNPVEEeXEoEbLx4lIK2DsBsE5c73oLVCoPxTUOtaJTnLLmAEuR9pdoE-HvdX3r311rBefLcyzCRD3WQ-MD5JKJSv5_gm5jftUgzhA9T4lFfrwP4gKMQjV1yYq9e5I7ccFJr1LNaf0oB9TrsDHI2CyNbNLJlif_3FCMcl5X7kvB86mmHMCp60vZu2kJONnTYleq9dbfaher9VrMuhafRXzJ-LH_c_K_gDc4bRi
CitedBy_id crossref_primary_10_1038_s41598_020_62719_z
crossref_primary_10_1007_s11409_023_09353_y
crossref_primary_10_1016_j_cub_2016_09_004
crossref_primary_10_1038_s41598_017_06707_w
crossref_primary_10_1002_acp_3463
crossref_primary_10_1016_j_bbr_2022_113925
crossref_primary_10_1111_ejn_16048
crossref_primary_10_1371_journal_pone_0176032
crossref_primary_10_3758_s13414_017_1347_0
crossref_primary_10_3389_fpsyg_2023_991339
crossref_primary_10_1016_j_jarmac_2018_01_005
crossref_primary_10_1016_j_scog_2021_100220
crossref_primary_10_1016_j_concog_2015_02_011
crossref_primary_10_1146_annurev_vision_111815_114630
crossref_primary_10_1002_hbm_23247
crossref_primary_10_1111_desc_13101
crossref_primary_10_1016_j_concog_2024_103728
crossref_primary_10_3758_s13428_020_01370_y
crossref_primary_10_1523_JNEUROSCI_3217_16_2017
crossref_primary_10_1016_j_concog_2020_102993
crossref_primary_10_1007_s11409_021_09261_z
crossref_primary_10_1016_j_cognition_2015_10_006
crossref_primary_10_1038_s41598_017_06116_z
crossref_primary_10_1016_j_euroneuro_2016_02_009
crossref_primary_10_1093_nc_nix007
crossref_primary_10_1177_1541931213601831
crossref_primary_10_1007_s10670_021_00383_z
crossref_primary_10_7554_eLife_75420
crossref_primary_10_1016_j_concog_2013_06_010
crossref_primary_10_1080_09658211_2019_1622734
crossref_primary_10_1016_j_paid_2024_113028
crossref_primary_10_1002_bdm_1939
crossref_primary_10_1016_j_concog_2024_103636
crossref_primary_10_1016_j_cognition_2023_105659
crossref_primary_10_1093_nc_nix015
crossref_primary_10_1038_s44184_022_00009_4
crossref_primary_10_1111_ejn_15093
crossref_primary_10_1111_ejn_16182
crossref_primary_10_1136_bmjopen_2018_022546
crossref_primary_10_1162_opmi_a_00145
crossref_primary_10_1016_j_neubiorev_2021_03_017
crossref_primary_10_1093_nc_niaa001
crossref_primary_10_1523_JNEUROSCI_2360_17_2018
crossref_primary_10_1523_JNEUROSCI_1827_22_2023
crossref_primary_10_1038_s41598_025_97320_9
crossref_primary_10_3389_fnins_2014_00317
crossref_primary_10_1146_annurev_vision_110323_120909
crossref_primary_10_1007_s11409_020_09241_9
crossref_primary_10_1038_s44271_023_00040_x
crossref_primary_10_3389_fpsyg_2025_1626223
crossref_primary_10_7554_eLife_12192
crossref_primary_10_1371_journal_pcbi_1006972
crossref_primary_10_1016_j_bbr_2022_113842
crossref_primary_10_1016_j_jmp_2017_04_001
crossref_primary_10_1002_rev3_70088
crossref_primary_10_1016_j_jmp_2025_102919
crossref_primary_10_1080_09658211_2013_870210
crossref_primary_10_1016_j_cognition_2025_106151
crossref_primary_10_1016_j_scog_2021_100215
crossref_primary_10_1016_j_neubiorev_2023_105188
crossref_primary_10_1017_psa_2021_49
crossref_primary_10_1038_s41467_020_17661_z
crossref_primary_10_1016_j_cognition_2024_105832
crossref_primary_10_1371_journal_pone_0236467
crossref_primary_10_1016_j_cognition_2019_01_018
crossref_primary_10_1177_09567976211032887
crossref_primary_10_1016_j_biopsych_2021_05_013
crossref_primary_10_1016_j_jmp_2019_102297
crossref_primary_10_1016_j_cognition_2025_106089
crossref_primary_10_1177_1541931213601761
crossref_primary_10_1038_s41598_024_62343_1
crossref_primary_10_1038_s41467_022_31727_0
crossref_primary_10_1177_0956797617744771
crossref_primary_10_1016_j_cognition_2017_05_025
crossref_primary_10_1016_j_concog_2014_08_006
crossref_primary_10_1177_0956797618784887
crossref_primary_10_3389_fnhum_2022_706538
crossref_primary_10_1016_j_physbeh_2023_114139
crossref_primary_10_3389_fpsyg_2016_01559
crossref_primary_10_1007_s11409_021_09263_x
crossref_primary_10_1016_j_beproc_2016_12_004
crossref_primary_10_1111_nyas_14193
crossref_primary_10_1177_09567976211043428
crossref_primary_10_1073_pnas_2105425120
crossref_primary_10_1016_j_neuropsychologia_2018_01_018
crossref_primary_10_1016_j_celrep_2025_115563
crossref_primary_10_3389_fnhum_2018_00343
crossref_primary_10_1016_j_smrv_2021_101490
crossref_primary_10_1371_journal_pcbi_1004519
crossref_primary_10_1016_j_neunet_2025_108131
crossref_primary_10_3758_s13423_025_02748_9
crossref_primary_10_1016_j_concog_2019_03_001
crossref_primary_10_1038_s41598_023_49709_7
crossref_primary_10_1038_s41398_019_0602_7
crossref_primary_10_3389_fpsyg_2016_00591
crossref_primary_10_1371_journal_pbio_3002324
crossref_primary_10_1093_nc_niw002
crossref_primary_10_1093_nc_niw001
crossref_primary_10_1111_lang_12549
crossref_primary_10_1371_journal_pbio_3001241
crossref_primary_10_1523_JNEUROSCI_1890_12_2013
crossref_primary_10_1038_s41598_022_26980_8
crossref_primary_10_1080_09658211_2021_1974049
crossref_primary_10_1016_j_neurobiolaging_2021_08_001
crossref_primary_10_1016_j_cognition_2022_105208
crossref_primary_10_3389_fpsyg_2014_00387
crossref_primary_10_1093_cercor_bhu311
crossref_primary_10_1503_jpn_200022
crossref_primary_10_1016_j_cognition_2023_105622
crossref_primary_10_1016_j_neuroimage_2016_09_056
crossref_primary_10_1177_0956797615595037
crossref_primary_10_1016_j_psyneuen_2020_104608
crossref_primary_10_1093_schbul_sbz116
crossref_primary_10_1038_s41467_021_25419_4
crossref_primary_10_1093_nc_niw018
crossref_primary_10_1098_rsos_230417
crossref_primary_10_1152_jn_00400_2016
crossref_primary_10_7554_eLife_53900
crossref_primary_10_1016_j_neuroimage_2013_01_054
crossref_primary_10_1016_j_concog_2025_103857
crossref_primary_10_1002_brb3_70668
crossref_primary_10_1016_j_bpsc_2024_07_014
crossref_primary_10_1016_j_neuropsychologia_2018_04_018
crossref_primary_10_1523_JNEUROSCI_0322_17_2017
crossref_primary_10_1080_13683500_2025_2512999
crossref_primary_10_1371_journal_pcbi_1012675
crossref_primary_10_1016_j_tics_2016_06_005
crossref_primary_10_1371_journal_pone_0120870
crossref_primary_10_1016_j_cpr_2022_102231
crossref_primary_10_1038_s44159_023_00245_1
crossref_primary_10_1073_pnas_1403619111
crossref_primary_10_3389_fpsyg_2021_630143
crossref_primary_10_3758_s13415_020_00803_7
crossref_primary_10_1038_s41539_025_00311_8
crossref_primary_10_1016_j_cub_2022_01_003
crossref_primary_10_1111_ejn_13743
crossref_primary_10_1523_JNEUROSCI_0787_24_2025
crossref_primary_10_1016_j_biopsycho_2021_108239
crossref_primary_10_1038_s41467_019_09075_3
crossref_primary_10_1007_s00429_019_01909_6
crossref_primary_10_1038_s42003_020_1049_3
crossref_primary_10_1038_s41398_024_02840_z
crossref_primary_10_3389_fpsyg_2018_02464
crossref_primary_10_1016_j_biopsych_2017_12_017
crossref_primary_10_1007_s11409_022_09292_0
crossref_primary_10_1016_j_concog_2025_103878
crossref_primary_10_1073_pnas_2003094117
crossref_primary_10_1177_0956797614557697
crossref_primary_10_1007_s12144_021_01573_2
crossref_primary_10_1007_s00426_021_01511_8
crossref_primary_10_1007_s12559_017_9456_6
crossref_primary_10_3758_s13423_023_02332_z
crossref_primary_10_1371_journal_pcbi_1012578
crossref_primary_10_1016_j_cortex_2020_03_004
crossref_primary_10_1038_s41598_020_60382_y
crossref_primary_10_1016_j_concog_2015_07_012
crossref_primary_10_1016_j_tins_2016_09_005
crossref_primary_10_1177_17470218241254209
crossref_primary_10_21105_joss_06966
crossref_primary_10_1093_cercor_bhab032
crossref_primary_10_7554_eLife_75038
crossref_primary_10_1007_s00426_025_02123_2
crossref_primary_10_1371_journal_pcbi_1012451
crossref_primary_10_1080_13546805_2018_1444597
crossref_primary_10_3758_s13421_025_01755_4
crossref_primary_10_1016_j_cub_2016_01_040
crossref_primary_10_1038_s41386_020_0625_z
crossref_primary_10_1038_s41598_022_09939_7
crossref_primary_10_1371_journal_pone_0279686
crossref_primary_10_1093_nc_niv002
crossref_primary_10_1038_s41598_021_99898_2
crossref_primary_10_1126_science_aal0162
crossref_primary_10_1016_j_cognition_2018_02_026
crossref_primary_10_1080_13825585_2025_2554155
crossref_primary_10_1093_nc_niv008
crossref_primary_10_1016_j_bpsc_2024_06_008
crossref_primary_10_1016_j_neuroimage_2017_08_074
crossref_primary_10_1162_opmi_a_00091
crossref_primary_10_1016_j_foodqual_2024_105170
crossref_primary_10_3758_s13423_020_01800_0
crossref_primary_10_1111_bjop_12646
crossref_primary_10_3758_s13423_025_02720_7
crossref_primary_10_1093_nc_niaf031
crossref_primary_10_1016_j_cortex_2023_08_009
crossref_primary_10_1016_j_cub_2018_10_053
crossref_primary_10_1177_17456916221075615
crossref_primary_10_1523_JNEUROSCI_1612_16_2016
crossref_primary_10_1016_j_cognition_2019_104041
crossref_primary_10_1186_s40359_024_01625_9
crossref_primary_10_3758_s13414_020_01972_w
crossref_primary_10_3390_e24030325
crossref_primary_10_1038_s41562_017_0139
crossref_primary_10_1371_journal_pone_0268501
crossref_primary_10_1371_journal_pone_0244113
crossref_primary_10_3389_fpsyg_2023_1128200
crossref_primary_10_3758_s13423_022_02212_y
crossref_primary_10_7554_eLife_97900_3
crossref_primary_10_1016_j_neurobiolaging_2024_12_013
crossref_primary_10_1016_j_neubiorev_2015_04_006
crossref_primary_10_1371_journal_pone_0151218
crossref_primary_10_1111_phc3_12016
crossref_primary_10_3389_fnhum_2025_1490530
crossref_primary_10_3389_fpsyg_2022_910132
crossref_primary_10_1080_02699931_2020_1859993
crossref_primary_10_3758_s13414_021_02284_3
crossref_primary_10_1080_13803395_2023_2247601
crossref_primary_10_1016_j_cognition_2025_106104
crossref_primary_10_3758_s13414_020_02189_7
crossref_primary_10_1038_s41558_019_0563_0
crossref_primary_10_1146_annurev_psych_022423_032425
crossref_primary_10_1016_j_concog_2018_04_009
crossref_primary_10_1038_s41562_017_0117
crossref_primary_10_1016_j_concog_2014_06_007
crossref_primary_10_1007_s10071_019_01246_5
crossref_primary_10_1016_j_cognition_2020_104396
crossref_primary_10_1371_journal_pone_0106550
crossref_primary_10_3758_s13414_016_1059_x
crossref_primary_10_1038_s41598_024_67649_8
crossref_primary_10_1016_j_concog_2017_02_007
crossref_primary_10_1145_3732794
crossref_primary_10_1371_journal_pcbi_1008276
crossref_primary_10_1038_srep44222
crossref_primary_10_1111_mila_12406
crossref_primary_10_3390_e27040353
crossref_primary_10_1038_s41598_025_87601_8
crossref_primary_10_3758_s13415_025_01328_7
crossref_primary_10_1016_j_tics_2016_08_006
crossref_primary_10_1177_2398212818810591
crossref_primary_10_1098_rsos_191727
crossref_primary_10_3758_s13423_022_02201_1
crossref_primary_10_1038_s41562_022_01464_x
crossref_primary_10_1177_00332941231191067
crossref_primary_10_1016_j_newideapsych_2023_101059
crossref_primary_10_1093_nc_niae020
crossref_primary_10_1016_j_tics_2020_10_007
crossref_primary_10_1016_j_tics_2019_06_009
crossref_primary_10_1162_jocn_a_00759
crossref_primary_10_1016_j_neuropsychologia_2025_109130
crossref_primary_10_1177_0956797614553944
crossref_primary_10_3758_s13414_023_02823_0
crossref_primary_10_1007_s12671_019_01291_8
crossref_primary_10_1111_phpr_12224
crossref_primary_10_1093_nc_niaf003
crossref_primary_10_1111_cdev_13714
crossref_primary_10_3390_e22080896
crossref_primary_10_1016_j_foodqual_2019_103857
crossref_primary_10_1016_j_tins_2024_12_007
crossref_primary_10_1016_j_concog_2019_102847
crossref_primary_10_1038_s41598_022_24332_0
crossref_primary_10_1002_wcs_1697
crossref_primary_10_7554_eLife_67556
crossref_primary_10_1177_1071181319631289
crossref_primary_10_1038_s41467_023_41112_0
crossref_primary_10_1371_journal_pone_0299784
crossref_primary_10_1371_journal_pcbi_1010318
crossref_primary_10_1038_s42003_022_03762_6
crossref_primary_10_1016_j_schres_2022_12_037
crossref_primary_10_1080_09658211_2023_2279907
crossref_primary_10_1523_JNEUROSCI_0592_21_2021
crossref_primary_10_1523_JNEUROSCI_6489_11_2012
crossref_primary_10_1016_j_concog_2019_102857
crossref_primary_10_1109_ACCESS_2024_3523929
crossref_primary_10_3758_s13421_021_01263_1
crossref_primary_10_3389_fpsyg_2023_1110211
crossref_primary_10_1007_s10936_018_9563_x
crossref_primary_10_1016_j_neubiorev_2025_106053
crossref_primary_10_1093_cercor_bhx219
crossref_primary_10_1371_journal_pone_0126588
crossref_primary_10_1371_journal_pcbi_1009201
crossref_primary_10_1162_jocn_a_00741
crossref_primary_10_1038_s41467_021_24197_3
crossref_primary_10_1093_nc_niaf025
crossref_primary_10_1162_jocn_a_01838
crossref_primary_10_1016_j_neuron_2021_02_024
crossref_primary_10_1016_j_jenvp_2023_102128
crossref_primary_10_1093_scan_nsw093
crossref_primary_10_7554_eLife_09651
crossref_primary_10_1016_j_concog_2017_01_011
crossref_primary_10_1073_pnas_1703079114
crossref_primary_10_1371_journal_pcbi_1008779
crossref_primary_10_1038_s41598_024_58509_6
crossref_primary_10_1038_s41467_019_12725_1
crossref_primary_10_1016_j_biopsycho_2022_108325
crossref_primary_10_1073_pnas_1522551113
crossref_primary_10_1007_s10484_025_09728_8
crossref_primary_10_1016_j_cortex_2017_05_017
crossref_primary_10_1080_13546783_2025_2542252
crossref_primary_10_1038_s41539_021_00089_5
crossref_primary_10_1016_j_neuron_2017_09_006
crossref_primary_10_1093_scan_nsw084
crossref_primary_10_1016_j_tics_2022_07_010
crossref_primary_10_1002_wcs_1392
crossref_primary_10_1186_s41235_025_00638_1
crossref_primary_10_3758_s13423_024_02510_7
crossref_primary_10_1016_j_cortex_2023_05_022
crossref_primary_10_1038_s41598_019_43170_1
crossref_primary_10_7554_eLife_97900
crossref_primary_10_1371_journal_pone_0096511
crossref_primary_10_1093_nc_niad023
crossref_primary_10_1016_j_concog_2017_11_005
crossref_primary_10_1038_s41598_018_23936_9
crossref_primary_10_3758_s13423_022_02180_3
crossref_primary_10_3758_s13415_024_01243_3
crossref_primary_10_1016_j_jmp_2023_102815
crossref_primary_10_1523_JNEUROSCI_0786_13_2013
crossref_primary_10_1038_s44271_025_00257_y
crossref_primary_10_1016_j_neuropsychologia_2019_107201
crossref_primary_10_1371_journal_pone_0106943
crossref_primary_10_1111_ejn_16672
crossref_primary_10_1016_j_cortex_2023_11_002
crossref_primary_10_1016_j_cortex_2022_03_008
crossref_primary_10_3758_s13421_024_01529_4
crossref_primary_10_1371_journal_pone_0171793
crossref_primary_10_1007_s00426_017_0962_7
crossref_primary_10_1523_JNEUROSCI_2271_13_2016
crossref_primary_10_1080_20445911_2016_1225745
crossref_primary_10_1177_02698811241301216
crossref_primary_10_1093_cercor_bhae455
crossref_primary_10_1016_j_neubiorev_2024_105813
crossref_primary_10_1136_bmjno_2022_000268
crossref_primary_10_3389_fnsys_2020_557693
crossref_primary_10_1016_j_neures_2023_11_007
crossref_primary_10_1093_pnasnexus_pgaf133
crossref_primary_10_1080_00221309_2024_2404396
crossref_primary_10_1038_s41467_023_39737_2
crossref_primary_10_1016_j_biopsycho_2021_108185
crossref_primary_10_1371_journal_pcbi_1010740
crossref_primary_10_3758_s13423_020_01771_2
crossref_primary_10_3758_s13423_025_02752_z
crossref_primary_10_3758_s13414_019_01936_9
crossref_primary_10_1080_09658211_2024_2341711
crossref_primary_10_1016_j_cogdev_2016_08_009
crossref_primary_10_1007_s00406_020_01227_7
crossref_primary_10_1016_j_jenvp_2022_101910
crossref_primary_10_1038_s41598_022_11717_4
crossref_primary_10_1016_j_concog_2022_103458
crossref_primary_10_3390_biomedicines13071522
crossref_primary_10_1016_j_cortex_2019_12_001
crossref_primary_10_1038_s41598_018_19144_0
crossref_primary_10_1016_j_concog_2015_04_021
crossref_primary_10_1007_s11409_020_09257_1
crossref_primary_10_3389_fnins_2018_00054
crossref_primary_10_1093_nc_niac003
crossref_primary_10_1016_j_cortex_2019_12_009
crossref_primary_10_1080_02643294_2019_1707650
crossref_primary_10_1038_s41467_020_17828_8
crossref_primary_10_1016_j_neuroimage_2016_11_070
crossref_primary_10_3389_fetho_2023_1246370
crossref_primary_10_1016_j_neuroimage_2022_119597
crossref_primary_10_1038_srep26545
crossref_primary_10_3389_fpsyg_2014_01455
crossref_primary_10_3389_fpsyg_2023_1148793
crossref_primary_10_1038_s41467_025_56117_0
crossref_primary_10_1111_psyp_14579
crossref_primary_10_1016_j_concog_2023_103502
crossref_primary_10_3389_fpsyg_2015_01521
crossref_primary_10_1145_3698237
crossref_primary_10_1093_nc_niab040
crossref_primary_10_1007_s00426_021_01594_3
crossref_primary_10_1093_nc_niac010
crossref_primary_10_1177_1089268019883821
crossref_primary_10_1093_nc_niab044
crossref_primary_10_1093_scan_nsy102
crossref_primary_10_1002_wcs_1628
crossref_primary_10_1093_nc_niac014
crossref_primary_10_1016_j_cognition_2016_02_008
crossref_primary_10_1016_j_concog_2015_04_015
crossref_primary_10_1057_s41599_024_04013_1
crossref_primary_10_3758_s13414_020_02018_x
crossref_primary_10_1093_nc_niac018
crossref_primary_10_1016_j_cognition_2020_104522
crossref_primary_10_1016_j_cogdev_2019_100817
crossref_primary_10_1093_schbul_sbaf014
crossref_primary_10_3758_s13428_025_02621_6
crossref_primary_10_3389_fpsyg_2020_01933
crossref_primary_10_1016_j_concog_2021_103191
crossref_primary_10_1007_s11065_018_9387_3
crossref_primary_10_1016_j_neuropsychologia_2018_01_021
crossref_primary_10_7554_eLife_18103
crossref_primary_10_1177_17470218211004205
crossref_primary_10_1016_j_concog_2021_103196
crossref_primary_10_1016_j_cognition_2023_105377
crossref_primary_10_1016_j_neures_2021_09_003
crossref_primary_10_1016_j_neubiorev_2022_104903
crossref_primary_10_1080_13506285_2022_2086333
crossref_primary_10_1016_j_visres_2021_03_003
crossref_primary_10_1590_1982_43272561201512
crossref_primary_10_1038_s41598_020_71061_3
crossref_primary_10_1002_mds_29303
crossref_primary_10_1016_j_jbtep_2023_101891
crossref_primary_10_1038_s41467_024_52778_5
crossref_primary_10_1002_acp_3953
crossref_primary_10_1016_j_cognition_2023_105389
crossref_primary_10_1016_j_cognition_2024_105965
crossref_primary_10_1016_j_concog_2023_103601
crossref_primary_10_1016_j_neuron_2017_12_040
crossref_primary_10_1016_j_psychres_2019_112643
crossref_primary_10_1016_j_cognition_2024_105969
crossref_primary_10_1016_j_cognition_2024_105966
crossref_primary_10_1038_s41386_018_0246_y
crossref_primary_10_1371_journal_pcbi_1006572
crossref_primary_10_3389_fnins_2022_886342
crossref_primary_10_1016_j_cortex_2025_05_004
crossref_primary_10_1177_0956797613516146
crossref_primary_10_1371_journal_pone_0159516
crossref_primary_10_1177_0272989X221126528
crossref_primary_10_1038_s41467_024_55202_0
crossref_primary_10_1177_0022022113492893
crossref_primary_10_1016_j_concog_2023_103533
crossref_primary_10_1111_psyp_14402
crossref_primary_10_1093_schbul_sbad136
crossref_primary_10_3389_fpsyg_2016_00851
crossref_primary_10_1371_journal_pone_0090808
crossref_primary_10_1016_j_concog_2023_103532
crossref_primary_10_1093_nc_niy001
crossref_primary_10_7202_1039885ar
crossref_primary_10_1007_s11571_019_09520_5
crossref_primary_10_1038_s42003_022_03197_z
crossref_primary_10_1038_srep21830
crossref_primary_10_1007_s10339_023_01164_y
crossref_primary_10_3758_s13421_015_0552_0
crossref_primary_10_1016_j_cognition_2022_105155
crossref_primary_10_1093_nc_niaa025
crossref_primary_10_1002_bdm_2375
crossref_primary_10_1093_nc_niaa028
crossref_primary_10_1371_journal_pone_0191639
crossref_primary_10_3390_jcm10194349
crossref_primary_10_1016_j_isci_2024_111375
crossref_primary_10_3758_s13414_015_0843_3
crossref_primary_10_3389_fpsyg_2019_01712
crossref_primary_10_1371_journal_pone_0247183
crossref_primary_10_1162_jocn_a_02064
crossref_primary_10_1002_alz_13905
crossref_primary_10_1177_17456916231221976
crossref_primary_10_1002_hbm_70146
crossref_primary_10_1007_s10670_019_00156_9
crossref_primary_10_1038_s41467_020_15581_6
crossref_primary_10_1016_j_concog_2024_103718
crossref_primary_10_3758_s13423_018_1506_x
crossref_primary_10_1038_s41598_025_13185_y
crossref_primary_10_1371_journal_pbio_3001750
crossref_primary_10_7554_eLife_72356
crossref_primary_10_1007_s11409_024_09380_3
crossref_primary_10_1038_s41598_021_97958_1
crossref_primary_10_1093_brain_awu221
crossref_primary_10_1002_bdm_2156
crossref_primary_10_1016_j_neuroimage_2023_119991
crossref_primary_10_3389_fnhum_2014_00443
crossref_primary_10_1016_j_concog_2023_103522
crossref_primary_10_1016_j_ijer_2025_102578
crossref_primary_10_1038_s41598_023_28595_z
crossref_primary_10_1093_nc_niz001
crossref_primary_10_1038_ncomms13669
crossref_primary_10_1038_s41598_024_65892_7
crossref_primary_10_1080_02699052_2024_2311336
crossref_primary_10_1162_NECO_a_00864
crossref_primary_10_1093_nc_niz004
crossref_primary_10_3390_brainsci11101368
crossref_primary_10_1523_JNEUROSCI_3484_17_2018
crossref_primary_10_1038_s44220_023_00062_8
crossref_primary_10_1093_nc_niz009
crossref_primary_10_1186_s41235_023_00474_1
crossref_primary_10_1177_2167702618776948
crossref_primary_10_1038_s41598_023_36251_9
crossref_primary_10_1177_09567976231207095
Cites_doi 10.1093/brain/awp111
10.1121/1.1907764
10.3758/BF03196546
10.1037/a0019737
10.1037/0033-2909.95.1.109
10.1016/j.neuroimage.2011.06.081
10.3758/PBR.15.3.465
10.1016/0022-2496(68)90059-X
10.1016/j.tics.2011.05.009
10.1111/j.1467-9280.2007.01850.x
10.1016/j.cognition.2010.08.010
10.1016/j.concog.2007.10.001
10.1037/a0014351
10.1016/j.tics.2007.11.009
10.1038/nn1840
10.1167/8.5.7
10.1038/377336a0
10.1167/10.7.213
10.1006/ccog.2000.0494
10.1163/156856807779369742
10.1037/h0026862
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2011 Elsevier Inc. All rights reserved.
2011 Elsevier Inc.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.concog.2011.09.021
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1090-2376
EndPage 430
ExternalDocumentID 2598891351
3421475701
22071269
25726448
10_1016_j_concog_2011_09_021
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
AAYXX
ABCQJ
ABJNI
ABMAC
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACLOT
ACPRK
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CITATION
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMW
HVGLF
HZ~
IHE
J1W
KOM
LG5
M3U
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SPS
SSB
SSZ
T5K
UQL
WUQ
XPP
ZMT
~G-
~HD
AACTN
ACRLP
AFKWA
AHHHB
AJOXV
AMFUW
IQODW
RIG
SSN
SSY
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7TK
7X8
ID FETCH-LOGICAL-c457t-3d37dcdd80707f597bc4bd06c5eb395442f858ce1e23751cf235364c22ae46b13
ISICitedReferencesCount 580
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301761900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8100
1090-2376
IngestDate Thu Oct 02 06:52:57 EDT 2025
Sun Nov 09 06:52:24 EST 2025
Sun Nov 30 05:15:05 EST 2025
Thu Apr 03 07:08:28 EDT 2025
Wed Nov 20 03:16:45 EST 2024
Sat Nov 29 06:30:40 EST 2025
Tue Nov 18 22:12:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Signal detection theory
Sensitivity
Confidence rating
Confidence
Metacognition
Type 2 sensitivity
Cognition
Measurement method
Psychophysics
Signal detection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-3d37dcdd80707f597bc4bd06c5eb395442f858ce1e23751cf235364c22ae46b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22071269
PQID 1559578016
PQPubID 34117
PageCount 9
ParticipantIDs proquest_miscellaneous_924961676
proquest_journals_924970710
proquest_journals_1559578016
pubmed_primary_22071269
pascalfrancis_primary_25726448
crossref_citationtrail_10_1016_j_concog_2011_09_021
crossref_primary_10_1016_j_concog_2011_09_021
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
– name: San Diego
PublicationTitle Consciousness and cognition
PublicationTitleAlternate Conscious Cogn
PublicationYear 2012
Publisher Elsevier
Elsevier BV
Publisher_xml – name: Elsevier
– name: Elsevier BV
References Clarke (10.1016/j.concog.2011.09.021_b0010) 1959; 31
Lau (10.1016/j.concog.2011.09.021_b0060) 2011; 15
Pasquali (10.1016/j.concog.2011.09.021_b0085) 2010; 117
Benjamin (10.1016/j.concog.2011.09.021_b0005) 2009; 116
Nelson (10.1016/j.concog.2011.09.021_b0080) 1984; 95
Wilimzig (10.1016/j.concog.2011.09.021_b0120) 2008; 8
Clifford (10.1016/j.concog.2011.09.021_b0015) 2008; 12
Galvin (10.1016/j.concog.2011.09.021_b0040) 2003; 10
Macmillan (10.1016/j.concog.2011.09.021_b0065) 2005
Persaud (10.1016/j.concog.2011.09.021_b0100) 2011; 58
Pleskac (10.1016/j.concog.2011.09.021_b0105) 2010; 117
Kolb (10.1016/j.concog.2011.09.021_b0045) 1995; 377
Dienes (10.1016/j.concog.2011.09.021_b0030) 2004
Persaud (10.1016/j.concog.2011.09.021_b0090) 2007; 10
Mueller (10.1016/j.concog.2011.09.021_b0075) 2008; 15
Persaud (10.1016/j.concog.2011.09.021_b0095) 2008; 17
Wickelgren (10.1016/j.concog.2011.09.021_b0115) 1968; 5
Kunimoto (10.1016/j.concog.2011.09.021_b0055) 2001; 10
Evans (10.1016/j.concog.2011.09.021_b0035) 2007; 20
Pollack (10.1016/j.concog.2011.09.021_b0110) 1969; 71
Kornell (10.1016/j.concog.2011.09.021_b0050) 2007; 18
Del Cul (10.1016/j.concog.2011.09.021_b0020) 2009; 132
Dienes (10.1016/j.concog.2011.09.021_b0025) 2004; 11
Maniscalco (10.1016/j.concog.2011.09.021_b0070) 2010; 10
References_xml – volume: 132
  start-page: 2531
  issue: 9
  year: 2009
  ident: 10.1016/j.concog.2011.09.021_b0020
  article-title: Causal role of prefrontal cortex in the threshold for access to consciousness
  publication-title: Brain
  doi: 10.1093/brain/awp111
– start-page: 173
  year: 2004
  ident: 10.1016/j.concog.2011.09.021_b0030
  article-title: Assumptions of a subjective measure of consciousness: Three mappings
– volume: 31
  start-page: 629
  issue: 5
  year: 1959
  ident: 10.1016/j.concog.2011.09.021_b0010
  article-title: Two types of ROC curves and definitions of parameters
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.1907764
– volume: 10
  start-page: 843
  issue: 4
  year: 2003
  ident: 10.1016/j.concog.2011.09.021_b0040
  article-title: Type 2 tasks in the theory of signal detectability: discrimination between correct and incorrect decisions
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/BF03196546
– volume: 117
  start-page: 864
  issue: 3
  year: 2010
  ident: 10.1016/j.concog.2011.09.021_b0105
  article-title: Two-stage dynamic signal detection: A theory of choice, decision time, and confidence
  publication-title: Psychological Review
  doi: 10.1037/a0019737
– year: 2005
  ident: 10.1016/j.concog.2011.09.021_b0065
– volume: 95
  start-page: 109
  issue: 1
  year: 1984
  ident: 10.1016/j.concog.2011.09.021_b0080
  article-title: A comparison of current measures of the accuracy of feeling-of-knowing predictions
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.95.1.109
– volume: 58
  start-page: 605
  issue: 2
  year: 2011
  ident: 10.1016/j.concog.2011.09.021_b0100
  article-title: Awareness-related activity in prefrontal and parietal cortices in blindsight reflects more than superior visual performance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.081
– volume: 15
  start-page: 465
  issue: 3
  year: 2008
  ident: 10.1016/j.concog.2011.09.021_b0075
  article-title: Decision noise: An explanation for observed violations of signal detection theory
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/PBR.15.3.465
– volume: 11
  start-page: 25
  year: 2004
  ident: 10.1016/j.concog.2011.09.021_b0025
  article-title: Assumptions of subjective measures of unconscious mental states: Higher order thoughts and bias
  publication-title: Journal of Consciousness Studies
– volume: 5
  start-page: 102
  issue: 1
  year: 1968
  ident: 10.1016/j.concog.2011.09.021_b0115
  article-title: Unidimensional strength theory and component analysis of noise in absolute and comparative judgments
  publication-title: Journal of Mathematical Psychology
  doi: 10.1016/0022-2496(68)90059-X
– volume: 15
  start-page: 365
  issue: 8
  year: 2011
  ident: 10.1016/j.concog.2011.09.021_b0060
  article-title: Empirical support for higher-order theories of conscious awareness
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2011.05.009
– volume: 18
  start-page: 64
  issue: 1
  year: 2007
  ident: 10.1016/j.concog.2011.09.021_b0050
  article-title: Transfer of metacognitive skills and hint seeking in monkeys
  publication-title: Psychological Science. A Journal of the American Psychological Society/APS
  doi: 10.1111/j.1467-9280.2007.01850.x
– volume: 117
  start-page: 182
  issue: 2
  year: 2010
  ident: 10.1016/j.concog.2011.09.021_b0085
  article-title: Know thyself: metacognitive networks and measures of consciousness
  publication-title: Cognition
  doi: 10.1016/j.cognition.2010.08.010
– volume: 17
  start-page: 1046
  issue: 3
  year: 2008
  ident: 10.1016/j.concog.2011.09.021_b0095
  article-title: Direct assessment of qualia in a blindsight participant
  publication-title: Consciousness and Cognition
  doi: 10.1016/j.concog.2007.10.001
– volume: 116
  start-page: 84
  issue: 1
  year: 2009
  ident: 10.1016/j.concog.2011.09.021_b0005
  article-title: Signal detection with criterion noise: Applications to recognition memory
  publication-title: Psychological Review
  doi: 10.1037/a0014351
– volume: 12
  start-page: 54
  issue: 2
  year: 2008
  ident: 10.1016/j.concog.2011.09.021_b0015
  article-title: Getting technical about awareness
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2007.11.009
– volume: 10
  start-page: 257
  issue: 2
  year: 2007
  ident: 10.1016/j.concog.2011.09.021_b0090
  article-title: Post-decision wagering objectively measures awareness
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1840
– volume: 8
  start-page: 7.1
  issue: 5
  year: 2008
  ident: 10.1016/j.concog.2011.09.021_b0120
  article-title: Spatial attention increases performance but not subjective confidence in a discrimination task
  publication-title: Journal of Vision
  doi: 10.1167/8.5.7
– volume: 377
  start-page: 336
  issue: 6547
  year: 1995
  ident: 10.1016/j.concog.2011.09.021_b0045
  article-title: Blindsight in normal observers
  publication-title: Nature
  doi: 10.1038/377336a0
– volume: 10
  start-page: 213
  issue: 7
  year: 2010
  ident: 10.1016/j.concog.2011.09.021_b0070
  article-title: Comparing signal detection models of perceptual decision confidence
  publication-title: Journal of Vision
  doi: 10.1167/10.7.213
– volume: 10
  start-page: 294
  issue: 3
  year: 2001
  ident: 10.1016/j.concog.2011.09.021_b0055
  article-title: Confidence and accuracy of near-threshold discrimination responses
  publication-title: Consciousness and Cognition
  doi: 10.1006/ccog.2000.0494
– volume: 20
  start-page: 61
  issue: 1–2
  year: 2007
  ident: 10.1016/j.concog.2011.09.021_b0035
  article-title: Evaluation of a ‘bias-free’ measure of awareness
  publication-title: Spatial Vision
  doi: 10.1163/156856807779369742
– volume: 71
  start-page: 161
  issue: 3
  year: 1969
  ident: 10.1016/j.concog.2011.09.021_b0110
  article-title: Sampling variability of the area under the ROC-curve and of d’e
  publication-title: Psychological Bulletin
  doi: 10.1037/h0026862
SSID ssj0008745
Score 2.5409462
Snippet How should we measure metacognitive ("type 2") sensitivity, i.e. the efficacy with which observers' confidence ratings discriminate between their own correct...
Signal detection theory (SDT) predicts that task performance affects metacognition. Current measures of metacognition do not account for these confounds. Our...
Highlights Signal detection theory (SDT) predicts that task performance affects metacognition. Current measures of metacognition do not account for these...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 422
SubjectTerms Biological and medical sciences
Cognition
Cognition & reasoning
Cognition. Intelligence
Confidence
Fundamental and applied biological sciences. Psychology
Humans
Judgment
Metacognition
Miscellaneous
Psychological Theory
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Self image
Sensitivity and Specificity
Signal Detection, Psychological
Signal-To-Noise Ratio
Space Perception
Title A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings
URI https://www.ncbi.nlm.nih.gov/pubmed/22071269
https://www.proquest.com/docview/1559578016
https://www.proquest.com/docview/924970710
https://www.proquest.com/docview/924961676
Volume 21
WOSCitedRecordID wos000301761900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2376
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008745
  issn: 1053-8100
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2Ww6VEOJNaFn5wK0KSmLndYxWRRQtCxIt2luUOA6iVGG12T7498zYjpOwQoUDl2iVxI7X883Y43kR8pqXFWZd912_FJXLy9pzy6qqXOmJMqwL0JxVhNyXRbxcJqtV-mkyWXexMNeXcdMkt7fp-r-SGu4BsTF09h_IbTuFG_AbiA5XIDtc_4rw2TH6ZKDtRW6lLgRuoxVtCnGd6RvYGzeszVcsJF30nkQterWbshIq_gSU5lpXHz3eqAbtcFOLRT8F-tIqsakD5VRXvYn_Q7Y8_TzPFvOPGlADUC6yc7X-Fd9vzE1zCIHeHGx4CNFFxwwEKTC3m_ieN5S0OhZ6hCgtNrmOTTYrMNeWmh3hrs8ZLoA2DfwNk341feOZbke5tH9b46znIUgopZLukf0gDtNkSvaz05PVe7t6Y_p_ZSE34-_CLZVP4O6XR9uZ--uiBc6qdUmUP-ssau9y9pA8MEoHzTRYHpGJbB6TA7v2_XxC6oxq1FCLGmpRQzvUUEAN7VFDR6ihA9RQRA3tUUMNap6S87cnZ_N3rinB4QoexluXVSyuRFUlmBWqBuWzFMDdXiRCWbI05DyokzAR0pcBi0Nf1AELWcRFEBSSR6XPnpFp86ORLwiVSRRi7QLJsGRByZMi8GTqQYsalIRUOoR1M5kLk58ey6Rc5p0j4kWu5z_H-c-9NIf5d4hrW611fpY73p-NiGQbdcBwyFFHtdxwdZuj7R4GD5065HD3MZ5hxLhXdwi1T0FMo-2taCTwn3ol8qMYOniuodB_OYCmQZS-vGtoh-Sg570jMt1uruQrck9cb7-1mxnZi1fJzMD5F_sdwDU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+signal+detection+theoretic+approach+for+estimating+metacognitive+sensitivity+from+confidence+ratings&rft.jtitle=Consciousness+and+cognition&rft.au=MANISCALCO%2C+Brian&rft.au=LAU%2C+Hakwan&rft.date=2012-03-01&rft.pub=Elsevier&rft.issn=1053-8100&rft.volume=21&rft.issue=1&rft.spage=422&rft.epage=430&rft_id=info:doi/10.1016%2Fj.concog.2011.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=25726448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8100&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8100&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8100&client=summon