Sparse Estimation Based on a New Random Regularized Matching Pursuit Generalized Approximate Message Passing Algorithm
Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 18; číslo 6; s. 207 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2016
|
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction algorithm, termed the Random regularized Matching pursuit GAMP (RrMpGAMP). It utilizes a random splitting support operation and some dropout/replacement support operations to make the matching pursuit steps regularized and uses a new GAMP-like algorithm to estimate the non-zero elements in a sparse vector. Moreover, our proposed algorithm can save much memory, be equipped with a comparable computational complexity as GAMP and support parallel computing in some steps. We have analyzed the convergence of this GAMP-like algorithm by the replica method and provided the convergence conditions of it. The analysis also gives an explanation about the broader variance range of the elements of the sensing matrix for this GAMP-like algorithm. Experiments using simulation data and real-world synthetic aperture radar tomography (TomoSAR) data show that our method provides the expected performance for scenarios where AMP/GAMP diverges. |
|---|---|
| AbstractList | Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction algorithm, termed the Random regularized Matching pursuit GAMP (RrMpGAMP). It utilizes a random splitting support operation and some dropout/replacement support operations to make the matching pursuit steps regularized and uses a new GAMP-like algorithm to estimate the non-zero elements in a sparse vector. Moreover, our proposed algorithm can save much memory, be equipped with a comparable computational complexity as GAMP and support parallel computing in some steps. We have analyzed the convergence of this GAMP-like algorithm by the replica method and provided the convergence conditions of it. The analysis also gives an explanation about the broader variance range of the elements of the sensing matrix for this GAMP-like algorithm. Experiments using simulation data and real-world synthetic aperture radar tomography (TomoSAR) data show that our method provides the expected performance for scenarios where AMP/GAMP diverges. |
| Author | Cong, Xunchao Wan, Qun Luo, Yongjie Gui, Guan |
| Author_xml | – sequence: 1 givenname: Yongjie surname: Luo fullname: Luo, Yongjie – sequence: 2 givenname: Guan orcidid: 0000-0003-3888-2881 surname: Gui fullname: Gui, Guan – sequence: 3 givenname: Xunchao surname: Cong fullname: Cong, Xunchao – sequence: 4 givenname: Qun surname: Wan fullname: Wan, Qun |
| BookMark | eNptkU9v1DAQxS3USvQPB76BJS5wWGrHdhIfl6qUSi1UBc7WxJ6kXmXjxXZo4dPj3UUVqjjNaOY3T_P0jsnBFCYk5DVn74XQ7Ax5y2pWseYFOeJM64UUjB38078kxymtGKtExesj8vPrBmJCepGyX0P2YaIfIKGjpQH6GR_oHUwurOkdDvMI0f8uuxvI9t5PA72dY5p9ppc4YYRxt1xuNjE8bsWQ3mBKMCC9hZS2_HIcQvT5fn1KDnsYE776W0_I948X384_La6_XF6dL68XVqomL4TolbRtV_FtcQIrzQGcxk4o4VrLFGdSuLqTqFG2VtbFvHMdR6lt3ztxQq72ui7AymxieSv-MgG82Q1CHAzE7O2IRjvd866x0NhWyqbSPXRO6E7XbQeoVNF6u9cq_n7MmLJZ-2RxHGHCMCfD20opzhvVFvTNM3QV5jgVp4Y3uq5qKXhTqHd7ysaQUsT-6UHOzDZN85RmYc-esdbnXV45gh__c_EHGdujYQ |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2018_05_007 crossref_primary_10_1109_TVT_2018_2883669 crossref_primary_10_3390_s17051120 crossref_primary_10_3390_a9040079 crossref_primary_10_1016_j_jfranklin_2018_12_013 |
| Cites_doi | 10.1088/1742-5468/2012/08/P08009 10.3390/e17095995 10.1103/PhysRevLett.104.188701 10.1016/j.jfranklin.2015.03.039 10.1137/130949282 10.1109/ITWKSPS.2010.5503193 10.1561/2200000001 10.1109/IJCNN.2012.6252455 10.1007/s00034-015-0098-1 10.1109/ISIT.2011.6033942 10.1109/JSTSP.2010.2042412 10.1016/j.acha.2008.07.002 10.1109/ISIT.2014.6874830 10.1109/TIT.2011.2177575 10.1073/pnas.0909892106 10.1109/ICOSP.2014.7015337 10.1007/s10208-008-9031-3 10.1109/MSP.2014.2312098 10.1109/ISIT.2010.5513526 10.1103/PhysRevLett.106.154101 10.1093/acprof:oso/9780198570837.001.0001 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2016 |
| Copyright_xml | – notice: Copyright MDPI AG 2016 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/e18060207 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| EndPage | 207 |
| ExternalDocumentID | oai_doaj_org_article_9d9f1b7ca7c844729fabd39b968bae55 4088181681 10_3390_e18060207 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ J9A KQ8 L6V M7S MODMG M~E OK1 OVT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG RNS TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c457t-33f54c8b2154c8d3e291aad9eb353d8c051043d6b4e9e48c46060ddb1e49cffd3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378843200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Sun Nov 09 10:56:18 EST 2025 Fri Jul 25 12:01:23 EDT 2025 Sat Nov 29 07:11:27 EST 2025 Tue Nov 18 21:50:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c457t-33f54c8b2154c8d3e291aad9eb353d8c051043d6b4e9e48c46060ddb1e49cffd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3888-2881 |
| OpenAccessLink | https://www.proquest.com/docview/1796264317?pq-origsite=%requestingapplication% |
| PQID | 1796264317 |
| PQPubID | 2032401 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9d9f1b7ca7c844729fabd39b968bae55 proquest_miscellaneous_1825511758 proquest_journals_1796264317 crossref_primary_10_3390_e18060207 crossref_citationtrail_10_3390_e18060207 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2016 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhu (ref_28) 2014; 31 ref_10 ref_30 ref_18 Rangan (ref_19) 2012; 58 ref_17 ref_16 Brunton (ref_6) 2014; 13 ref_15 Ma (ref_3) 2015; 35 Ma (ref_2) 2015; 352 ref_25 ref_24 ref_23 Needell (ref_13) 2010; 4 ref_22 ref_21 ref_20 Donoho (ref_7) 2009; 106 Wu (ref_1) 2015; 17 Wainwright (ref_14) 2008; 1 ref_29 ref_27 ref_26 ref_9 Needell (ref_12) 2009; 9 ref_8 Needell (ref_11) 2009; 26 ref_5 ref_4 |
| References_xml | – ident: ref_23 doi: 10.1088/1742-5468/2012/08/P08009 – ident: ref_24 – ident: ref_26 – volume: 17 start-page: 5995 year: 2015 ident: ref_1 article-title: Proportionate Minimum Error Entropy Algorithm for Sparse System Identification publication-title: Entropy doi: 10.3390/e17095995 – ident: ref_21 doi: 10.1103/PhysRevLett.104.188701 – volume: 352 start-page: 2708 year: 2015 ident: ref_2 article-title: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2015.03.039 – volume: 13 start-page: 1716 year: 2014 ident: ref_6 article-title: Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/130949282 – ident: ref_16 – ident: ref_8 doi: 10.1109/ITWKSPS.2010.5503193 – volume: 1 start-page: 1 year: 2008 ident: ref_14 article-title: Graphical models, exponential families, and variational inference publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000001 – ident: ref_4 doi: 10.1109/IJCNN.2012.6252455 – volume: 35 start-page: 1077 year: 2015 ident: ref_3 article-title: Sparse least logarithmic absolute difference algorithm with correntropy induced metric penality publication-title: Circuit Syst. Signal Process. doi: 10.1007/s00034-015-0098-1 – ident: ref_9 doi: 10.1109/ISIT.2011.6033942 – volume: 4 start-page: 310 year: 2010 ident: ref_13 article-title: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2042412 – ident: ref_25 – ident: ref_29 – volume: 26 start-page: 301 year: 2009 ident: ref_11 article-title: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmonic Anal. doi: 10.1016/j.acha.2008.07.002 – ident: ref_27 – ident: ref_15 doi: 10.1109/ISIT.2014.6874830 – volume: 58 start-page: 1902 year: 2012 ident: ref_19 article-title: Asymptotic analysis of map estimation via the replica method and compressed sensing publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2011.2177575 – ident: ref_10 – volume: 106 start-page: 18914 year: 2009 ident: ref_7 article-title: Message Passing algorithms for compressed sensing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909892106 – ident: ref_30 doi: 10.1109/ICOSP.2014.7015337 – volume: 9 start-page: 317 year: 2009 ident: ref_12 article-title: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit publication-title: Found. Comput. Math. doi: 10.1007/s10208-008-9031-3 – volume: 31 start-page: 51 year: 2014 ident: ref_28 article-title: Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas: Compressive Sensing-Based TomoSAR inversion publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2312098 – ident: ref_20 doi: 10.1109/ISIT.2010.5513526 – ident: ref_17 – ident: ref_5 doi: 10.1103/PhysRevLett.106.154101 – ident: ref_22 – ident: ref_18 doi: 10.1093/acprof:oso/9780198570837.001.0001 |
| SSID | ssj0023216 |
| Score | 2.0993435 |
| Snippet | Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 207 |
| SubjectTerms | Algorithms Approximation compressed sensing Computation Convergence Detection Entropy generalized approximate message passing Matching matching pursuit Message passing random regularization replica method |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQ4sBlAm3TCgyZaYddIpLaie1jmUAcoKo6kLhFtt8zqwRplaZo4q_nOUkrpk3iwilR_GRZ7-X9-Bzne4x9T0Hl3jqXpD5u3XjQiVUFJEilNWSASmFLmX-lxmN9d2cmr1p9xTNhHT1wp7hTAyZkTnmrvJaSSsFgHQjjTKGdxbxlL02VWYOpHmqJYVZ0PEKCQP0pZjotqDBSf2WflqT_nxjcJpaLPfahrwj5qFvJPtvC6iN7-rUgxIn8nDyw-7mQn1G-AU43llNk4lNbwfyRT9te8vXsmcauKazGDSU-WdXL1azhPad0OziK5OF_4mTIr2Pfk3vkE6qco_zo4X5ez5rfj5_Y7cX5zc_LpG-RkHiZqyYRIuTSa0eJmy4gcGgya8EQRM4FaB9dTgoonESDUntJeCUFcBlK40MA8ZltV_MKvzCOKRqtHWaIucwsTeODHWLwgUq2AsKA_VirrvQ9f3hsY_FQEo6IWi43Wh6wbxvRRUea8T-hs6j_jUDkuW4fkPXL3vrlW9YfsKO19cre-ZYlxRiCabEyGrCTzTC5TfwWYiucr0iGkHEeaUr1wXus45DtUiVVdGfIjth2U6_wK9vxT81sWR-37-YLvuXtxg priority: 102 providerName: Directory of Open Access Journals |
| Title | Sparse Estimation Based on a New Random Regularized Matching Pursuit Generalized Approximate Message Passing Algorithm |
| URI | https://www.proquest.com/docview/1796264317 https://www.proquest.com/docview/1825511758 https://doaj.org/article/9d9f1b7ca7c844729fabd39b968bae55 |
| Volume | 18 |
| WOSCitedRecordID | wos000378843200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9NAFB9014MXP1CxupZRPHgJmzSTZOYkrXRRsCV0FdZTmI-XbmE3qWm6iAf_dt-bpBFRvHhJQt5jGPLmfc7k9xh7HbossdqYILRUurFOBjpLXQAYWrvIQZaBh8z_mC2X8uJC5X3BbdcfqzzYRG-oXW2pRn6KCwdjb3J3b7dfA-oaRburfQuN2-yYUBIif3TvfEi44kmUdmhCMab2pxDJMMXwKPvNB3mo_j8ssXcvZ_f_d2IP2L0-sOTTbiU8ZLegesRuzreYuAKfoyJ3_yjyGbotx_FBczRwfKUrV1_zlW9J32y-I22B1pnqUjzfN7v9puU9NLUnTgmD_BsNBnxB7VPWwHMMwIl_erXGibWX14_Z57P5p3fvg77TQmBFkrVBHJeJsNLgN8Sbi2GiIq2dwkw7iZ20pLkidqkRoEBIKzDtCZ0zEQhly9LFT9hRVVfwlHEIQUlpIAJIRKRxGFvqCZS2xMgvdeWIvTl8-8L2MOTUDeOqwHSExFQMYhqxVwPrtsPe-BvTjAQ4MBBctn9RN-ui175COVVGJrM6s1IIzCdKbVysjEql0ZAkI3ZykG3R6_Cu-CXYEXs5kFH7aEtFV1DvkQcT7ITQTuWzfw_xnN3FUCvtDpmdsKO22cMLdsfetJtdM2bHs_kyX419RWDsFzFdf8yRkn9Y5F9-ArhyAGA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwHqQgGDQOISNYnzsA8IbaFVq-6uVm2Regt-TJaV2mTZzZbHj-I3MpMXSCBuPXBKFE8sxf4yM589nmHspe_S2GpjPN_S0o110tNp4jxA19oFDtIU6pT5o3QykWdnarrBfnRnYSisstOJtaJ2paU18h0EDvreZO7eLj57VDWKdle7EhoNLI7g2xekbKs3h-9xfl-F4f7e6bsDr60q4NkoTitPiDyOrDRo6_DiBIQq0NopZJWxcNISSiPhEhOBgkjaCF183zkTQKRsnjuB_V5j19GNCFUdKnjSEzwRBkmTvUgI5e9AIPHVkCrV_mbz6tIAf2j-2pzt3_nfBuIuu906znzYIP0e24DiPrs8WSAxB76Hiqo5g8l30Sw7jjeaowLnx7pw5QU_hhnF286_Y9sYrQ-tu_Hperlazyvept6uG4eUY_0rdQZ8TOVhZsCnSDBIfng-w4GoPl08YB-u5FMfss2iLGCLcfBBSWkgAIijQGM3Ntch5DZHzzZx-YC97uY6s22adar2cZ4h3SJYZD0sBuxFL7pocov8TWiXANMLUDrw-kG5nGWtdsmUU3lgUqtTK6MI-VKujRPKqEQaDXE8YNsdlrJWR62yX0AasOd9M2oX2jLSBZRrlJFIOSmbq3z07y6esZsHp-NRNjqcHD1mt9CtTJqAum22WS3X8ITdsJfVfLV8Wv8ynH28amj-BO67WK4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFCEuLALE0AIGgcQlmiR2EvuA0JR2xKidUVRAKqfUy8swUptMZynLT-PX8ZwNJBC3Hjglil8sxf7yFvv5e4S88G0SGaW15xu3dGOs8FQSWw_QtbaBhSSBijL_KJlOxcmJTLfIj_YsjEurbHVipahtadwa-QCBg763M3eDvEmLSPdHbxYXnqsg5XZa23IaNUQO4dsXDN9Wr8f7ONcvw3B08OHtO6-pMOAZHiVrj7E84kZotHt4sQxCGShlJUaYEbPCOMRyZmPNQQIXhqO771urA-DS5Lll2O81so0uOQ97ZDsdT9JPXbjHwiCuuYwYk_4AAoEvh65u7W8WsCoU8IcdqIzb6Pb_PCx3yK3GpabD-h-4S7aguEcu3y8wZAd6gCqsPp1J99BgW4o3iqJqp8eqsOU5PYaZy8Sdf8e2CdoltyJH081ytZmvaUPKXTUOHfv6V9cZ0IkrHDMDmmLo4eSHZzMciPXn8_vk45V86gPSK8oCHhIKPkghNAQAEQ8UdmNyFUJucvR5Y5v3yat23jPTELC7OiBnGQZiDiJZB5E-ed6JLmrWkb8J7TnwdAKOKLx6UC5nWaN3MmllHujEqMQIzjGSypW2TGoZC60givpkt8VV1mivVfYLVH3yrGtGveM2k1QB5QZlBAajjudVPPp3F0_JDURkdjSeHu6Qm-hvxnWm3S7prZcbeEyum8v1fLV80vw_lJxeNTZ_AkJDYuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Estimation+Based+on+a+New+Random+Regularized+Matching+Pursuit+Generalized+Approximate+Message+Passing+Algorithm&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Yongjie&rft.au=Gui%2C+Guan&rft.au=Cong%2C+Xunchao&rft.au=Wan%2C+Qun&rft.date=2016-06-01&rft.eissn=1099-4300&rft.volume=18&rft.issue=6&rft.spage=207&rft.epage=207&rft_id=info:doi/10.3390%2Fe18060207&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |