Sparse Estimation Based on a New Random Regularized Matching Pursuit Generalized Approximate Message Passing Algorithm

Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 18; číslo 6; s. 207
Hlavní autoři: Luo, Yongjie, Gui, Guan, Cong, Xunchao, Wan, Qun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2016
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction algorithm, termed the Random regularized Matching pursuit GAMP (RrMpGAMP). It utilizes a random splitting support operation and some dropout/replacement support operations to make the matching pursuit steps regularized and uses a new GAMP-like algorithm to estimate the non-zero elements in a sparse vector. Moreover, our proposed algorithm can save much memory, be equipped with a comparable computational complexity as GAMP and support parallel computing in some steps. We have analyzed the convergence of this GAMP-like algorithm by the replica method and provided the convergence conditions of it. The analysis also gives an explanation about the broader variance range of the elements of the sensing matrix for this GAMP-like algorithm. Experiments using simulation data and real-world synthetic aperture radar tomography (TomoSAR) data show that our method provides the expected performance for scenarios where AMP/GAMP diverges.
AbstractList Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix do not exactly match the zero-mean Gaussian assumption. To stabilize AMP/GAMP in these contexts, we have proposed a new sparse reconstruction algorithm, termed the Random regularized Matching pursuit GAMP (RrMpGAMP). It utilizes a random splitting support operation and some dropout/replacement support operations to make the matching pursuit steps regularized and uses a new GAMP-like algorithm to estimate the non-zero elements in a sparse vector. Moreover, our proposed algorithm can save much memory, be equipped with a comparable computational complexity as GAMP and support parallel computing in some steps. We have analyzed the convergence of this GAMP-like algorithm by the replica method and provided the convergence conditions of it. The analysis also gives an explanation about the broader variance range of the elements of the sensing matrix for this GAMP-like algorithm. Experiments using simulation data and real-world synthetic aperture radar tomography (TomoSAR) data show that our method provides the expected performance for scenarios where AMP/GAMP diverges.
Author Cong, Xunchao
Wan, Qun
Luo, Yongjie
Gui, Guan
Author_xml – sequence: 1
  givenname: Yongjie
  surname: Luo
  fullname: Luo, Yongjie
– sequence: 2
  givenname: Guan
  orcidid: 0000-0003-3888-2881
  surname: Gui
  fullname: Gui, Guan
– sequence: 3
  givenname: Xunchao
  surname: Cong
  fullname: Cong, Xunchao
– sequence: 4
  givenname: Qun
  surname: Wan
  fullname: Wan, Qun
BookMark eNptkU9v1DAQxS3USvQPB76BJS5wWGrHdhIfl6qUSi1UBc7WxJ6kXmXjxXZo4dPj3UUVqjjNaOY3T_P0jsnBFCYk5DVn74XQ7Ax5y2pWseYFOeJM64UUjB38078kxymtGKtExesj8vPrBmJCepGyX0P2YaIfIKGjpQH6GR_oHUwurOkdDvMI0f8uuxvI9t5PA72dY5p9ppc4YYRxt1xuNjE8bsWQ3mBKMCC9hZS2_HIcQvT5fn1KDnsYE776W0_I948X384_La6_XF6dL68XVqomL4TolbRtV_FtcQIrzQGcxk4o4VrLFGdSuLqTqFG2VtbFvHMdR6lt3ztxQq72ui7AymxieSv-MgG82Q1CHAzE7O2IRjvd866x0NhWyqbSPXRO6E7XbQeoVNF6u9cq_n7MmLJZ-2RxHGHCMCfD20opzhvVFvTNM3QV5jgVp4Y3uq5qKXhTqHd7ysaQUsT-6UHOzDZN85RmYc-esdbnXV45gh__c_EHGdujYQ
CitedBy_id crossref_primary_10_1016_j_sigpro_2018_05_007
crossref_primary_10_1109_TVT_2018_2883669
crossref_primary_10_3390_s17051120
crossref_primary_10_3390_a9040079
crossref_primary_10_1016_j_jfranklin_2018_12_013
Cites_doi 10.1088/1742-5468/2012/08/P08009
10.3390/e17095995
10.1103/PhysRevLett.104.188701
10.1016/j.jfranklin.2015.03.039
10.1137/130949282
10.1109/ITWKSPS.2010.5503193
10.1561/2200000001
10.1109/IJCNN.2012.6252455
10.1007/s00034-015-0098-1
10.1109/ISIT.2011.6033942
10.1109/JSTSP.2010.2042412
10.1016/j.acha.2008.07.002
10.1109/ISIT.2014.6874830
10.1109/TIT.2011.2177575
10.1073/pnas.0909892106
10.1109/ICOSP.2014.7015337
10.1007/s10208-008-9031-3
10.1109/MSP.2014.2312098
10.1109/ISIT.2010.5513526
10.1103/PhysRevLett.106.154101
10.1093/acprof:oso/9780198570837.001.0001
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/e18060207
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
EndPage 207
ExternalDocumentID oai_doaj_org_article_9d9f1b7ca7c844729fabd39b968bae55
4088181681
10_3390_e18060207
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
RNS
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c457t-33f54c8b2154c8d3e291aad9eb353d8c051043d6b4e9e48c46060ddb1e49cffd3
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378843200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:51:02 EDT 2025
Sun Nov 09 10:56:18 EST 2025
Fri Jul 25 12:01:23 EDT 2025
Sat Nov 29 07:11:27 EST 2025
Tue Nov 18 21:50:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-33f54c8b2154c8d3e291aad9eb353d8c051043d6b4e9e48c46060ddb1e49cffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3888-2881
OpenAccessLink https://www.proquest.com/docview/1796264317?pq-origsite=%requestingapplication%
PQID 1796264317
PQPubID 2032401
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9d9f1b7ca7c844729fabd39b968bae55
proquest_miscellaneous_1825511758
proquest_journals_1796264317
crossref_primary_10_3390_e18060207
crossref_citationtrail_10_3390_e18060207
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_28) 2014; 31
ref_10
ref_30
ref_18
Rangan (ref_19) 2012; 58
ref_17
ref_16
Brunton (ref_6) 2014; 13
ref_15
Ma (ref_3) 2015; 35
Ma (ref_2) 2015; 352
ref_25
ref_24
ref_23
Needell (ref_13) 2010; 4
ref_22
ref_21
ref_20
Donoho (ref_7) 2009; 106
Wu (ref_1) 2015; 17
Wainwright (ref_14) 2008; 1
ref_29
ref_27
ref_26
ref_9
Needell (ref_12) 2009; 9
ref_8
Needell (ref_11) 2009; 26
ref_5
ref_4
References_xml – ident: ref_23
  doi: 10.1088/1742-5468/2012/08/P08009
– ident: ref_24
– ident: ref_26
– volume: 17
  start-page: 5995
  year: 2015
  ident: ref_1
  article-title: Proportionate Minimum Error Entropy Algorithm for Sparse System Identification
  publication-title: Entropy
  doi: 10.3390/e17095995
– ident: ref_21
  doi: 10.1103/PhysRevLett.104.188701
– volume: 352
  start-page: 2708
  year: 2015
  ident: ref_2
  article-title: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2015.03.039
– volume: 13
  start-page: 1716
  year: 2014
  ident: ref_6
  article-title: Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/130949282
– ident: ref_16
– ident: ref_8
  doi: 10.1109/ITWKSPS.2010.5503193
– volume: 1
  start-page: 1
  year: 2008
  ident: ref_14
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000001
– ident: ref_4
  doi: 10.1109/IJCNN.2012.6252455
– volume: 35
  start-page: 1077
  year: 2015
  ident: ref_3
  article-title: Sparse least logarithmic absolute difference algorithm with correntropy induced metric penality
  publication-title: Circuit Syst. Signal Process.
  doi: 10.1007/s00034-015-0098-1
– ident: ref_9
  doi: 10.1109/ISIT.2011.6033942
– volume: 4
  start-page: 310
  year: 2010
  ident: ref_13
  article-title: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042412
– ident: ref_25
– ident: ref_29
– volume: 26
  start-page: 301
  year: 2009
  ident: ref_11
  article-title: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmonic Anal.
  doi: 10.1016/j.acha.2008.07.002
– ident: ref_27
– ident: ref_15
  doi: 10.1109/ISIT.2014.6874830
– volume: 58
  start-page: 1902
  year: 2012
  ident: ref_19
  article-title: Asymptotic analysis of map estimation via the replica method and compressed sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2177575
– ident: ref_10
– volume: 106
  start-page: 18914
  year: 2009
  ident: ref_7
  article-title: Message Passing algorithms for compressed sensing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909892106
– ident: ref_30
  doi: 10.1109/ICOSP.2014.7015337
– volume: 9
  start-page: 317
  year: 2009
  ident: ref_12
  article-title: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-008-9031-3
– volume: 31
  start-page: 51
  year: 2014
  ident: ref_28
  article-title: Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas: Compressive Sensing-Based TomoSAR inversion
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2312098
– ident: ref_20
  doi: 10.1109/ISIT.2010.5513526
– ident: ref_17
– ident: ref_5
  doi: 10.1103/PhysRevLett.106.154101
– ident: ref_22
– ident: ref_18
  doi: 10.1093/acprof:oso/9780198570837.001.0001
SSID ssj0023216
Score 2.0993435
Snippet Approximate Message Passing (AMP) and Generalized AMP (GAMP) algorithms usually suffer from serious convergence issues when the elements of the sensing matrix...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 207
SubjectTerms Algorithms
Approximation
compressed sensing
Computation
Convergence
Detection
Entropy
generalized approximate message passing
Matching
matching pursuit
Message passing
random regularization
replica method
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHgRRcXplCgevJStTdomx002PLgx5ge7lXzOwexG1w3xr_el7Yai4MVTS_Mo4b2-j1-S_h5CNwFTlDNAqmFEqEcjG3tSx8QD57OBhoxFit3zl4d4MGDjMR9-afXlzoSV9MCl4ppcc-vLWIlYMUqhFLRCasIlj5gUJizYS1sx34CpCmqRwI9KHiECoL5pfJgOFEbxt-xTkPT_iMFFYukdoP2qIsTtciaHaMekR2j9uADEaXAXPLD8uRB3IN9oDDcCQ2TCI5Hq-RseFb3ks-kHjPUhrLoFJTxcZcvVNMcVp3Qx2Hbk4e_uZQb3Xd-TicFDqJydfHs2mWfT_PXtGD33uk93917VIsFTNIxzjxAbUsUkJG64aGIC7guhOUDkkGimnMtRoiNJDTcU7AJ4paW19A3lylpNTlAtnafmFGEbWiJARyZikNV9LmQoqKEqEL6ivhF1dLtRXaIq_nDXxmKWAI5wWk62Wq6j663ooiTN-E2o4_S_FXA818UDsH5SWT_5y_p11NhYL6mcb5lAjAGY5iqjOrraDoPbuL0QkZr5CmQAGYeOppSd_cc8ztEeVFJReYasgWp5tjIXaFet8-kyuyy-zU9TZOsS
  priority: 102
  providerName: Directory of Open Access Journals
Title Sparse Estimation Based on a New Random Regularized Matching Pursuit Generalized Approximate Message Passing Algorithm
URI https://www.proquest.com/docview/1796264317
https://www.proquest.com/docview/1825511758
https://doaj.org/article/9d9f1b7ca7c844729fabd39b968bae55
Volume 18
WOSCitedRecordID wos000378843200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48CFDwGiMCqDOHCJRmI7sU9TizqBRKuoAzROkT-7SltS0nSaOPC38-y4QQjEhUsSxU-R5ef38bOd30PodcY1FRyQKssJTWjuikSZgiRgfC4zELFI2D3_8rFYLPj5uSjjgts2Hqvc-8TgqE2j_Rr5MUwcyL19uDvZfEt81Si_uxpLaNxGh54lIQ1H984GwEWyNO_ZhAhA-2ObQqcgPSp-i0GBqv8PTxzCy-n9_-3YA3QvJpZ40s-Eh-iWrR-h67MNAFeLZ2DI_T-KeAphy2B4kBgcHF7K2jRXeBlK0rfr79A2B-_s16VwuWu3u3WHIzV1aJx4DvIb_zGL5758ysriEhJwLz-5XEHHuourx-jz6ezTu_dJrLSQaMqKLiHEMaq5gjGEmyE2E6mURgDSZsRw7S2XEpMraoWloF6APW-NUamlQjtnyBN0UDe1fYqwY45IGGSbc0gOUiEVk9RSnclU09TKEXqzH_tKRxpyXw3jsgI44tVUDWoaoVeD6Kbn3vib0NQrcBDwdNnhRdOuqmh9lTDCparQstCcUsATTipDhBI5V9IyNkJHe91W0Ya31S_FjtDLoRmsz2-pyNo2O5ABgM082yl_9u9PPEd3IdXK-0NmR-iga3f2Bbqjr7v1th2jw-lsUS7HYUVgHCaxv_6YQUv5YV5-_Qnw7_2d
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvLQgQSwsYBBKXqE3sJPYBoS20atXd1aotqLfg53alNll2swX6o_iNjPNCCMStB06J4pGl2J9n5rPHMwCvIq6Z4MhU44SygCUuDZRJaYCLz0UGLRatTs8_DdLRiJ-difEK_GjvwviwylYnVoraFNrvkW8jcND39ubu3exL4KtG-dPVtoRGDYsj-_0rUrbF28MPOL-vo2h_7_T9QdBUFQg0i9MyoNTFTHOFtg4fhtpIhFIagawypoZrj1JGTaKYFZbhr6CLv2OMCi0T2jlDsd9bcBvdiEhUoYInHcGjUZjU2YsoFTvbNsRBQHcs_c3mVaUB_tD8lTnb3_jfBuIerDeOM-nXSL8PKzZ_AFcnMyTmluyhoqrvYJJdNMuG4IskqMDJscxNcUmO7cTH206vsW2I1sfvu5Hxcr5YTkvSpN6uGvs-x_o335klQ18eZmLJGAmGl-9fTHAgyvPLh_DxRn71EazmRW4fA3GxoxIn1SYcnZ9QSBVLZpmOZKhZaGUP3rRznekmzbqv9nGRId3ysMg6WPTgZSc6q3OL_E1o1wOmE_DpwKsPxXySNdolE0a4UKVappozhnzJSWWoUCLhSto47sFWi6Ws0VGL7BeQevCia0bt4o-MZG6LJcpwpJw-myt_8u8unsPdg9PhIBscjo42YQ3dyqQOqNuC1XK-tE_hjr4qp4v5s2rJEPh809D8Cc9eVfo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceAgQCwUMAolLtE3sJPYBVVvaFat2V1F5qJyC48eyUpssu9nS9qfx6xjnhRCIWw-cEsUjS7E_z8xnj2cAXgZcMcGRqYYRZR6LbOxlOqYeLj4baLRYtDo9_3QYT6f8-FgkG_CjvQvjwipbnVgpal0ot0c-QOCg7-3M3cA2YRHJ3mhn8c1zFaTcSWtbTqOGyIG5-I70bfVmvIdz_SoIRvsf3r7zmgoDnmJhXHqU2pApnqHdw4emJhC-lFogwwyp5sohllEdZcwIw_C30N3f1jrzDRPKWk2x32uwiS45C3qwmYwnyeeO7tHAj-pcRpSK7YHxcUjQOYt_s4BVoYA_7EBl3Ea3_-dhuQO3GpeaDOs1cBc2TH4Pzt4vkLIbso8qrL6dSXbRYGuCL5KgaidHMtfFKTkyMxeJO7_EtgnaJbcjR5L1crWel6RJyl01Dl329XPXmSETVzhmZkiC1MPJD09mOBDl19P78PFKfvUB9PIiNw-B2NBSiRNsIo5ukS9kFkpmmAqkr5hvZB9et_OeqiYBu6sDcpIiEXMQSTuI9OFFJ7qos478TWjXgacTcInCqw_FcpY2eicVWlg_i5WMFWcMmZSVmaYiExHPpAnDPmy1uEob7bVKf4GqD8-7ZtQ77jBJ5qZYowxHMuryvPJH_-7iGdxARKaH4-nBY7iJ_mZUR9ptQa9crs0TuK7Oyvlq-bRZPwS-XDU2fwL0kWAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Estimation+Based+on+a+New+Random+Regularized+Matching+Pursuit+Generalized+Approximate+Message+Passing+Algorithm&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Yongjie&rft.au=Gui%2C+Guan&rft.au=Cong%2C+Xunchao&rft.au=Wan%2C+Qun&rft.date=2016-06-01&rft.eissn=1099-4300&rft.volume=18&rft.issue=6&rft.spage=207&rft.epage=207&rft_id=info:doi/10.3390%2Fe18060207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon