otargen: GraphQL-based R package for tidy data accessing and processing from Open Targets Genetics

Abstract Motivation Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 39; číslo 8
Hlavní autoři: Feizi, Amir, Ray, Kamalika
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 01.08.2023
Témata:
ISSN:1367-4811, 1367-4803, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Motivation Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly. Results otargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions. Availability and implementation otargen is available at https://amirfeizi.github.io/otargen/.
AbstractList Abstract Motivation Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly. Results otargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions. Availability and implementation otargen is available at https://amirfeizi.github.io/otargen/.
Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly.MOTIVATIONOpen Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly.otargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions.RESULTSotargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions.otargen is available at https://amirfeizi.github.io/otargen/.AVAILABILITY AND IMPLEMENTATIONotargen is available at https://amirfeizi.github.io/otargen/.
Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly. otargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions. otargen is available at https://amirfeizi.github.io/otargen/.
Author Ray, Kamalika
Feizi, Amir
Author_xml – sequence: 1
  givenname: Amir
  orcidid: 0000-0003-0566-0422
  surname: Feizi
  fullname: Feizi, Amir
  email: amir.feizi@omass.com
– sequence: 2
  givenname: Kamalika
  surname: Ray
  fullname: Ray, Kamalika
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37467069$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEYhYNU7If-hZJLb8YmM5nMjggiRbfCQrG01-FN8s42OpOMSbbQf2-W3S2tN3qVr3PO85JzSo588EjIOWcfOOubC-2C80OIE2Rn0oXOYIXgr8gJb2RXiQXnR8_2x-Q0pZ-MsZa18g05bjohOyb7E6JDhrhG_5EuI8z3P1aVhoSW3tAZzC9YIy0Qmp19pBYyUDAGU3J-TcFbOsdwOA4xTPR6Rk9vt4E50SV63A73lrweYEz4br-ekbtvX28vr6rV9fL75ZdVZUTb5ao2BjrZtQuphQABzaD7ctdqMzArBs2khV4Ya2QZ3lqOPZO6wabrcVhgjc0Z-bzLnTd6QmvQ5wijmqObID6qAE69fPHuXq3Dg-Ks6QWv65Lwfp8Qw-8NpqwmlwyOI3gMm6TqhWC1kLUURXr-HPZEOfxsEXzaCUwMKUUclHG5lBW2bDcWqNoWqV4WqfZFFrv8y34g_NPId8awmf_X8wcirL7Y
CitedBy_id crossref_primary_10_1016_j_ebiom_2024_105537
crossref_primary_10_1093_nar_gkae1128
crossref_primary_10_1038_s41467_025_59383_0
crossref_primary_10_1016_j_xcrm_2025_102163
crossref_primary_10_1016_j_jhepr_2025_101468
crossref_primary_10_1681_ASN_0000000000000419
crossref_primary_10_1002_art_42947
Cites_doi 10.1093/nar/gkaa840
10.1038/ng.3314
10.1016/j.gde.2013.10.003
10.1038/s41586-022-05473-8
10.1093/nar/gkac1046
10.1038/s41588-021-00945-5
10.1016/j.jacbts.2019.02.005
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btad441
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC10394122
37467069
10_1093_bioinformatics_btad441
10.1093/bioinformatics/btad441
Genre Journal Article
GrantInformation_xml – fundername: OMass Therapeutics
– fundername: ;
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c457t-2cca767586b44a4a3fb92cc5bcf0d4fb06da94cdc6746dd1e906b3e379ef8e2e3
IEDL.DBID TOX
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001041587700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:42:08 EDT 2025
Fri Jul 11 15:12:15 EDT 2025
Mon Jul 21 05:56:58 EDT 2025
Sat Nov 29 03:49:27 EST 2025
Tue Nov 18 21:05:58 EST 2025
Wed Apr 02 07:05:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-2cca767586b44a4a3fb92cc5bcf0d4fb06da94cdc6746dd1e906b3e379ef8e2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0566-0422
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btad441
PMID 37467069
PQID 2840246264
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10394122
proquest_miscellaneous_2840246264
pubmed_primary_37467069
crossref_citationtrail_10_1093_bioinformatics_btad441
crossref_primary_10_1093_bioinformatics_btad441
oup_primary_10_1093_bioinformatics_btad441
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ghoussaini (2023080203202826800_btad441-B2) 2021; 49
Van Norman (2023080203202826800_btad441-B7) 2019; 4
Carter (2023080203202826800_btad441-B1) 2013; 23
Mountjoy (2023080203202826800_btad441-B4) 2021; 53
Ochoa (2023080203202826800_btad441-B6) 2022; 51
Kurki (2023080203202826800_btad441-B3) 2023; 613
Nelson (2023080203202826800_btad441-B5) 2015; 47
References_xml – volume: 49
  start-page: D1311
  year: 2021
  ident: 2023080203202826800_btad441-B2
  article-title: Open targets genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa840
– volume: 47
  start-page: 856
  year: 2015
  ident: 2023080203202826800_btad441-B5
  article-title: The support of human genetic evidence for approved drug indications
  publication-title: Nat Genet
  doi: 10.1038/ng.3314
– volume: 23
  start-page: 611
  year: 2013
  ident: 2023080203202826800_btad441-B1
  article-title: Genotype to phenotype via network analysis
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2013.10.003
– volume: 613
  start-page: 508
  year: 2023
  ident: 2023080203202826800_btad441-B3
  article-title: FinnGen provides genetic insights from a well-phenotyped isolated population
  publication-title: Nature
  doi: 10.1038/s41586-022-05473-8
– volume: 51
  start-page: D1353
  year: 2022
  ident: 2023080203202826800_btad441-B6
  article-title: The next-generation open targets platform: reimagined, redesigned, rebuilt
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac1046
– volume: 53
  start-page: 1527
  year: 2021
  ident: 2023080203202826800_btad441-B4
  article-title: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00945-5
– volume: 4
  start-page: 428
  year: 2019
  ident: 2023080203202826800_btad441-B7
  article-title: Phase II trials in drug development and adaptive trial design
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2019.02.005
SSID ssj0005056
Score 2.4813662
Snippet Abstract Motivation Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of...
Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Applications Note
Information Storage and Retrieval
Software
Title otargen: GraphQL-based R package for tidy data accessing and processing from Open Targets Genetics
URI https://www.ncbi.nlm.nih.gov/pubmed/37467069
https://www.proquest.com/docview/2840246264
https://pubmed.ncbi.nlm.nih.gov/PMC10394122
Volume 39
WOSCitedRecordID wos001041587700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6kZYO-7Na1zboFDfY0MLEl2ZL2VsayPpS2GxnkzehmGjackDiD_Pvp2E4WB8raPdqWhKyLz5HPd74P4EPMfGoTz6M0kRhm5DTSJvNR8BxEcK8LKqiuxSbE9bWcTNRtD5JNLsx-CF-xoZnOWhJRJC4emko7XqeqJ6lEzYLxzeQvqCPY800e8L1VOyaok9a2413ugyR3rM7o-X_09wU8a11MctGsiZfQ8-UreNqITq6Pwcxq9Hf5iXxFsupvVxFaMke-k3B8_hk-LyS0SqqpWxOEjxJdSyoGC0d06ci8SSzAS8xMIQhIIeMaTr4kyGGNvXkNP0Zfxp8vo1ZpIbI8FVVEwzwiq4vMDOeaa1YYFe6lxhax44WJM6cVt85mgmfOJV7FmWGeCeUL6alnJ3BYzkp_BsQK7lRspLRUceqtZInOhA2nGsSnxKoP6Wbwc9vSkKMaxq-8CYezvDt-eTt-fRhu680bIo5_1vgY5vbBhd9vlkAeNhhGTXTpZ6tlHux38GPCuY_34bRZEts2GYq1xFl4KdlZLNsCSN7dfVJO72oSbwzB84TSN4_p5Tkcodx9A0B8C4fVYuXfwRP7u5ouFwM4EBM5qP8qDOpt8QfS_Bdj
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=otargen%3A+GraphQL-based+R+package+for+tidy+data+accessing+and+processing+from+Open+Targets+Genetics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Feizi%2C+Amir&rft.au=Ray%2C+Kamalika&rft.date=2023-08-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtad441&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon