Alterations of white matter tracts following neurotoxic hippocampal lesions in macaque monkeys: A diffusion tensor imaging study

Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hippocampus Ročník 20; číslo 8; s. 906 - 910
Hlavní autoři: Shamy, J.L., Carpenter, D.M., Fong, S.G., Murray, E.A., Tang, C.Y., Hof, P.R., Rapp, P.R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2010
Témata:
ISSN:1050-9631, 1098-1063, 1098-1063
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion‐related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory‐related brain regions, including portions of the prefrontal cortex. © 2010 Wiley‐Liss, Inc.
AbstractList Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion‐related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory‐related brain regions, including portions of the prefrontal cortex. © 2010 Wiley‐Liss, Inc.
Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex.
Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex.Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex.
Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years post-lesion, structural MRI and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex.
Author Rapp, P.R.
Shamy, J.L.
Murray, E.A.
Hof, P.R.
Fong, S.G.
Tang, C.Y.
Carpenter, D.M.
AuthorAffiliation 1 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY
5 Laboratory of Experimental Gerontology, NIA, Baltimore, MD
2 Department of Radiology, Mount Sinai School of Medicine, New York, NY
3 Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
4 Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
AuthorAffiliation_xml – name: 1 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY
– name: 2 Department of Radiology, Mount Sinai School of Medicine, New York, NY
– name: 4 Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
– name: 5 Laboratory of Experimental Gerontology, NIA, Baltimore, MD
– name: 3 Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
Author_xml – sequence: 1
  givenname: J.L.
  surname: Shamy
  fullname: Shamy, J.L.
  organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
– sequence: 2
  givenname: D.M.
  surname: Carpenter
  fullname: Carpenter, D.M.
  organization: Laboratory of Experimental Gerontology, NIA, Baltimore, Maryland
– sequence: 3
  givenname: S.G.
  surname: Fong
  fullname: Fong, S.G.
  organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
– sequence: 4
  givenname: E.A.
  surname: Murray
  fullname: Murray, E.A.
  organization: Department of Radiology, Mount Sinai School of Medicine, New York, New York
– sequence: 5
  givenname: C.Y.
  surname: Tang
  fullname: Tang, C.Y.
  organization: Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
– sequence: 6
  givenname: P.R.
  surname: Hof
  fullname: Hof, P.R.
  organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
– sequence: 7
  givenname: P.R.
  surname: Rapp
  fullname: Rapp, P.R.
  email: rappp@mail.nih.gov
  organization: Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20095006$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcCGD0DeISGl2HHixCyQpiNoK1UUqUCXluM4M6aOndoO09n10-vMdCpACG98de95-Pocgj3rrALgNUbHGKH8_VIP7jhHFamegQOMWJ1hRMneVJcoY5TgfXAYwk-EMC4RegH2c4RYqugBuJ-ZqLyI2tkAXQdXSx0V7EVMXRi9kDHAzhnjVtouoFWjd9HdaQmT6eCk6AdhoFFhw9c2MaW4HZOCszdqHT7AGWx1140TAEZlg_NQ92IxqYU4tuuX4HknTFCvHu8j8P3zp2_zs-zi8vR8PrvIZFFWVSYqgguKy4K1uGhy1lIkWINUS5QgtOjKmlSoYbnoWtV2TS4xLUVbdg1TSrK6IUfg41Z3GJtetVLZtJ3hg0-v8WvuhOZ_Tqxe8oX7xfM6HUqTwNtHAe_ShiHyXgepjBFWuTHwqqgZKWvGEvLN71ZPHrtfTwC0BUjvQvCq41LHTQbJWRuOEZ-C5VOwfBNsorz7i7JT_ScYb8ErbdT6P0h-dv71csfJthwdorp74gh_w2mal_z6yymf_7g6uT65wpySBz24x_4
CitedBy_id crossref_primary_10_1007_s11682_010_9105_0
crossref_primary_10_1176_appi_ajp_2019_18101212
crossref_primary_10_2217_fnl_14_63
crossref_primary_10_1002_hipo_22621
crossref_primary_10_1002_hipo_23337
crossref_primary_10_1016_j_cortex_2017_05_010
crossref_primary_10_1016_j_neuroimage_2020_117645
crossref_primary_10_1016_j_nlm_2022_107683
crossref_primary_10_1016_j_neuroimage_2021_118017
crossref_primary_10_1016_j_schres_2016_01_051
crossref_primary_10_1016_j_neuroimage_2013_02_034
crossref_primary_10_1016_j_nlm_2016_04_003
crossref_primary_10_1016_j_biopsych_2012_12_024
crossref_primary_10_1016_j_euroneuro_2012_10_018
crossref_primary_10_1016_j_mri_2012_10_030
crossref_primary_10_1093_brain_awu118
crossref_primary_10_1016_j_neuroimage_2011_07_029
crossref_primary_10_1073_pnas_1902278116
crossref_primary_10_1007_s00723_014_0553_3
crossref_primary_10_1093_cercor_bht187
crossref_primary_10_1186_s40478_023_01597_8
crossref_primary_10_1016_j_canlet_2021_11_020
crossref_primary_10_1523_JNEUROSCI_0364_20_2020
crossref_primary_10_1073_pnas_1320562111
crossref_primary_10_1016_j_neuroimage_2014_08_059
crossref_primary_10_1016_j_neuroimage_2011_08_051
Cites_doi 10.1093/cercor/10.3.220
10.1523/JNEUROSCI.3796-03.2004
10.1038/nm1229
10.1093/brain/123.4.800
10.1002/nbm.782
10.1002/hipo.1050
10.1016/j.neurobiolaging.2005.07.019
10.1016/j.neuroimage.2006.04.187
10.1162/jocn.1994.6.4.305
10.1017/S0140525X99002034
10.1126/science.410102
10.1093/brain/awg103
10.1007/s00234-003-1114-x
10.1080/741941143
10.1093/brain/114.3.1297
10.1016/S0014-4886(03)00295-4
10.1037/0735-7044.119.3.662
10.1038/nn.2149
10.1523/JNEUROSCI.1311-05.2005
10.1007/BF01181641
10.1007/BF00248903
10.1002/hipo.10217
10.1172/JCI27021
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/hipo.20737
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1098-1063
EndPage 910
ExternalDocumentID PMC2888866
20095006
10_1002_hipo_20737
HIPO20737
ark_67375_WNG_CVSBWBS1_6
Genre article
Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: AG10606; MH62448; MH58911
– fundername: Intramural Research Programs of the NIA and NIMH
– fundername: NIMH NIH HHS
  grantid: MH58911
– fundername: Intramural NIH HHS
  grantid: ZIA AG000351
– fundername: NIMH NIH HHS
  grantid: U01 MH062448
– fundername: NIA NIH HHS
  grantid: R01 AG010606
– fundername: NIA NIH HHS
  grantid: R37 AG010606
– fundername: NIMH NIH HHS
  grantid: P50 MH058911
– fundername: NIMH NIH HHS
  grantid: MH62448
– fundername: NIA NIH HHS
  grantid: AG10606
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4577-a731461549d14b29d60a9b0ed3ea364f58370b92afdedfb2c165ad5fb9eec98b3
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280739300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-9631
1098-1063
IngestDate Tue Nov 04 01:57:43 EST 2025
Thu Jul 10 23:29:20 EDT 2025
Mon Jul 21 05:48:55 EDT 2025
Tue Nov 18 22:39:15 EST 2025
Sat Nov 29 03:24:26 EST 2025
Sun Sep 21 06:23:21 EDT 2025
Sun Sep 21 06:19:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4577-a731461549d14b29d60a9b0ed3ea364f58370b92afdedfb2c165ad5fb9eec98b3
Notes istex:2DD222595E38E616B4CE7D1ECB0C7B0C91485101
Intramural Research Programs of the NIA and NIMH
NIH - No. AG10606; No. MH62448; No. MH58911
ark:/67375/WNG-CVSBWBS1-6
ArticleID:HIPO20737
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2888866
PMID 20095006
PQID 748935899
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888866
proquest_miscellaneous_748935899
pubmed_primary_20095006
crossref_citationtrail_10_1002_hipo_20737
crossref_primary_10_1002_hipo_20737
wiley_primary_10_1002_hipo_20737_HIPO20737
istex_primary_ark_67375_WNG_CVSBWBS1_6
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Hippocampus
PublicationTitleAlternate Hippocampus
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system-A technical review. NMR Biomed 15: 435-455.
George R,Griffin JW. 1994. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23: 657-667.
Aggleton JP,Brown MW. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22: 425-444; discussion 444-489.
Gaffan EA,Gaffan D,Hodges JR. 1991. Amnesia following damage to the left fornix and to other sites. A comparative study. Brain 114(Part 3): 1297-1313.
Shamy JL,Buonocore MH,Makaron LM,Amaral DG,Barnes CA,Rapp PR. 2006. Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiol Aging 27: 1405-1415.
Schwartz ED,Hackney DB. 2003. Diffusion-weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment. Exp Neurol 184: 570-589.
Aggleton JP,Saunders RC. 1997. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 5: 49-71.
Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2003. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126(Part 5): 1202-1223.
Dijkhuizen RM. 2006. Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124: 251-278.
Paus T. 2009. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cognit [Epub ahead of print].
Cavada C,Company T,Tejedor J,Cruz-Rizzolo RJ,Reinoso-Suarez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220-242.
Gaffan D. 1994. Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction. J Cognit Neurosci 6: 305-320.
Ungerleider LG,Gaffan D,Pelak VS. 1989. Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76: 473-484.
Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2005. Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one-trial learning. Behav Neurosci 119: 662-676.
Sundgren PC,Dong Q,Gomez-Hassan D,Mukherji SK,Maly P,Welsh R. 2004. Diffusion tensor imaging of the brain: Review of clinical applications. Neuroradiology 46: 339-350.
Hampton RR,Hampstead BM,Murray EA. 2004. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus 14: 808-818.
Kerschensteiner M,Schwab ME,Lichtman JW,Misgeld T. 2005. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11: 572-577.
Aggleton JP,McMackin D,Carpenter K,Hornak J,Kapur N,Halpin S,Wiles CM,Kamel H,Brennan P,Carton S,Gaffan D. 2000. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123(Part 4): 800-815.
Croxson PL,Johansen-Berg H,Behrens TE,Robson MD,Pinsk MA,Gross CG,Richter W,Richter MC,Kastner S,Rushworth MF. 2005. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25: 8854-8866.
Charles DP,Gaffan D,Buckley MJ. 2004. Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci 24: 2037-2044.
Tsivilis D,Vann SD,Denby C,Roberts N,Mayes AR,Montaldi D,Aggleton JP. 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11: 834-842.
Voss HU,Uluc AM,Dyke JP,Watts R,Kobylarz EJ,McCandliss BD,Heier LA,Beattie BJ,Hamacher KA,Vallabhajosula S,Goldsmith SJ,Ballon D,Giacino JT,Schiff ND. 2006. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116: 2005-2011.
Malkova L,Lex CK,Mishkin M,Saunders RC. 2001. MRI-based evaluation of locus and extent of neurotoxic lesions in monkeys. Hippocampus 11: 361-370.
Rosene DL,Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315-317.
2002; 15
1991; 114
2004; 24
2004; 46
1994; 23
2009
2005; 119
1999; 22
2006
2008; 11
1997; 5
2006; 116
2005; 25
1989; 76
2000; 10
2004; 14
2006; 27
2003; 184
2000; 123
2003; 126
2001; 11
2005; 11
2006; 124
1994; 6
1977; 198
e_1_2_3_2_1
Paus T (e_1_2_3_19_1) 2009
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_3_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_10_1
e_1_2_3_11_1
Dijkhuizen RM (e_1_2_3_12_1) 2006; 124
e_1_2_3_23_1
e_1_2_3_24_1
e_1_2_3_25_1
e_1_2_3_26_1
e_1_2_3_20_1
e_1_2_3_21_1
e_1_2_3_22_1
References_xml – reference: Charles DP,Gaffan D,Buckley MJ. 2004. Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci 24: 2037-2044.
– reference: Gaffan D. 1994. Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction. J Cognit Neurosci 6: 305-320.
– reference: Dijkhuizen RM. 2006. Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124: 251-278.
– reference: Gaffan EA,Gaffan D,Hodges JR. 1991. Amnesia following damage to the left fornix and to other sites. A comparative study. Brain 114(Part 3): 1297-1313.
– reference: Shamy JL,Buonocore MH,Makaron LM,Amaral DG,Barnes CA,Rapp PR. 2006. Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiol Aging 27: 1405-1415.
– reference: Aggleton JP,Brown MW. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22: 425-444; discussion 444-489.
– reference: Cavada C,Company T,Tejedor J,Cruz-Rizzolo RJ,Reinoso-Suarez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220-242.
– reference: Rosene DL,Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315-317.
– reference: Voss HU,Uluc AM,Dyke JP,Watts R,Kobylarz EJ,McCandliss BD,Heier LA,Beattie BJ,Hamacher KA,Vallabhajosula S,Goldsmith SJ,Ballon D,Giacino JT,Schiff ND. 2006. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116: 2005-2011.
– reference: Kerschensteiner M,Schwab ME,Lichtman JW,Misgeld T. 2005. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11: 572-577.
– reference: Aggleton JP,McMackin D,Carpenter K,Hornak J,Kapur N,Halpin S,Wiles CM,Kamel H,Brennan P,Carton S,Gaffan D. 2000. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123(Part 4): 800-815.
– reference: Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2005. Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one-trial learning. Behav Neurosci 119: 662-676.
– reference: Schwartz ED,Hackney DB. 2003. Diffusion-weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment. Exp Neurol 184: 570-589.
– reference: Malkova L,Lex CK,Mishkin M,Saunders RC. 2001. MRI-based evaluation of locus and extent of neurotoxic lesions in monkeys. Hippocampus 11: 361-370.
– reference: Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2003. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126(Part 5): 1202-1223.
– reference: Sundgren PC,Dong Q,Gomez-Hassan D,Mukherji SK,Maly P,Welsh R. 2004. Diffusion tensor imaging of the brain: Review of clinical applications. Neuroradiology 46: 339-350.
– reference: Paus T. 2009. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cognit [Epub ahead of print].
– reference: Croxson PL,Johansen-Berg H,Behrens TE,Robson MD,Pinsk MA,Gross CG,Richter W,Richter MC,Kastner S,Rushworth MF. 2005. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25: 8854-8866.
– reference: Tsivilis D,Vann SD,Denby C,Roberts N,Mayes AR,Montaldi D,Aggleton JP. 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11: 834-842.
– reference: Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system-A technical review. NMR Biomed 15: 435-455.
– reference: Aggleton JP,Saunders RC. 1997. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 5: 49-71.
– reference: Ungerleider LG,Gaffan D,Pelak VS. 1989. Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76: 473-484.
– reference: Hampton RR,Hampstead BM,Murray EA. 2004. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus 14: 808-818.
– reference: George R,Griffin JW. 1994. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23: 657-667.
– volume: 46
  start-page: 339
  year: 2004
  end-page: 350
  article-title: Diffusion tensor imaging of the brain: Review of clinical applications
  publication-title: Neuroradiology
– volume: 6
  start-page: 305
  year: 1994
  end-page: 320
  article-title: cene‐specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction
  publication-title: J Cognit Neurosci
– volume: 76
  start-page: 473
  year: 1989
  end-page: 484
  article-title: Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys
  publication-title: Exp Brain Res
– volume: 22
  start-page: 425
  year: 1999
  end-page: 444
  article-title: Episodic memory, amnesia, and the hippocampal‐anterior thalamic axis
  publication-title: Behav Brain Sci
– volume: 11
  start-page: 572
  year: 2005
  end-page: 577
  article-title: In vivo imaging of axonal degeneration and regeneration in the injured spinal cord
  publication-title: Nat Med
– volume: 124
  start-page: 251
  year: 2006
  end-page: 278
  article-title: Application of magnetic resonance imaging to study pathophysiology in brain disease models
  publication-title: Methods Mol Med
– year: 2009
  article-title: Growth of white matter in the adolescent brain: Myelin or axon?
  publication-title: Brain Cognit
– volume: 27
  start-page: 1405
  year: 2006
  end-page: 1415
  article-title: Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys ( )
  publication-title: Neurobiol Aging
– volume: 23
  start-page: 657
  year: 1994
  end-page: 667
  article-title: The proximo‐distal spread of axonal degeneration in the dorsal columns of the rat
  publication-title: J Neurocytol
– volume: 5
  start-page: 49
  year: 1997
  end-page: 71
  article-title: The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia
  publication-title: Memory
– volume: 11
  start-page: 361
  year: 2001
  end-page: 370
  article-title: MRI‐based evaluation of locus and extent of neurotoxic lesions in monkeys
  publication-title: Hippocampus
– volume: 184
  start-page: 570
  year: 2003
  end-page: 589
  article-title: Diffusion‐weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment
  publication-title: Exp Neurol
– volume: 114
  start-page: 1297
  issue: Part 3
  year: 1991
  end-page: 1313
  article-title: Amnesia following damage to the left fornix and to other sites. A comparative study
  publication-title: Brain
– volume: 116
  start-page: 2005
  year: 2006
  end-page: 2011
  article-title: Possible axonal regrowth in late recovery from the minimally conscious state
  publication-title: J Clin Invest
– volume: 119
  start-page: 662
  year: 2005
  end-page: 676
  article-title: Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one‐trial learning
  publication-title: Behav Neurosci
– volume: 123
  start-page: 800
  issue: Part 4
  year: 2000
  end-page: 815
  article-title: Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix
  publication-title: Brain
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  article-title: The basis of anisotropic water diffusion in the nervous system—A technical review
  publication-title: NMR Biomed
– volume: 10
  start-page: 220
  year: 2000
  end-page: 242
  article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review
  publication-title: Cereb Cortex
– volume: 25
  start-page: 8854
  year: 2005
  end-page: 8866
  article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography
  publication-title: J Neurosci
– start-page: 1090
  year: 2006
  end-page: 1099
– volume: 24
  start-page: 2037
  year: 2004
  end-page: 2044
  article-title: Impaired recency judgments and intact novelty judgments after fornix transection in monkeys
  publication-title: J Neurosci
– volume: 126
  start-page: 1202
  issue: Part 5
  year: 2003
  end-page: 1223
  article-title: Role of the hippocampal system in associative learning beyond the spatial domain
  publication-title: Brain
– volume: 198
  start-page: 315
  year: 1977
  end-page: 317
  article-title: Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey
  publication-title: Science
– volume: 11
  start-page: 834
  year: 2008
  end-page: 842
  article-title: A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory
  publication-title: Nat Neurosci
– volume: 14
  start-page: 808
  year: 2004
  end-page: 818
  article-title: Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open‐field test
  publication-title: Hippocampus
– ident: e_1_2_3_8_1
  doi: 10.1093/cercor/10.3.220
– ident: e_1_2_3_9_1
  doi: 10.1523/JNEUROSCI.3796-03.2004
– ident: e_1_2_3_17_1
  doi: 10.1038/nm1229
– year: 2009
  ident: e_1_2_3_19_1
  article-title: Growth of white matter in the adolescent brain: Myelin or axon?
  publication-title: Brain Cognit
– volume: 124
  start-page: 251
  year: 2006
  ident: e_1_2_3_12_1
  article-title: Application of magnetic resonance imaging to study pathophysiology in brain disease models
  publication-title: Methods Mol Med
– ident: e_1_2_3_4_1
  doi: 10.1093/brain/123.4.800
– ident: e_1_2_3_5_1
  doi: 10.1002/nbm.782
– ident: e_1_2_3_18_1
  doi: 10.1002/hipo.1050
– ident: e_1_2_3_22_1
  doi: 10.1016/j.neurobiolaging.2005.07.019
– ident: e_1_2_3_10_1
  doi: 10.1016/j.neuroimage.2006.04.187
– ident: e_1_2_3_13_1
  doi: 10.1162/jocn.1994.6.4.305
– ident: e_1_2_3_2_1
  doi: 10.1017/S0140525X99002034
– ident: e_1_2_3_20_1
  doi: 10.1126/science.410102
– ident: e_1_2_3_6_1
  doi: 10.1093/brain/awg103
– ident: e_1_2_3_23_1
  doi: 10.1007/s00234-003-1114-x
– ident: e_1_2_3_3_1
  doi: 10.1080/741941143
– ident: e_1_2_3_14_1
  doi: 10.1093/brain/114.3.1297
– ident: e_1_2_3_21_1
  doi: 10.1016/S0014-4886(03)00295-4
– ident: e_1_2_3_7_1
  doi: 10.1037/0735-7044.119.3.662
– ident: e_1_2_3_24_1
  doi: 10.1038/nn.2149
– ident: e_1_2_3_11_1
  doi: 10.1523/JNEUROSCI.1311-05.2005
– ident: e_1_2_3_15_1
  doi: 10.1007/BF01181641
– ident: e_1_2_3_25_1
  doi: 10.1007/BF00248903
– ident: e_1_2_3_16_1
  doi: 10.1002/hipo.10217
– ident: e_1_2_3_26_1
  doi: 10.1172/JCI27021
SSID ssj0011500
Score 2.1088498
Snippet Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 906
SubjectTerms Animals
Anisotropy
Brain Mapping
Diffusion Magnetic Resonance Imaging
Disease Models, Animal
Excitatory Amino Acid Agonists - toxicity
hippocampus
Hippocampus - pathology
Macaca mulatta
Male
memory
morphometry
N-Methylaspartate - toxicity
Nerve Fibers, Myelinated - drug effects
Nerve Fibers, Myelinated - pathology
neuropsychology
Neurotoxicity Syndromes - etiology
Neurotoxicity Syndromes - pathology
rhesus monkey
Title Alterations of white matter tracts following neurotoxic hippocampal lesions in macaque monkeys: A diffusion tensor imaging study
URI https://api.istex.fr/ark:/67375/WNG-CVSBWBS1-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.20737
https://www.ncbi.nlm.nih.gov/pubmed/20095006
https://www.proquest.com/docview/748935899
https://pubmed.ncbi.nlm.nih.gov/PMC2888866
Volume 20
WOSCitedRecordID wos000280739300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1063
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011500
  issn: 1050-9631
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tLUK88LExKB-TJdAkkKI1n7YRL92gDAnKxBjrm-U4thbRJlXTsvHGn87ZSTMqJiREnyLlLpWd3_nOufPvAJ4HWkWxZL5nWMI8DKm1xxIuPSZZhu5NcZky12yCjkZsPObHG_B6dRam5odoP7hZy3DrtTVwmVb7V6Sh5_nMHt6jId2EboDAjTvQffN5ePqhzSJgsFOzEcR9D4Hmt_Skwf6V9ppD6tq5vbwu2vyzaPL3YNZ5o-Gd_xvHXbjdRKFkUMPmHmzoYgu2BwXuwKc_yB5xdaHug_sW3PzYpN-34edg4kiYLVRJaciFzUGQqaPoJAt73qoiBoFVXqBDJI4qc1Fe5orgv8_QaeLSMyETXTn9vEBNJXH8BE0B15LqFRkQ27BlaQWILa0v5ySfuj5KxPHg3ofT4dsvh0de08LBQwhQ6kka2sbhuAnN_CgNeJb0JU_7Ogu1DJPIxJZ7J-WBNJnOTBooP4llFpuUa604S8Md6BRloR8CwXtGxdzQkOOeXlIZ9VWgWWAiY3gUqx68WL1HoRp-c9tmYyJqZuZA2JkWbqZ78KyVndWsHtdK7Tk4tCJy_s3WwdFYnI3eicOvJwdnBye-SHpAVngRaJ025SILXS4r4bh9YtzT9uBBDZ_2YTYthfhEZboGrFbAEn-v3ynyc0cAHjD8Jaj50gHrL0MQR--PP7mrR_8i_Bhu1VUSttDxCXQW86V-CjfU90VezXdhk47ZbmNsvwCDFzFk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgRcALHxsf5dMSaBJI0ZpP27x1g9KJrkxsY3uzHMfWItqkalo23vjTuXOyjIoJCdGnSLlLFed3vrPv_DtCXgdGR7Hivmd5wj0IqY3HE6E8rngG7k0LlXLXbIKNx_zkROw3tTl4Fqbmh2g33NAy3HyNBo4b0luXrKGn-QxP77GQXSedCHAEAO-8_zI4GrVpBIh2ajqCuOcB0vyWnzTYutRe8UgdHNzzq8LNP6smf49mnTsa3P3PF7lH7jRxKO3XwLlPrplinWz0C1iDT3_QTeoqQ92W-zq5udck4DfIz_7E0TAjWGlp6RlmIejUkXTSBZ64qqgFaJVn4BKpI8tclOe5pvDvM3CbMPlM6MRUTj8vQFMrGAAKxgCzSfWO9im2bFmiAMXi-nJO86nrpEQdE-4DcjT4cLgz9JomDh6AgDFPsRBbh8MyNPOjNBBZ0lMi7ZksNCpMIhsj-04qAmUzk9k00H4Sqyy2qTBGC56GD8laURbmMaFwz-pYWBYKWNUrpqKeDgwPbGStiGLdJW8uPqTUDcM5NtqYyJqbOZA40tKNdJe8amVnNa_HlVKbDg-tiJp_w0o4Fsvj8Ue58_Vg-3j7wJdJl9ALwEiwT0y6qMKUy0o6dp8YVrVd8qjGT_swTEwBQEGZrSCrFUDq79U7RX7qKMADDr8ENN86ZP3lFeRwd_-zu3ryL8Ivya3h4d5IjnbHn56S23XNBJY9PiNri_nSPCc39PdFXs1fNDb3C3YgNGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELegRRNfeGw8ytMSaBJI0Zqnbb51G2UTo1SMPb5ZjmNrEW1SNS0b3_jTuXOyjIoJCZFPkXKXKM7vfOfc-XeEvA6MjmLFfc_yhHsQUhuPJ0J5XPEM3JsWKuWu2QQbjfjpqRg3tTm4F6bmh2h_uKFluPkaDdzMMrt1xRp6ls9w9x4L2U3SjbCLTId0d78Mjw7aNAJEOzUdQdz3AGl-y08abF1pr3ikLg7uxXXh5p9Vk79Hs84dDe_-54vcI3eaOJQOauDcJzdMsU42BgWswac_6CZ1laHul_s6WfvUJOA3yM_BxNEwI1hpaek5ZiHo1JF00gXuuKqoBWiV5-ASqSPLXJQXuabw9Bm4TZh8JnRiKqefF6CpFQwABWOA2aR6RwcUW7YsUYBicX05p_nUdVKijgn3ATkavv-6s-c1TRw8AAFjnmIhtg6HZWjmR2kgsqSvRNo3WWhUmEQ2RvadVATKZiazaaD9JFZZbFNhjBY8DR-STlEW5jGhcM3qWFgWCljVK6aivg4MD2xkrYhi3SNvLj-k1A3DOTbamMiamzmQONLSjXSPvGplZzWvx7VSmw4PrYiaf8NKOBbLk9EHuXN8uH2yfejLpEfoJWAk2CcmXVRhymUlHbtPDKvaHnlU46e9GSamAKCgzFaQ1Qog9ffqlSI_cxTgAYcjAc23Dll_eQW5tz_-7M6e_IvwS7I23h3Kg_3Rx6fkdl0ygVWPz0hnMV-a5-SW_r7Iq_mLxuR-Abh9M-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+of+white+matter+tracts+following+neurotoxic+hippocampal+lesions+in+macaque+monkeys%3A+A+diffusion+tensor+imaging+study&rft.jtitle=Hippocampus&rft.au=Shamy%2C+J.L.&rft.au=Carpenter%2C+D.M.&rft.au=Fong%2C+S.G.&rft.au=Murray%2C+E.A.&rft.date=2010-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=20&rft.issue=8&rft.spage=906&rft.epage=910&rft_id=info:doi/10.1002%2Fhipo.20737&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CVSBWBS1_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon