Alterations of white matter tracts following neurotoxic hippocampal lesions in macaque monkeys: A diffusion tensor imaging study
Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain re...
Uloženo v:
| Vydáno v: | Hippocampus Ročník 20; číslo 8; s. 906 - 910 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2010
|
| Témata: | |
| ISSN: | 1050-9631, 1098-1063, 1098-1063 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion‐related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory‐related brain regions, including portions of the prefrontal cortex. © 2010 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion‐related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory‐related brain regions, including portions of the prefrontal cortex. © 2010 Wiley‐Liss, Inc. Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex. Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex.Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years postlesion, structural MRI, and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter, and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex. Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used DTI to examine the effects of selective neurotoxic lesions of the hippocampus on major white matter tracts and anatomically related brain regions in macaque monkeys. Two years post-lesion, structural MRI and DTI sequences were acquired for each subject. Volumetric assessment revealed a substantial reduction in the size of the hippocampus in experimental subjects, averaging 72% relative to controls, without apparent damage to adjacent regions. DTI images were processed to yield measures of fractional anisotropy (FA), apparent diffusion coefficient (ADC), parallel diffusivity (lADC), and perpendicular diffusivity (tADC), as well as directional color maps. To evaluate potential changes in major projection systems, a region of interest (ROI) analysis was conducted including the corpus callosum, fornix, temporal stem, cingulum bundle, ventromedial prefrontal white matter and optic radiations. Lesion-related abnormalities in the integrity of the fiber tracts examined were limited to known hippocampal circuitry, including the fornix and ventromedial prefrontal white matter. These findings are consistent with the notion that hippocampal damage results in altered interactions with multiple memory-related brain regions, including portions of the prefrontal cortex. |
| Author | Rapp, P.R. Shamy, J.L. Murray, E.A. Hof, P.R. Fong, S.G. Tang, C.Y. Carpenter, D.M. |
| AuthorAffiliation | 1 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 5 Laboratory of Experimental Gerontology, NIA, Baltimore, MD 2 Department of Radiology, Mount Sinai School of Medicine, New York, NY 3 Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 4 Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD |
| AuthorAffiliation_xml | – name: 1 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY – name: 2 Department of Radiology, Mount Sinai School of Medicine, New York, NY – name: 4 Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD – name: 5 Laboratory of Experimental Gerontology, NIA, Baltimore, MD – name: 3 Department of Psychiatry, Mount Sinai School of Medicine, New York, NY |
| Author_xml | – sequence: 1 givenname: J.L. surname: Shamy fullname: Shamy, J.L. organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York – sequence: 2 givenname: D.M. surname: Carpenter fullname: Carpenter, D.M. organization: Laboratory of Experimental Gerontology, NIA, Baltimore, Maryland – sequence: 3 givenname: S.G. surname: Fong fullname: Fong, S.G. organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York – sequence: 4 givenname: E.A. surname: Murray fullname: Murray, E.A. organization: Department of Radiology, Mount Sinai School of Medicine, New York, New York – sequence: 5 givenname: C.Y. surname: Tang fullname: Tang, C.Y. organization: Department of Psychiatry, Mount Sinai School of Medicine, New York, New York – sequence: 6 givenname: P.R. surname: Hof fullname: Hof, P.R. organization: Department of Neuroscience, Mount Sinai School of Medicine, New York, New York – sequence: 7 givenname: P.R. surname: Rapp fullname: Rapp, P.R. email: rappp@mail.nih.gov organization: Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, Maryland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20095006$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uctu1DAUtVARfcCGD0DeISGl2HHixCyQpiNoK1UUqUCXluM4M6aOndoO09n10-vMdCpACG98de95-Pocgj3rrALgNUbHGKH8_VIP7jhHFamegQOMWJ1hRMneVJcoY5TgfXAYwk-EMC4RegH2c4RYqugBuJ-ZqLyI2tkAXQdXSx0V7EVMXRi9kDHAzhnjVtouoFWjd9HdaQmT6eCk6AdhoFFhw9c2MaW4HZOCszdqHT7AGWx1140TAEZlg_NQ92IxqYU4tuuX4HknTFCvHu8j8P3zp2_zs-zi8vR8PrvIZFFWVSYqgguKy4K1uGhy1lIkWINUS5QgtOjKmlSoYbnoWtV2TS4xLUVbdg1TSrK6IUfg41Z3GJtetVLZtJ3hg0-v8WvuhOZ_Tqxe8oX7xfM6HUqTwNtHAe_ShiHyXgepjBFWuTHwqqgZKWvGEvLN71ZPHrtfTwC0BUjvQvCq41LHTQbJWRuOEZ-C5VOwfBNsorz7i7JT_ScYb8ErbdT6P0h-dv71csfJthwdorp74gh_w2mal_z6yymf_7g6uT65wpySBz24x_4 |
| CitedBy_id | crossref_primary_10_1007_s11682_010_9105_0 crossref_primary_10_1176_appi_ajp_2019_18101212 crossref_primary_10_2217_fnl_14_63 crossref_primary_10_1002_hipo_22621 crossref_primary_10_1002_hipo_23337 crossref_primary_10_1016_j_cortex_2017_05_010 crossref_primary_10_1016_j_neuroimage_2020_117645 crossref_primary_10_1016_j_nlm_2022_107683 crossref_primary_10_1016_j_neuroimage_2021_118017 crossref_primary_10_1016_j_schres_2016_01_051 crossref_primary_10_1016_j_neuroimage_2013_02_034 crossref_primary_10_1016_j_nlm_2016_04_003 crossref_primary_10_1016_j_biopsych_2012_12_024 crossref_primary_10_1016_j_euroneuro_2012_10_018 crossref_primary_10_1016_j_mri_2012_10_030 crossref_primary_10_1093_brain_awu118 crossref_primary_10_1016_j_neuroimage_2011_07_029 crossref_primary_10_1073_pnas_1902278116 crossref_primary_10_1007_s00723_014_0553_3 crossref_primary_10_1093_cercor_bht187 crossref_primary_10_1186_s40478_023_01597_8 crossref_primary_10_1016_j_canlet_2021_11_020 crossref_primary_10_1523_JNEUROSCI_0364_20_2020 crossref_primary_10_1073_pnas_1320562111 crossref_primary_10_1016_j_neuroimage_2014_08_059 crossref_primary_10_1016_j_neuroimage_2011_08_051 |
| Cites_doi | 10.1093/cercor/10.3.220 10.1523/JNEUROSCI.3796-03.2004 10.1038/nm1229 10.1093/brain/123.4.800 10.1002/nbm.782 10.1002/hipo.1050 10.1016/j.neurobiolaging.2005.07.019 10.1016/j.neuroimage.2006.04.187 10.1162/jocn.1994.6.4.305 10.1017/S0140525X99002034 10.1126/science.410102 10.1093/brain/awg103 10.1007/s00234-003-1114-x 10.1080/741941143 10.1093/brain/114.3.1297 10.1016/S0014-4886(03)00295-4 10.1037/0735-7044.119.3.662 10.1038/nn.2149 10.1523/JNEUROSCI.1311-05.2005 10.1007/BF01181641 10.1007/BF00248903 10.1002/hipo.10217 10.1172/JCI27021 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright 2010 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright 2010 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/hipo.20737 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1098-1063 |
| EndPage | 910 |
| ExternalDocumentID | PMC2888866 20095006 10_1002_hipo_20737 HIPO20737 ark_67375_WNG_CVSBWBS1_6 |
| Genre | article Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: AG10606; MH62448; MH58911 – fundername: Intramural Research Programs of the NIA and NIMH – fundername: NIMH NIH HHS grantid: MH58911 – fundername: Intramural NIH HHS grantid: ZIA AG000351 – fundername: NIMH NIH HHS grantid: U01 MH062448 – fundername: NIA NIH HHS grantid: R01 AG010606 – fundername: NIA NIH HHS grantid: R37 AG010606 – fundername: NIMH NIH HHS grantid: P50 MH058911 – fundername: NIMH NIH HHS grantid: MH62448 – fundername: NIA NIH HHS grantid: AG10606 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT XPP XSW XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c4577-a731461549d14b29d60a9b0ed3ea364f58370b92afdedfb2c165ad5fb9eec98b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280739300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1050-9631 1098-1063 |
| IngestDate | Tue Nov 04 01:57:43 EST 2025 Thu Jul 10 23:29:20 EDT 2025 Mon Jul 21 05:48:55 EDT 2025 Tue Nov 18 22:39:15 EST 2025 Sat Nov 29 03:24:26 EST 2025 Sun Sep 21 06:23:21 EDT 2025 Sun Sep 21 06:19:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2010 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4577-a731461549d14b29d60a9b0ed3ea364f58370b92afdedfb2c165ad5fb9eec98b3 |
| Notes | istex:2DD222595E38E616B4CE7D1ECB0C7B0C91485101 Intramural Research Programs of the NIA and NIMH NIH - No. AG10606; No. MH62448; No. MH58911 ark:/67375/WNG-CVSBWBS1-6 ArticleID:HIPO20737 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2888866 |
| PMID | 20095006 |
| PQID | 748935899 |
| PQPubID | 23479 |
| PageCount | 5 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888866 proquest_miscellaneous_748935899 pubmed_primary_20095006 crossref_citationtrail_10_1002_hipo_20737 crossref_primary_10_1002_hipo_20737 wiley_primary_10_1002_hipo_20737_HIPO20737 istex_primary_ark_67375_WNG_CVSBWBS1_6 |
| PublicationCentury | 2000 |
| PublicationDate | August 2010 |
| PublicationDateYYYYMMDD | 2010-08-01 |
| PublicationDate_xml | – month: 08 year: 2010 text: August 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Hippocampus |
| PublicationTitleAlternate | Hippocampus |
| PublicationYear | 2010 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system-A technical review. NMR Biomed 15: 435-455. George R,Griffin JW. 1994. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23: 657-667. Aggleton JP,Brown MW. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22: 425-444; discussion 444-489. Gaffan EA,Gaffan D,Hodges JR. 1991. Amnesia following damage to the left fornix and to other sites. A comparative study. Brain 114(Part 3): 1297-1313. Shamy JL,Buonocore MH,Makaron LM,Amaral DG,Barnes CA,Rapp PR. 2006. Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiol Aging 27: 1405-1415. Schwartz ED,Hackney DB. 2003. Diffusion-weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment. Exp Neurol 184: 570-589. Aggleton JP,Saunders RC. 1997. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 5: 49-71. Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2003. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126(Part 5): 1202-1223. Dijkhuizen RM. 2006. Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124: 251-278. Paus T. 2009. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cognit [Epub ahead of print]. Cavada C,Company T,Tejedor J,Cruz-Rizzolo RJ,Reinoso-Suarez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220-242. Gaffan D. 1994. Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction. J Cognit Neurosci 6: 305-320. Ungerleider LG,Gaffan D,Pelak VS. 1989. Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76: 473-484. Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2005. Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one-trial learning. Behav Neurosci 119: 662-676. Sundgren PC,Dong Q,Gomez-Hassan D,Mukherji SK,Maly P,Welsh R. 2004. Diffusion tensor imaging of the brain: Review of clinical applications. Neuroradiology 46: 339-350. Hampton RR,Hampstead BM,Murray EA. 2004. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus 14: 808-818. Kerschensteiner M,Schwab ME,Lichtman JW,Misgeld T. 2005. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11: 572-577. Aggleton JP,McMackin D,Carpenter K,Hornak J,Kapur N,Halpin S,Wiles CM,Kamel H,Brennan P,Carton S,Gaffan D. 2000. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123(Part 4): 800-815. Croxson PL,Johansen-Berg H,Behrens TE,Robson MD,Pinsk MA,Gross CG,Richter W,Richter MC,Kastner S,Rushworth MF. 2005. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25: 8854-8866. Charles DP,Gaffan D,Buckley MJ. 2004. Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci 24: 2037-2044. Tsivilis D,Vann SD,Denby C,Roberts N,Mayes AR,Montaldi D,Aggleton JP. 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11: 834-842. Voss HU,Uluc AM,Dyke JP,Watts R,Kobylarz EJ,McCandliss BD,Heier LA,Beattie BJ,Hamacher KA,Vallabhajosula S,Goldsmith SJ,Ballon D,Giacino JT,Schiff ND. 2006. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116: 2005-2011. Malkova L,Lex CK,Mishkin M,Saunders RC. 2001. MRI-based evaluation of locus and extent of neurotoxic lesions in monkeys. Hippocampus 11: 361-370. Rosene DL,Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315-317. 2002; 15 1991; 114 2004; 24 2004; 46 1994; 23 2009 2005; 119 1999; 22 2006 2008; 11 1997; 5 2006; 116 2005; 25 1989; 76 2000; 10 2004; 14 2006; 27 2003; 184 2000; 123 2003; 126 2001; 11 2005; 11 2006; 124 1994; 6 1977; 198 e_1_2_3_2_1 Paus T (e_1_2_3_19_1) 2009 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_3_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_10_1 e_1_2_3_11_1 Dijkhuizen RM (e_1_2_3_12_1) 2006; 124 e_1_2_3_23_1 e_1_2_3_24_1 e_1_2_3_25_1 e_1_2_3_26_1 e_1_2_3_20_1 e_1_2_3_21_1 e_1_2_3_22_1 |
| References_xml | – reference: Charles DP,Gaffan D,Buckley MJ. 2004. Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci 24: 2037-2044. – reference: Gaffan D. 1994. Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction. J Cognit Neurosci 6: 305-320. – reference: Dijkhuizen RM. 2006. Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124: 251-278. – reference: Gaffan EA,Gaffan D,Hodges JR. 1991. Amnesia following damage to the left fornix and to other sites. A comparative study. Brain 114(Part 3): 1297-1313. – reference: Shamy JL,Buonocore MH,Makaron LM,Amaral DG,Barnes CA,Rapp PR. 2006. Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiol Aging 27: 1405-1415. – reference: Aggleton JP,Brown MW. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22: 425-444; discussion 444-489. – reference: Cavada C,Company T,Tejedor J,Cruz-Rizzolo RJ,Reinoso-Suarez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10: 220-242. – reference: Rosene DL,Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315-317. – reference: Voss HU,Uluc AM,Dyke JP,Watts R,Kobylarz EJ,McCandliss BD,Heier LA,Beattie BJ,Hamacher KA,Vallabhajosula S,Goldsmith SJ,Ballon D,Giacino JT,Schiff ND. 2006. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116: 2005-2011. – reference: Kerschensteiner M,Schwab ME,Lichtman JW,Misgeld T. 2005. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11: 572-577. – reference: Aggleton JP,McMackin D,Carpenter K,Hornak J,Kapur N,Halpin S,Wiles CM,Kamel H,Brennan P,Carton S,Gaffan D. 2000. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123(Part 4): 800-815. – reference: Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2005. Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one-trial learning. Behav Neurosci 119: 662-676. – reference: Schwartz ED,Hackney DB. 2003. Diffusion-weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment. Exp Neurol 184: 570-589. – reference: Malkova L,Lex CK,Mishkin M,Saunders RC. 2001. MRI-based evaluation of locus and extent of neurotoxic lesions in monkeys. Hippocampus 11: 361-370. – reference: Brasted PJ,Bussey TJ,Murray EA,Wise SP. 2003. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126(Part 5): 1202-1223. – reference: Sundgren PC,Dong Q,Gomez-Hassan D,Mukherji SK,Maly P,Welsh R. 2004. Diffusion tensor imaging of the brain: Review of clinical applications. Neuroradiology 46: 339-350. – reference: Paus T. 2009. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cognit [Epub ahead of print]. – reference: Croxson PL,Johansen-Berg H,Behrens TE,Robson MD,Pinsk MA,Gross CG,Richter W,Richter MC,Kastner S,Rushworth MF. 2005. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25: 8854-8866. – reference: Tsivilis D,Vann SD,Denby C,Roberts N,Mayes AR,Montaldi D,Aggleton JP. 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 11: 834-842. – reference: Beaulieu C. 2002. The basis of anisotropic water diffusion in the nervous system-A technical review. NMR Biomed 15: 435-455. – reference: Aggleton JP,Saunders RC. 1997. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory 5: 49-71. – reference: Ungerleider LG,Gaffan D,Pelak VS. 1989. Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76: 473-484. – reference: Hampton RR,Hampstead BM,Murray EA. 2004. Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus 14: 808-818. – reference: George R,Griffin JW. 1994. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23: 657-667. – volume: 46 start-page: 339 year: 2004 end-page: 350 article-title: Diffusion tensor imaging of the brain: Review of clinical applications publication-title: Neuroradiology – volume: 6 start-page: 305 year: 1994 end-page: 320 article-title: cene‐specific memory for objects: A model of episodic memory impairment in monkeys with fornix transaction publication-title: J Cognit Neurosci – volume: 76 start-page: 473 year: 1989 end-page: 484 article-title: Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys publication-title: Exp Brain Res – volume: 22 start-page: 425 year: 1999 end-page: 444 article-title: Episodic memory, amnesia, and the hippocampal‐anterior thalamic axis publication-title: Behav Brain Sci – volume: 11 start-page: 572 year: 2005 end-page: 577 article-title: In vivo imaging of axonal degeneration and regeneration in the injured spinal cord publication-title: Nat Med – volume: 124 start-page: 251 year: 2006 end-page: 278 article-title: Application of magnetic resonance imaging to study pathophysiology in brain disease models publication-title: Methods Mol Med – year: 2009 article-title: Growth of white matter in the adolescent brain: Myelin or axon? publication-title: Brain Cognit – volume: 27 start-page: 1405 year: 2006 end-page: 1415 article-title: Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys ( ) publication-title: Neurobiol Aging – volume: 23 start-page: 657 year: 1994 end-page: 667 article-title: The proximo‐distal spread of axonal degeneration in the dorsal columns of the rat publication-title: J Neurocytol – volume: 5 start-page: 49 year: 1997 end-page: 71 article-title: The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia publication-title: Memory – volume: 11 start-page: 361 year: 2001 end-page: 370 article-title: MRI‐based evaluation of locus and extent of neurotoxic lesions in monkeys publication-title: Hippocampus – volume: 184 start-page: 570 year: 2003 end-page: 589 article-title: Diffusion‐weighted MRI, the evaluation of spinal cord axonal integrity following injury and treatment publication-title: Exp Neurol – volume: 114 start-page: 1297 issue: Part 3 year: 1991 end-page: 1313 article-title: Amnesia following damage to the left fornix and to other sites. A comparative study publication-title: Brain – volume: 116 start-page: 2005 year: 2006 end-page: 2011 article-title: Possible axonal regrowth in late recovery from the minimally conscious state publication-title: J Clin Invest – volume: 119 start-page: 662 year: 2005 end-page: 676 article-title: Conditional motor learning in the nonspatial domain: Effects of errorless learning and the contribution of the fornix to one‐trial learning publication-title: Behav Neurosci – volume: 123 start-page: 800 issue: Part 4 year: 2000 end-page: 815 article-title: Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix publication-title: Brain – volume: 15 start-page: 435 year: 2002 end-page: 455 article-title: The basis of anisotropic water diffusion in the nervous system—A technical review publication-title: NMR Biomed – volume: 10 start-page: 220 year: 2000 end-page: 242 article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review publication-title: Cereb Cortex – volume: 25 start-page: 8854 year: 2005 end-page: 8866 article-title: Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography publication-title: J Neurosci – start-page: 1090 year: 2006 end-page: 1099 – volume: 24 start-page: 2037 year: 2004 end-page: 2044 article-title: Impaired recency judgments and intact novelty judgments after fornix transection in monkeys publication-title: J Neurosci – volume: 126 start-page: 1202 issue: Part 5 year: 2003 end-page: 1223 article-title: Role of the hippocampal system in associative learning beyond the spatial domain publication-title: Brain – volume: 198 start-page: 315 year: 1977 end-page: 317 article-title: Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey publication-title: Science – volume: 11 start-page: 834 year: 2008 end-page: 842 article-title: A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory publication-title: Nat Neurosci – volume: 14 start-page: 808 year: 2004 end-page: 818 article-title: Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open‐field test publication-title: Hippocampus – ident: e_1_2_3_8_1 doi: 10.1093/cercor/10.3.220 – ident: e_1_2_3_9_1 doi: 10.1523/JNEUROSCI.3796-03.2004 – ident: e_1_2_3_17_1 doi: 10.1038/nm1229 – year: 2009 ident: e_1_2_3_19_1 article-title: Growth of white matter in the adolescent brain: Myelin or axon? publication-title: Brain Cognit – volume: 124 start-page: 251 year: 2006 ident: e_1_2_3_12_1 article-title: Application of magnetic resonance imaging to study pathophysiology in brain disease models publication-title: Methods Mol Med – ident: e_1_2_3_4_1 doi: 10.1093/brain/123.4.800 – ident: e_1_2_3_5_1 doi: 10.1002/nbm.782 – ident: e_1_2_3_18_1 doi: 10.1002/hipo.1050 – ident: e_1_2_3_22_1 doi: 10.1016/j.neurobiolaging.2005.07.019 – ident: e_1_2_3_10_1 doi: 10.1016/j.neuroimage.2006.04.187 – ident: e_1_2_3_13_1 doi: 10.1162/jocn.1994.6.4.305 – ident: e_1_2_3_2_1 doi: 10.1017/S0140525X99002034 – ident: e_1_2_3_20_1 doi: 10.1126/science.410102 – ident: e_1_2_3_6_1 doi: 10.1093/brain/awg103 – ident: e_1_2_3_23_1 doi: 10.1007/s00234-003-1114-x – ident: e_1_2_3_3_1 doi: 10.1080/741941143 – ident: e_1_2_3_14_1 doi: 10.1093/brain/114.3.1297 – ident: e_1_2_3_21_1 doi: 10.1016/S0014-4886(03)00295-4 – ident: e_1_2_3_7_1 doi: 10.1037/0735-7044.119.3.662 – ident: e_1_2_3_24_1 doi: 10.1038/nn.2149 – ident: e_1_2_3_11_1 doi: 10.1523/JNEUROSCI.1311-05.2005 – ident: e_1_2_3_15_1 doi: 10.1007/BF01181641 – ident: e_1_2_3_25_1 doi: 10.1007/BF00248903 – ident: e_1_2_3_16_1 doi: 10.1002/hipo.10217 – ident: e_1_2_3_26_1 doi: 10.1172/JCI27021 |
| SSID | ssj0011500 |
| Score | 2.1088498 |
| Snippet | Diffusion tensor imaging (DTI) is a valuable tool for assessing presumptive white matter alterations in human disease and animal models. The current study used... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 906 |
| SubjectTerms | Animals Anisotropy Brain Mapping Diffusion Magnetic Resonance Imaging Disease Models, Animal Excitatory Amino Acid Agonists - toxicity hippocampus Hippocampus - pathology Macaca mulatta Male memory morphometry N-Methylaspartate - toxicity Nerve Fibers, Myelinated - drug effects Nerve Fibers, Myelinated - pathology neuropsychology Neurotoxicity Syndromes - etiology Neurotoxicity Syndromes - pathology rhesus monkey |
| Title | Alterations of white matter tracts following neurotoxic hippocampal lesions in macaque monkeys: A diffusion tensor imaging study |
| URI | https://api.istex.fr/ark:/67375/WNG-CVSBWBS1-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.20737 https://www.ncbi.nlm.nih.gov/pubmed/20095006 https://www.proquest.com/docview/748935899 https://pubmed.ncbi.nlm.nih.gov/PMC2888866 |
| Volume | 20 |
| WOSCitedRecordID | wos000280739300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-1063 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011500 issn: 1050-9631 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tLUK88LExKB-TJdAkkKI1n7YRL92gDAnKxBjrm-U4thbRJlXTsvHGn87ZSTMqJiREnyLlLpWd3_nOufPvAJ4HWkWxZL5nWMI8DKm1xxIuPSZZhu5NcZky12yCjkZsPObHG_B6dRam5odoP7hZy3DrtTVwmVb7V6Sh5_nMHt6jId2EboDAjTvQffN5ePqhzSJgsFOzEcR9D4Hmt_Skwf6V9ppD6tq5vbwu2vyzaPL3YNZ5o-Gd_xvHXbjdRKFkUMPmHmzoYgu2BwXuwKc_yB5xdaHug_sW3PzYpN-34edg4kiYLVRJaciFzUGQqaPoJAt73qoiBoFVXqBDJI4qc1Fe5orgv8_QaeLSMyETXTn9vEBNJXH8BE0B15LqFRkQ27BlaQWILa0v5ySfuj5KxPHg3ofT4dsvh0de08LBQwhQ6kka2sbhuAnN_CgNeJb0JU_7Ogu1DJPIxJZ7J-WBNJnOTBooP4llFpuUa604S8Md6BRloR8CwXtGxdzQkOOeXlIZ9VWgWWAiY3gUqx68WL1HoRp-c9tmYyJqZuZA2JkWbqZ78KyVndWsHtdK7Tk4tCJy_s3WwdFYnI3eicOvJwdnBye-SHpAVngRaJ025SILXS4r4bh9YtzT9uBBDZ_2YTYthfhEZboGrFbAEn-v3ynyc0cAHjD8Jaj50gHrL0MQR--PP7mrR_8i_Bhu1VUSttDxCXQW86V-CjfU90VezXdhk47ZbmNsvwCDFzFk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgRcALHxsf5dMSaBJI0ZpP27x1g9KJrkxsY3uzHMfWItqkalo23vjTuXOyjIoJCdGnSLlLFed3vrPv_DtCXgdGR7Hivmd5wj0IqY3HE6E8rngG7k0LlXLXbIKNx_zkROw3tTl4Fqbmh2g33NAy3HyNBo4b0luXrKGn-QxP77GQXSedCHAEAO-8_zI4GrVpBIh2ajqCuOcB0vyWnzTYutRe8UgdHNzzq8LNP6smf49mnTsa3P3PF7lH7jRxKO3XwLlPrplinWz0C1iDT3_QTeoqQ92W-zq5udck4DfIz_7E0TAjWGlp6RlmIejUkXTSBZ64qqgFaJVn4BKpI8tclOe5pvDvM3CbMPlM6MRUTj8vQFMrGAAKxgCzSfWO9im2bFmiAMXi-nJO86nrpEQdE-4DcjT4cLgz9JomDh6AgDFPsRBbh8MyNPOjNBBZ0lMi7ZksNCpMIhsj-04qAmUzk9k00H4Sqyy2qTBGC56GD8laURbmMaFwz-pYWBYKWNUrpqKeDgwPbGStiGLdJW8uPqTUDcM5NtqYyJqbOZA40tKNdJe8amVnNa_HlVKbDg-tiJp_w0o4Fsvj8Ue58_Vg-3j7wJdJl9ALwEiwT0y6qMKUy0o6dp8YVrVd8qjGT_swTEwBQEGZrSCrFUDq79U7RX7qKMADDr8ENN86ZP3lFeRwd_-zu3ryL8Ivya3h4d5IjnbHn56S23XNBJY9PiNri_nSPCc39PdFXs1fNDb3C3YgNGw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELegRRNfeGw8ytMSaBJI0Zqnbb51G2UTo1SMPb5ZjmNrEW1SNS0b3_jTuXOyjIoJCZFPkXKXKM7vfOfc-XeEvA6MjmLFfc_yhHsQUhuPJ0J5XPEM3JsWKuWu2QQbjfjpqRg3tTm4F6bmh2h_uKFluPkaDdzMMrt1xRp6ls9w9x4L2U3SjbCLTId0d78Mjw7aNAJEOzUdQdz3AGl-y08abF1pr3ikLg7uxXXh5p9Vk79Hs84dDe_-54vcI3eaOJQOauDcJzdMsU42BgWswac_6CZ1laHul_s6WfvUJOA3yM_BxNEwI1hpaek5ZiHo1JF00gXuuKqoBWiV5-ASqSPLXJQXuabw9Bm4TZh8JnRiKqefF6CpFQwABWOA2aR6RwcUW7YsUYBicX05p_nUdVKijgn3ATkavv-6s-c1TRw8AAFjnmIhtg6HZWjmR2kgsqSvRNo3WWhUmEQ2RvadVATKZiazaaD9JFZZbFNhjBY8DR-STlEW5jGhcM3qWFgWCljVK6aivg4MD2xkrYhi3SNvLj-k1A3DOTbamMiamzmQONLSjXSPvGplZzWvx7VSmw4PrYiaf8NKOBbLk9EHuXN8uH2yfejLpEfoJWAk2CcmXVRhymUlHbtPDKvaHnlU46e9GSamAKCgzFaQ1Qog9ffqlSI_cxTgAYcjAc23Dll_eQW5tz_-7M6e_IvwS7I23h3Kg_3Rx6fkdl0ygVWPz0hnMV-a5-SW_r7Iq_mLxuR-Abh9M-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+of+white+matter+tracts+following+neurotoxic+hippocampal+lesions+in+macaque+monkeys%3A+A+diffusion+tensor+imaging+study&rft.jtitle=Hippocampus&rft.au=Shamy%2C+J.L.&rft.au=Carpenter%2C+D.M.&rft.au=Fong%2C+S.G.&rft.au=Murray%2C+E.A.&rft.date=2010-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=20&rft.issue=8&rft.spage=906&rft.epage=910&rft_id=info:doi/10.1002%2Fhipo.20737&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CVSBWBS1_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon |