Monogenic pseudo-complex power functions and their applications

The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of diffe...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 37; no. 12; pp. 1723 - 1735
Main Authors: Cruz, Carla, Irene Falcão, Maria, Malonek, Helmuth R.
Format: Journal Article
Language:English
Published: Freiburg Blackwell Publishing Ltd 01.08.2014
Wiley Subscription Services, Inc
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D‐elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan–Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D-elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan-Sofo type binomial identity is also proved. Copyright copyright 2013 John Wiley & Sons, Ltd.
The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D-elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan-Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D‐elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan–Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd.
Author Irene Falcão, Maria
Cruz, Carla
Malonek, Helmuth R.
Author_xml – sequence: 1
  givenname: Carla
  surname: Cruz
  fullname: Cruz, Carla
  organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal
– sequence: 2
  givenname: Maria
  surname: Irene Falcão
  fullname: Irene Falcão, Maria
  organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal
– sequence: 3
  givenname: Helmuth R.
  surname: Malonek
  fullname: Malonek, Helmuth R.
  email: Correspondence to: Helmuth R.Malonek, Department of Mathematics, University of Aveiro, Aveiro, Portugal., hrmalon@ua.pt
  organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal
BookMark eNp1kE1LxDAQhoMouH6AP6HgxUvXpE2a9CQiuiquoigeQ5qdaLRNatKy-u-tqyguehoYnvdh5t1Aq847QGiH4DHBONtvGjXOypysoBHBZZkSyotVNMKE45RmhK6jjRifMMaCkGyEDqbe-QdwVidthH7mU-2btobXpPVzCInpne6sdzFRbpZ0j2BDotq2tlot1ltozag6wvbX3ER3J8e3R6fpxdXk7OjwItWUcZJmbCYKXdFKKGEMYyUWtKxAGK4qzdSs0IUBVlBMh8kZV6QCJYRgyhgolck30d6ntw3-pYfYycZGDXWtHPg-SjI4C15kmA3o7hL65PvghusGiuY5FYLyH6EOPsYARrbBNiq8SYLlR5NyaFJ-NDmg4yVU227xfheUrf8KpJ-Bua3h7V-xnE4Pf_M2dvD6zavwLAuecybvLyfy5hzf3pRZKa_zd5PvlYA
CODEN MMSCDB
CitedBy_id crossref_primary_10_1007_s00006_015_0596_z
crossref_primary_10_1002_mma_3276
Cites_doi 10.1007/978-3-642-21931-3_22
10.1002/mma.1213
10.1016/j.aml.2010.05.006
10.1016/j.mcm.2010.11.071
10.1063/1.2991009
10.1007/978-1-4615-0057-5
10.1007/978-3-642-21931-3_28
10.1063/1.2790257
10.1007/s00006-012-0361-5
10.24033/asens.186
10.2307/2322496
10.1002/mma.1563
10.2307/2695352
10.1063/1.3498489
10.1063/1.4765512
10.1080/17476939008814449
10.1080/17476939908815192
10.1007/BF01359699
10.1007/BF01202702
10.1007/BF03321833
10.1090/chel/340
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.2931
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 1735
ExternalDocumentID 3364708431
10_1002_mma_2931
MMA2931
ark_67375_WNG_RJ0TR929_Q
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c4571-25d86cb4b8a8ff5590849be8f7abc5ad6c6fe564046fe757a1bea8885affe9af3
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339419100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Sun Nov 09 10:10:30 EST 2025
Fri Jul 25 12:18:23 EDT 2025
Sat Nov 29 01:33:51 EST 2025
Tue Nov 18 21:36:26 EST 2025
Wed Jan 22 16:24:25 EST 2025
Sun Sep 21 06:29:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4571-25d86cb4b8a8ff5590849be8f7abc5ad6c6fe564046fe757a1bea8885affe9af3
Notes istex:318556F3D631B7685B73BEE6BF6379479450235C
ark:/67375/WNG-RJ0TR929-Q
ArticleID:MMA2931
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://hdl.handle.net/1822/29694
PQID 1543348847
PQPubID 1016386
PageCount 13
ParticipantIDs proquest_miscellaneous_1559676205
proquest_journals_1543348847
crossref_primary_10_1002_mma_2931
crossref_citationtrail_10_1002_mma_2931
wiley_primary_10_1002_mma_2931_MMA2931
istex_primary_ark_67375_WNG_RJ0TR929_Q
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Delanghe R. On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen 1970; 185: 91-111.
Delanghe R, Lávička R, Souček V. The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces. Mathematical Methods In The Applied Sciences 2012; 35(7):745-757.
Moisil GrC, Théodoresco N. Fonctions holomorphes dans l'espace. Mathematica 1931; 5: 142-159.
Lávička R. Canonical bases for sl(2, C)-modules of spherical monogenics in dimension 3. Archivum Mathematicum 2010; 46: 339-349.
Malonek HR. Power series representation for monogenic functions in Rn+1 based on a permutational product. Complex Variables, Theory Applications 1990; 15: 181-191.
Prodinger H. Knuth's old sum - a survey. European Association for Theoretical Computer Science Bulletin 1994; 54: 232-245.
Fueter R. Analytische Funktionen einer Quaternionenvariablen. Commentarii Mathematici Helvetici 1932; 4: 9-20.
Brackx F. Two powerful theorems in Clifford analysis. AIP Conference Proceedings 2010; 1281: 3-7.
Lehmer HD. Interesting series involving the central binomial coefficient. American Mathematical Monthly 1985; 92: 449-457.
Cação I, Falcão MI, Malonek HR. On generalized hypercomplex Laguerre-type exponentials and applications. Lecture Notes in Computer Science 2011; 6784: 271-286.
Gürlebeck K, Malonek HR. A hypercomplex derivative of monogenic functions in Rn+1 and its applications. Complex Variables Theory Applications 1999; 39: 199-228.
Malonek HR, de Almeida R. A note on a generalized Joukowski transformation. Applied Mathematics Letters 2010; 23(10):1174-1178.
Appell P. Sur une classe de pôlynomes. Annals scientifiques de l'École Normal Supérieure 21 série 1880; 9(2):119-144.
Cruz C, Falcão MI, Malonek HR. On pseudo-complex bases for monogenic polynomials. AIP Conference Proceedings 2012; 1493: 350-355.
Faà di Bruno CF. Note sur une nouvelle formule, de calcul différentiel. Quarterly Journal of Pure and Applied Math 1857; 1: 359-360.
Bock S, Gürlebeck K. On a generalized Appell system and monogenic power series. Mathematical Methods In The Applied Sciences 2010; 33(4):394-411.
Sofo A. Computational Techniques for the Summation of Series, Kluwer: New York, 2003.
Riordan J. Combinatorial Identities, John Wiley & Sons Inc.: New York, 1968.
Johnson WP. The curious history of Faà di Bruno's formula. The Mathematical Association of America Monthly 2002; 109(3):217-234.
Cruz C, Falcão MI, Malonek HR. 3D mappings by generalized joukowski transformation. Lecture Notes in Computer Science 2011; 6784: 358-373.
Falcão MI, Malonek HR. On paravector valued homogeneous monogenic polynomials with binomial expansion. Advances in Applied Clifford Algebras 2012; 22(3):789-801.
Fueter R. Funktionentheorie im Hyperkomplexen, Lecture notes written and supplemented by E. Bareiss, Math. Inst. Univ. Zürich. Universität Zürich: Herbstsemester,1948/49, 1949.
Cação I, Falcão MI, Malonek HR. Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Mathematical and Computer Modelling 2011; 53(5-6):1084-1094.
Falcão MI, Malonek HR. Generalized exponentials through Appell sets in Rn+1 and Bessel functions. AIP Conference Procedings 2007; 936: 738-741.
Sofo A. Closed form representation of binomial sums and series. Le Matematiche 1999; LIV: 175-186.
Brackx F, Delanghe R, Sommen F. Clifford Analysis. Pitman 76: London, 1982.
Gürlebeck K, Habetha K, Sprössig W. Holomorphic Functions in the Plane and n-Dimensional Space, Birkäuser Verlag: Basel, 2008.
Cação I, Falcão MI, Malonek HR. Matrix representations of a special polynomial sequence in arbitrary dimension. Computational Methods and Function Theory 2012; 12(2):371-391.
Krantz SG. Function Theory of Several Complex Variables, 2nd ed. American Mathematical Society, Providenc: RI, 2001.
Weierstrass K. Mathematical Werke, Bd. 2: Berlin, 1897.
Cação I, Malonek HR. On complete sets of hypercomplex Appell polynomials. AIP Conference Proceedings 2008; 1048: 647-650.
2010; 33
1970; 185
2011; 6784
2010; 1281
1857; 1
1990; 15
2011; 53
2008
1897
1932; 4
2006
2004
2003
2012; 35
1880; 9
2012; 12
1999; LIV
2010; 23
2008; 1048
2012; 1493
2010; 46
2001
1999; 39
1931; 5
1985; 92
1982
2002; 109
2007; 936
1949
2012; 22
1968
1994; 54
Moisil (10.1002/mma.2931-BIB0002|mma2931-cit-0002) 1931; 5
Sofo (10.1002/mma.2931-BIB0019|mma2931-cit-0019) 2003
Cruz (10.1002/mma.2931-BIB0034|mma2931-cit-0034) 2012; 1493
Delanghe (10.1002/mma.2931-BIB0013|mma2931-cit-0013) 2012; 35
Cação (10.1002/mma.2931-BIB0033|mma2931-cit-0033) 2011; 6784
Falcão (10.1002/mma.2931-BIB0022|mma2931-cit-0022) 2012; 22
Fueter (10.1002/mma.2931-BIB0003|mma2931-cit-0003) 1932; 4
Gürlebeck (10.1002/mma.2931-BIB0023|mma2931-cit-0023) 1999; 39
Malonek (10.1002/mma.2931-BIB0024|mma2931-cit-0024) 2004
Malonek (10.1002/mma.2931-BIB0025|mma2931-cit-0025) 1990; 15
Cação (10.1002/mma.2931-BIB0009|mma2931-cit-0009) 2012; 12
Lehmer (10.1002/mma.2931-BIB0017|mma2931-cit-0017) 1985; 92
Faà di Bruno (10.1002/mma.2931-BIB0029|mma2931-cit-0029) 1857; 1
Lávička (10.1002/mma.2931-BIB0012|mma2931-cit-0012) 2010; 46
Fueter (10.1002/mma.2931-BIB0004|mma2931-cit-0004) 1949
Appell (10.1002/mma.2931-BIB0027|mma2931-cit-0027) 1880; 9
Cruz (10.1002/mma.2931-BIB0031|mma2931-cit-0031) 2011; 6784
Weierstrass (10.1002/mma.2931-BIB0001|mma2931-cit-0001) 1897
Sofo (10.1002/mma.2931-BIB0018|mma2931-cit-0018) 1999; LIV
Bock (10.1002/mma.2931-BIB0014|mma2931-cit-0014) 2010; 33
Delanghe (10.1002/mma.2931-BIB0005|mma2931-cit-0005) 1970; 185
Falcão (10.1002/mma.2931-BIB0010|mma2931-cit-0010) 2007; 936
Riordan (10.1002/mma.2931-BIB0020|mma2931-cit-0020) 1968
Prodinger (10.1002/mma.2931-BIB0021|mma2931-cit-0021) 1994; 54
Gürlebeck (10.1002/mma.2931-BIB0008|mma2931-cit-0008) 2008
Malonek (10.1002/mma.2931-BIB0015|mma2931-cit-0015) 2006
Krantz (10.1002/mma.2931-BIB0026|mma2931-cit-0026) 2001
Johnson (10.1002/mma.2931-BIB0028|mma2931-cit-0028) 2002; 109
Brackx (10.1002/mma.2931-BIB0007|mma2931-cit-0007) 1982
Falcão (10.1002/mma.2931-BIB0011|mma2931-cit-0011) 2006
Cação (10.1002/mma.2931-BIB0032|mma2931-cit-0032) 2011; 53
Cação (10.1002/mma.2931-BIB0016|mma2931-cit-0016) 2008; 1048
Malonek (10.1002/mma.2931-BIB0030|mma2931-cit-0030) 2010; 23
Brackx (10.1002/mma.2931-BIB0006|mma2931-cit-0006) 2010; 1281
References_xml – reference: Falcão MI, Malonek HR. On paravector valued homogeneous monogenic polynomials with binomial expansion. Advances in Applied Clifford Algebras 2012; 22(3):789-801.
– reference: Gürlebeck K, Malonek HR. A hypercomplex derivative of monogenic functions in Rn+1 and its applications. Complex Variables Theory Applications 1999; 39: 199-228.
– reference: Appell P. Sur une classe de pôlynomes. Annals scientifiques de l'École Normal Supérieure 21 série 1880; 9(2):119-144.
– reference: Cação I, Falcão MI, Malonek HR. Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Mathematical and Computer Modelling 2011; 53(5-6):1084-1094.
– reference: Bock S, Gürlebeck K. On a generalized Appell system and monogenic power series. Mathematical Methods In The Applied Sciences 2010; 33(4):394-411.
– reference: Cruz C, Falcão MI, Malonek HR. On pseudo-complex bases for monogenic polynomials. AIP Conference Proceedings 2012; 1493: 350-355.
– reference: Riordan J. Combinatorial Identities, John Wiley & Sons Inc.: New York, 1968.
– reference: Moisil GrC, Théodoresco N. Fonctions holomorphes dans l'espace. Mathematica 1931; 5: 142-159.
– reference: Fueter R. Analytische Funktionen einer Quaternionenvariablen. Commentarii Mathematici Helvetici 1932; 4: 9-20.
– reference: Sofo A. Computational Techniques for the Summation of Series, Kluwer: New York, 2003.
– reference: Lávička R. Canonical bases for sl(2, C)-modules of spherical monogenics in dimension 3. Archivum Mathematicum 2010; 46: 339-349.
– reference: Krantz SG. Function Theory of Several Complex Variables, 2nd ed. American Mathematical Society, Providenc: RI, 2001.
– reference: Delanghe R. On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen 1970; 185: 91-111.
– reference: Cação I, Malonek HR. On complete sets of hypercomplex Appell polynomials. AIP Conference Proceedings 2008; 1048: 647-650.
– reference: Cação I, Falcão MI, Malonek HR. Matrix representations of a special polynomial sequence in arbitrary dimension. Computational Methods and Function Theory 2012; 12(2):371-391.
– reference: Fueter R. Funktionentheorie im Hyperkomplexen, Lecture notes written and supplemented by E. Bareiss, Math. Inst. Univ. Zürich. Universität Zürich: Herbstsemester,1948/49, 1949.
– reference: Delanghe R, Lávička R, Souček V. The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces. Mathematical Methods In The Applied Sciences 2012; 35(7):745-757.
– reference: Cruz C, Falcão MI, Malonek HR. 3D mappings by generalized joukowski transformation. Lecture Notes in Computer Science 2011; 6784: 358-373.
– reference: Sofo A. Closed form representation of binomial sums and series. Le Matematiche 1999; LIV: 175-186.
– reference: Brackx F, Delanghe R, Sommen F. Clifford Analysis. Pitman 76: London, 1982.
– reference: Lehmer HD. Interesting series involving the central binomial coefficient. American Mathematical Monthly 1985; 92: 449-457.
– reference: Cação I, Falcão MI, Malonek HR. On generalized hypercomplex Laguerre-type exponentials and applications. Lecture Notes in Computer Science 2011; 6784: 271-286.
– reference: Brackx F. Two powerful theorems in Clifford analysis. AIP Conference Proceedings 2010; 1281: 3-7.
– reference: Malonek HR. Power series representation for monogenic functions in Rn+1 based on a permutational product. Complex Variables, Theory Applications 1990; 15: 181-191.
– reference: Weierstrass K. Mathematical Werke, Bd. 2: Berlin, 1897.
– reference: Johnson WP. The curious history of Faà di Bruno's formula. The Mathematical Association of America Monthly 2002; 109(3):217-234.
– reference: Prodinger H. Knuth's old sum - a survey. European Association for Theoretical Computer Science Bulletin 1994; 54: 232-245.
– reference: Malonek HR, de Almeida R. A note on a generalized Joukowski transformation. Applied Mathematics Letters 2010; 23(10):1174-1178.
– reference: Gürlebeck K, Habetha K, Sprössig W. Holomorphic Functions in the Plane and n-Dimensional Space, Birkäuser Verlag: Basel, 2008.
– reference: Faà di Bruno CF. Note sur une nouvelle formule, de calcul différentiel. Quarterly Journal of Pure and Applied Math 1857; 1: 359-360.
– reference: Falcão MI, Malonek HR. Generalized exponentials through Appell sets in Rn+1 and Bessel functions. AIP Conference Procedings 2007; 936: 738-741.
– volume: 39
  start-page: 199
  year: 1999
  end-page: 228
  article-title: A hypercomplex derivative of monogenic functions in and its applications
  publication-title: Complex Variables Theory Applications
– start-page: 615
  year: 2006
  end-page: 619
– volume: 15
  start-page: 181
  year: 1990
  end-page: 191
  article-title: Power series representation for monogenic functions in based on a permutational product
  publication-title: Complex Variables, Theory Applications
– year: 1968
– volume: 6784
  start-page: 358
  year: 2011
  end-page: 373
  article-title: 3D mappings by generalized joukowski transformation
  publication-title: Lecture Notes in Computer Science
– year: 1897
– year: 2001
– year: 2003
– volume: 185
  start-page: 91
  year: 1970
  end-page: 111
  article-title: On regular‐analytic functions with values in a Clifford algebra
  publication-title: Mathematische Annalen
– volume: 22
  start-page: 789
  issue: 3
  year: 2012
  end-page: 801
  article-title: On paravector valued homogeneous monogenic polynomials with binomial expansion
  publication-title: Advances in Applied Clifford Algebras
– volume: 1493
  start-page: 350
  year: 2012
  end-page: 355
  article-title: On pseudo‐complex bases for monogenic polynomials
  publication-title: AIP Conference Proceedings
– volume: 92
  start-page: 449
  year: 1985
  end-page: 457
  article-title: Interesting series involving the central binomial coefficient
  publication-title: American Mathematical Monthly
– volume: 4
  start-page: 9
  year: 1932
  end-page: 20
  article-title: Analytische Funktionen einer Quaternionenvariablen
  publication-title: Commentarii Mathematici Helvetici
– volume: 53
  start-page: 1084
  issue: 5‐6
  year: 2011
  end-page: 1094
  article-title: Laguerre derivative and monogenic Laguerre polynomials: an operational approach
  publication-title: Mathematical and Computer Modelling
– volume: 12
  start-page: 371
  issue: 2
  year: 2012
  end-page: 391
  article-title: Matrix representations of a special polynomial sequence in arbitrary dimension
  publication-title: Computational Methods and Function Theory
– volume: 54
  start-page: 232
  year: 1994
  end-page: 245
  article-title: Knuth's old sum ‐ a survey
  publication-title: European Association for Theoretical Computer Science Bulletin
– volume: 9
  start-page: 119
  issue: 2
  year: 1880
  end-page: 144
  article-title: Sur une classe de pôlynomes
  publication-title: Annals scientifiques de l’École Normal Supérieure 21 série
– year: 1982
– volume: 5
  start-page: 142
  year: 1931
  end-page: 159
  article-title: Fonctions holomorphes dans l'espace
  publication-title: Mathematica
– volume: 23
  start-page: 1174
  issue: 10
  year: 2010
  end-page: 1178
  article-title: A note on a generalized Joukowski transformation
  publication-title: Applied Mathematics Letters
– volume: 33
  start-page: 394
  issue: 4
  year: 2010
  end-page: 411
  article-title: On a generalized Appell system and monogenic power series
  publication-title: Mathematical Methods In The Applied Sciences
– year: 2008
– year: 2006
– volume: 936
  start-page: 738
  year: 2007
  end-page: 741
  article-title: Generalized exponentials through Appell sets in and Bessel functions
  publication-title: AIP Conference Procedings
– year: 1949
– start-page: 111
  year: 2004
  end-page: 150
– volume: LIV
  start-page: 175
  year: 1999
  end-page: 186
  article-title: Closed form representation of binomial sums and series
  publication-title: Le Matematiche
– volume: 6784
  start-page: 271
  year: 2011
  end-page: 286
  article-title: On generalized hypercomplex Laguerre‐type exponentials and applications
  publication-title: Lecture Notes in Computer Science
– volume: 35
  start-page: 745
  issue: 7
  year: 2012
  end-page: 757
  article-title: The Gelfand‐Tsetlin bases for Hodge‐de Rham systems in Euclidean spaces
  publication-title: Mathematical Methods In The Applied Sciences
– volume: 1281
  start-page: 3
  year: 2010
  end-page: 7
  article-title: Two powerful theorems in Clifford analysis
  publication-title: AIP Conference Proceedings
– volume: 1048
  start-page: 647
  year: 2008
  end-page: 650
  article-title: On complete sets of hypercomplex Appell polynomials
  publication-title: AIP Conference Proceedings
– volume: 46
  start-page: 339
  year: 2010
  end-page: 349
  article-title: Canonical bases for ‐modules of spherical monogenics in dimension 3
  publication-title: Archivum Mathematicum
– volume: 109
  start-page: 217
  issue: 3
  year: 2002
  end-page: 234
  article-title: The curious history of Faà di Bruno's formula
  publication-title: The Mathematical Association of America Monthly
– volume: 1
  start-page: 359
  year: 1857
  end-page: 360
  article-title: Note sur une nouvelle formule, de calcul différentiel
  publication-title: Quarterly Journal of Pure and Applied Math
– volume: 6784
  start-page: 271
  year: 2011
  ident: 10.1002/mma.2931-BIB0033|mma2931-cit-0033
  article-title: On generalized hypercomplex Laguerre-type exponentials and applications
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-21931-3_22
– volume: 33
  start-page: 394
  issue: 4
  year: 2010
  ident: 10.1002/mma.2931-BIB0014|mma2931-cit-0014
  article-title: On a generalized Appell system and monogenic power series
  publication-title: Mathematical Methods In The Applied Sciences
  doi: 10.1002/mma.1213
– volume: 23
  start-page: 1174
  issue: 10
  year: 2010
  ident: 10.1002/mma.2931-BIB0030|mma2931-cit-0030
  article-title: A note on a generalized Joukowski transformation
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2010.05.006
– volume: 53
  start-page: 1084
  issue: 5-6
  year: 2011
  ident: 10.1002/mma.2931-BIB0032|mma2931-cit-0032
  article-title: Laguerre derivative and monogenic Laguerre polynomials: an operational approach
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2010.11.071
– volume-title: Combinatorial Identities
  year: 1968
  ident: 10.1002/mma.2931-BIB0020|mma2931-cit-0020
– volume: 1048
  start-page: 647
  year: 2008
  ident: 10.1002/mma.2931-BIB0016|mma2931-cit-0016
  article-title: On complete sets of hypercomplex Appell polynomials
  publication-title: AIP Conference Proceedings
  doi: 10.1063/1.2991009
– volume-title: Computational Techniques for the Summation of Series
  year: 2003
  ident: 10.1002/mma.2931-BIB0019|mma2931-cit-0019
  doi: 10.1007/978-1-4615-0057-5
– start-page: 615
  volume-title: ICNAAM-2006 Conference Proceedings
  year: 2006
  ident: 10.1002/mma.2931-BIB0015|mma2931-cit-0015
– volume: 6784
  start-page: 358
  year: 2011
  ident: 10.1002/mma.2931-BIB0031|mma2931-cit-0031
  article-title: 3D mappings by generalized joukowski transformation
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-21931-3_28
– volume-title: Clifford Analysis
  year: 1982
  ident: 10.1002/mma.2931-BIB0007|mma2931-cit-0007
– volume: 936
  start-page: 738
  year: 2007
  ident: 10.1002/mma.2931-BIB0010|mma2931-cit-0010
  article-title: Generalized exponentials through Appell sets in Rn+1 and Bessel functions
  publication-title: AIP Conference Procedings
  doi: 10.1063/1.2790257
– volume: 22
  start-page: 789
  issue: 3
  year: 2012
  ident: 10.1002/mma.2931-BIB0022|mma2931-cit-0022
  article-title: On paravector valued homogeneous monogenic polynomials with binomial expansion
  publication-title: Advances in Applied Clifford Algebras
  doi: 10.1007/s00006-012-0361-5
– volume: 54
  start-page: 232
  year: 1994
  ident: 10.1002/mma.2931-BIB0021|mma2931-cit-0021
  article-title: Knuth's old sum - a survey
  publication-title: European Association for Theoretical Computer Science Bulletin
– volume: 9
  start-page: 119
  issue: 2
  year: 1880
  ident: 10.1002/mma.2931-BIB0027|mma2931-cit-0027
  article-title: Sur une classe de pôlynomes
  publication-title: Annals scientifiques de l’École Normal Supérieure 21 série
  doi: 10.24033/asens.186
– volume: 92
  start-page: 449
  year: 1985
  ident: 10.1002/mma.2931-BIB0017|mma2931-cit-0017
  article-title: Interesting series involving the central binomial coefficient
  publication-title: American Mathematical Monthly
  doi: 10.2307/2322496
– volume-title: Holomorphic Functions in the Plane and n-Dimensional Space
  year: 2008
  ident: 10.1002/mma.2931-BIB0008|mma2931-cit-0008
– volume: 35
  start-page: 745
  issue: 7
  year: 2012
  ident: 10.1002/mma.2931-BIB0013|mma2931-cit-0013
  article-title: The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces
  publication-title: Mathematical Methods In The Applied Sciences
  doi: 10.1002/mma.1563
– volume: 1
  start-page: 359
  year: 1857
  ident: 10.1002/mma.2931-BIB0029|mma2931-cit-0029
  article-title: Note sur une nouvelle formule, de calcul différentiel
  publication-title: Quarterly Journal of Pure and Applied Math
– volume: 46
  start-page: 339
  year: 2010
  ident: 10.1002/mma.2931-BIB0012|mma2931-cit-0012
  article-title: Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3
  publication-title: Archivum Mathematicum
– volume: 109
  start-page: 217
  issue: 3
  year: 2002
  ident: 10.1002/mma.2931-BIB0028|mma2931-cit-0028
  article-title: The curious history of Faà di Bruno's formula
  publication-title: The Mathematical Association of America Monthly
  doi: 10.2307/2695352
– volume: 5
  start-page: 142
  year: 1931
  ident: 10.1002/mma.2931-BIB0002|mma2931-cit-0002
  article-title: Fonctions holomorphes dans l'espace
  publication-title: Mathematica
– volume: 1281
  start-page: 3
  year: 2010
  ident: 10.1002/mma.2931-BIB0006|mma2931-cit-0006
  article-title: Two powerful theorems in Clifford analysis
  publication-title: AIP Conference Proceedings
  doi: 10.1063/1.3498489
– volume: 1493
  start-page: 350
  year: 2012
  ident: 10.1002/mma.2931-BIB0034|mma2931-cit-0034
  article-title: On pseudo-complex bases for monogenic polynomials
  publication-title: AIP Conference Proceedings
  doi: 10.1063/1.4765512
– volume: 15
  start-page: 181
  year: 1990
  ident: 10.1002/mma.2931-BIB0025|mma2931-cit-0025
  article-title: Power series representation for monogenic functions in Rn+1 based on a permutational product
  publication-title: Complex Variables, Theory Applications
  doi: 10.1080/17476939008814449
– volume-title: Mathematical Werke, Bd. 2
  year: 1897
  ident: 10.1002/mma.2931-BIB0001|mma2931-cit-0001
– volume: LIV
  start-page: 175
  year: 1999
  ident: 10.1002/mma.2931-BIB0018|mma2931-cit-0018
  article-title: Closed form representation of binomial sums and series
  publication-title: Le Matematiche
– volume: 39
  start-page: 199
  year: 1999
  ident: 10.1002/mma.2931-BIB0023|mma2931-cit-0023
  article-title: A hypercomplex derivative of monogenic functions in Rn+1 and its applications
  publication-title: Complex Variables Theory Applications
  doi: 10.1080/17476939908815192
– volume: 185
  start-page: 91
  year: 1970
  ident: 10.1002/mma.2931-BIB0005|mma2931-cit-0005
  article-title: On regular-analytic functions with values in a Clifford algebra
  publication-title: Mathematische Annalen
  doi: 10.1007/BF01359699
– volume: 4
  start-page: 9
  year: 1932
  ident: 10.1002/mma.2931-BIB0003|mma2931-cit-0003
  article-title: Analytische Funktionen einer Quaternionenvariablen
  publication-title: Commentarii Mathematici Helvetici
  doi: 10.1007/BF01202702
– volume-title: Funktionentheorie im Hyperkomplexen
  year: 1949
  ident: 10.1002/mma.2931-BIB0004|mma2931-cit-0004
– volume: 12
  start-page: 371
  issue: 2
  year: 2012
  ident: 10.1002/mma.2931-BIB0009|mma2931-cit-0009
  article-title: Matrix representations of a special polynomial sequence in arbitrary dimension
  publication-title: Computational Methods and Function Theory
  doi: 10.1007/BF03321833
– volume-title: 17th International Conference on the Application of Computer Science and Mathematics on Architecture and Civil Engineering
  year: 2006
  ident: 10.1002/mma.2931-BIB0011|mma2931-cit-0011
– start-page: 111
  volume-title: Clifford Algebras and Potential Theory
  year: 2004
  ident: 10.1002/mma.2931-BIB0024|mma2931-cit-0024
– volume-title: Function Theory of Several Complex Variables
  year: 2001
  ident: 10.1002/mma.2931-BIB0026|mma2931-cit-0026
  doi: 10.1090/chel/340
SSID ssj0008112
Score 2.0341554
Snippet The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to...
The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1723
SubjectTerms Binomial coefficients
Binomials
Byproducts
Combinatorial analysis
combinatorial identities
Functions (mathematics)
functions of hypercomplex variables
generalized Appell polynomials
Mathematical analysis
Polynomials
Representations
Title Monogenic pseudo-complex power functions and their applications
URI https://api.istex.fr/ark:/67375/WNG-RJ0TR929-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.2931
https://www.proquest.com/docview/1543348847
https://www.proquest.com/docview/1559676205
Volume 37
WOSCitedRecordID wos000339419100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hlgd42NgA0TGQkRB_HqLVqZ3EjxVQEForqDbYm2U7tjQBadWsaI_7CPuM-yTcOWnYJJCQeMpDLrJ1vvP9nDv_DuB5PkJYzMvm91IibCYTy5VNXKFKYwyaUeyx9OUwn82KkxP1qa2qpLswDT9E98ONPCPu1-TgxtYHv0lDfxBtkKIr1P0UzVb0oP92Pjk-7PbhgsdcJxHEJCLlYkM9O0wPNt_eCEZ90uv5DaR5Ha_GgDPZ_p-p3oOtFmaycWMXO3DLV7twd9pxtNa7sNO6dc1etdzTr-_DGH18gTZ16tiy9utycXVxGavO_TlbUkM1RoEw2iozVclinoFdz4I_gOPJu6M3H5K2y0LihMx5ksqyyJwVtjBFCJJ6oAtlfRFyY500Zeay4GUm8CAdfC5zw603eG6WJgSvTBg9hF61qPwjYCp16XA0sojCrOBpMDZwEZQRBRGdcTeAlxt1a9dSkFMnjO-6IU9ONWpKk6YG8KyTXDa0G3-QeRFXrBMwq29UppZL_XX2Xs8_Do_mCP705wHsb5ZUtx5aa4SOdAkZgzOO1b1G36KEian8Yk0yUmUYLYYSx4oL_NfJ6Ol0TM-9fxV8DHcQe4mmlnAfemertX8Ct93Ps9N69bS15V8kzfe8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5VCRJwaGkBkVLASIifw6rxxt5di1MEhAJJBFFKe7Nsry1VtJso26AeeQSesU-Cx_tDK4GExGkPO5at8Yzns8f-BuBZOvCwmObV8VLEdMIjTYWOTCZypZQ3o1Bj6es4nU6z42PxeQNeN29hKn6I9sANPSOs1-jgeCC9_5s19Ax5gwS-oe4yb0W8A923s9HhuF2IMxqSncgQE7GYsoZ7th_vN22vRaMuKvbiGtS8ClhDxBlt_ddY78BmDTTJsLKMbdiwxQ7cnrQsreUObNeOXZKXNfv0q7sw9F6-8FZ1YsiytOt8cfnjZ7h3bi_IEkuqEQyFwVqJKnISMg3kah78HhyO3s3fHER1nYXIMJ7SKOZ5lhjNdKYy5zhWQWdC28ylShuu8sQkzvKE-a20sylPFdVW-Z0zV85ZodzgPnSKRWEfABGxifuDgfY4TDMaO6UdZU4oliHVGTU9eNHoW5qahBxrYZzKij45ll5TEjXVg6et5LIi3viDzPMwZa2AWn3Di2opl0fT93L2sT-fefgnv_Rgr5lTWftoKT14xGfIPjz7vtrf3rswZaIKu1ijDBeJjxd97vsKM_zXwcjJZIjf3X8VfAI3D-aTsRx_mH56CLc8EmPVzcI96Jyv1vYR3DDfz0_K1ePasH8B9SD7rA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5VDUJwKLSASFvASIiWw6rxxt5di1NECX9J1EYt9GbZXluq2m6ibIN65BF4Rp6EsfeHVqISEqc97Fi2xjOezx77G4BXaR9hMc2r46WI6YRHmgodmUzkSik0o1Bj6esonUyykxNxsAJvm7cwFT9Ee-DmPSOs197B7Tx3e39YQy88b5Dwb6g7jIsEvbKzPx0ej9qFOKMh2ekZYiIWU9Zwz_bivabtjWjU8Yq9ugE1rwPWEHGGD_5rrA9hrQaaZFBZxjqs2GID7o9bltZyA9Zrxy7Jbs0-_eYRDNDLZ2hVp4bMS7vMZ79-_Az3zu0VmfuSasSHwmCtRBU5CZkGcj0P_hiOh--P3n2M6joLkWE8pVHM8ywxmulMZc5xXwWdCW0zlyptuMoTkzjLE4ZbaWdTniqqrcKdM1fOWaFc_wmsFrPCPgUiYhP3-n2NOEwzGjulHWVOKJZ5qjNqurDT6FuamoTc18I4lxV9cixRU9JrqgsvW8l5RbzxF5nXYcpaAbU48xfVUi6_TT7I6efe0RThnzzswnYzp7L20VIiePTPkDE8Y1_tb_QunzJRhZ0tvQxaFsaLHse-wgzfOhg5Hg_8d_NfBV_A3YP9oRx9mnzZgnsIxFh1sXAbVi8XS_sM7pjvl6fl4nlt178BhyD7Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monogenic+pseudo-complex+power+functions+and+their+applications&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Cruz%2C+Carla&rft.au=IreneFalcao%2C+Maria&rft.au=Malonek%2C+Helmuth+R&rft.date=2014-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=37&rft.issue=12&rft.spage=1723&rft_id=info:doi/10.1002%2Fmma.2931&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3364708431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon