Monogenic pseudo-complex power functions and their applications
The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of diffe...
Saved in:
| Published in: | Mathematical methods in the applied sciences Vol. 37; no. 12; pp. 1723 - 1735 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Freiburg
Blackwell Publishing Ltd
01.08.2014
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D‐elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan–Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D-elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan-Sofo type binomial identity is also proved. Copyright copyright 2013 John Wiley & Sons, Ltd. The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D-elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan-Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to the solution of different concrete problems. Naturally arises the question of their relationships and the advantages or disadvantages of different types of polynomials. In this sense, the present paper investigates the intrinsic relationship between two different types of monogenic Appell polynomials. Several authors payed attention to the construction of complete sets of monogenic Appell polynomials, orthogonal with respect to a certain inner product, and used them advantageously for the study of problems in 3D‐elasticity and other problems. Our goal is to show that, as consequence of the binomial nature of those generalized Appell polynomials, their inner structure is determined by interesting combinatorial relations in which the central binomial coefficients play a special role. As a byproduct of own interest, a Riordan–Sofo type binomial identity is also proved. Copyright © 2013 John Wiley & Sons, Ltd. |
| Author | Irene Falcão, Maria Cruz, Carla Malonek, Helmuth R. |
| Author_xml | – sequence: 1 givenname: Carla surname: Cruz fullname: Cruz, Carla organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal – sequence: 2 givenname: Maria surname: Irene Falcão fullname: Irene Falcão, Maria organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal – sequence: 3 givenname: Helmuth R. surname: Malonek fullname: Malonek, Helmuth R. email: Correspondence to: Helmuth R.Malonek, Department of Mathematics, University of Aveiro, Aveiro, Portugal., hrmalon@ua.pt organization: Center for Research and Development in Mathematics and Applications, University of Aveiro, Aveiro, Portugal |
| BookMark | eNp1kE1LxDAQhoMouH6AP6HgxUvXpE2a9CQiuiquoigeQ5qdaLRNatKy-u-tqyguehoYnvdh5t1Aq847QGiH4DHBONtvGjXOypysoBHBZZkSyotVNMKE45RmhK6jjRifMMaCkGyEDqbe-QdwVidthH7mU-2btobXpPVzCInpne6sdzFRbpZ0j2BDotq2tlot1ltozag6wvbX3ER3J8e3R6fpxdXk7OjwItWUcZJmbCYKXdFKKGEMYyUWtKxAGK4qzdSs0IUBVlBMh8kZV6QCJYRgyhgolck30d6ntw3-pYfYycZGDXWtHPg-SjI4C15kmA3o7hL65PvghusGiuY5FYLyH6EOPsYARrbBNiq8SYLlR5NyaFJ-NDmg4yVU227xfheUrf8KpJ-Bua3h7V-xnE4Pf_M2dvD6zavwLAuecybvLyfy5hzf3pRZKa_zd5PvlYA |
| CODEN | MMSCDB |
| CitedBy_id | crossref_primary_10_1007_s00006_015_0596_z crossref_primary_10_1002_mma_3276 |
| Cites_doi | 10.1007/978-3-642-21931-3_22 10.1002/mma.1213 10.1016/j.aml.2010.05.006 10.1016/j.mcm.2010.11.071 10.1063/1.2991009 10.1007/978-1-4615-0057-5 10.1007/978-3-642-21931-3_28 10.1063/1.2790257 10.1007/s00006-012-0361-5 10.24033/asens.186 10.2307/2322496 10.1002/mma.1563 10.2307/2695352 10.1063/1.3498489 10.1063/1.4765512 10.1080/17476939008814449 10.1080/17476939908815192 10.1007/BF01359699 10.1007/BF01202702 10.1007/BF03321833 10.1090/chel/340 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
| DOI | 10.1002/mma.2931 |
| DatabaseName | Istex CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-1476 |
| EndPage | 1735 |
| ExternalDocumentID | 3364708431 10_1002_mma_2931 MMA2931 ark_67375_WNG_RJ0TR929_Q |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWS WRC AAYXX CITATION O8X 7TB 8FD FR3 JQ2 KR7 |
| ID | FETCH-LOGICAL-c4571-25d86cb4b8a8ff5590849be8f7abc5ad6c6fe564046fe757a1bea8885affe9af3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339419100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0170-4214 |
| IngestDate | Sun Nov 09 10:10:30 EST 2025 Fri Jul 25 12:18:23 EDT 2025 Sat Nov 29 01:33:51 EST 2025 Tue Nov 18 21:36:26 EST 2025 Wed Jan 22 16:24:25 EST 2025 Sun Sep 21 06:29:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4571-25d86cb4b8a8ff5590849be8f7abc5ad6c6fe564046fe757a1bea8885affe9af3 |
| Notes | istex:318556F3D631B7685B73BEE6BF6379479450235C ark:/67375/WNG-RJ0TR929-Q ArticleID:MMA2931 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://hdl.handle.net/1822/29694 |
| PQID | 1543348847 |
| PQPubID | 1016386 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1559676205 proquest_journals_1543348847 crossref_primary_10_1002_mma_2931 crossref_citationtrail_10_1002_mma_2931 wiley_primary_10_1002_mma_2931_MMA2931 istex_primary_ark_67375_WNG_RJ0TR929_Q |
| PublicationCentury | 2000 |
| PublicationDate | August 2014 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Freiburg |
| PublicationPlace_xml | – name: Freiburg |
| PublicationTitle | Mathematical methods in the applied sciences |
| PublicationTitleAlternate | Math. Meth. Appl. Sci |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Delanghe R. On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen 1970; 185: 91-111. Delanghe R, Lávička R, Souček V. The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces. Mathematical Methods In The Applied Sciences 2012; 35(7):745-757. Moisil GrC, Théodoresco N. Fonctions holomorphes dans l'espace. Mathematica 1931; 5: 142-159. Lávička R. Canonical bases for sl(2, C)-modules of spherical monogenics in dimension 3. Archivum Mathematicum 2010; 46: 339-349. Malonek HR. Power series representation for monogenic functions in Rn+1 based on a permutational product. Complex Variables, Theory Applications 1990; 15: 181-191. Prodinger H. Knuth's old sum - a survey. European Association for Theoretical Computer Science Bulletin 1994; 54: 232-245. Fueter R. Analytische Funktionen einer Quaternionenvariablen. Commentarii Mathematici Helvetici 1932; 4: 9-20. Brackx F. Two powerful theorems in Clifford analysis. AIP Conference Proceedings 2010; 1281: 3-7. Lehmer HD. Interesting series involving the central binomial coefficient. American Mathematical Monthly 1985; 92: 449-457. Cação I, Falcão MI, Malonek HR. On generalized hypercomplex Laguerre-type exponentials and applications. Lecture Notes in Computer Science 2011; 6784: 271-286. Gürlebeck K, Malonek HR. A hypercomplex derivative of monogenic functions in Rn+1 and its applications. Complex Variables Theory Applications 1999; 39: 199-228. Malonek HR, de Almeida R. A note on a generalized Joukowski transformation. Applied Mathematics Letters 2010; 23(10):1174-1178. Appell P. Sur une classe de pôlynomes. Annals scientifiques de l'École Normal Supérieure 21 série 1880; 9(2):119-144. Cruz C, Falcão MI, Malonek HR. On pseudo-complex bases for monogenic polynomials. AIP Conference Proceedings 2012; 1493: 350-355. Faà di Bruno CF. Note sur une nouvelle formule, de calcul différentiel. Quarterly Journal of Pure and Applied Math 1857; 1: 359-360. Bock S, Gürlebeck K. On a generalized Appell system and monogenic power series. Mathematical Methods In The Applied Sciences 2010; 33(4):394-411. Sofo A. Computational Techniques for the Summation of Series, Kluwer: New York, 2003. Riordan J. Combinatorial Identities, John Wiley & Sons Inc.: New York, 1968. Johnson WP. The curious history of Faà di Bruno's formula. The Mathematical Association of America Monthly 2002; 109(3):217-234. Cruz C, Falcão MI, Malonek HR. 3D mappings by generalized joukowski transformation. Lecture Notes in Computer Science 2011; 6784: 358-373. Falcão MI, Malonek HR. On paravector valued homogeneous monogenic polynomials with binomial expansion. Advances in Applied Clifford Algebras 2012; 22(3):789-801. Fueter R. Funktionentheorie im Hyperkomplexen, Lecture notes written and supplemented by E. Bareiss, Math. Inst. Univ. Zürich. Universität Zürich: Herbstsemester,1948/49, 1949. Cação I, Falcão MI, Malonek HR. Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Mathematical and Computer Modelling 2011; 53(5-6):1084-1094. Falcão MI, Malonek HR. Generalized exponentials through Appell sets in Rn+1 and Bessel functions. AIP Conference Procedings 2007; 936: 738-741. Sofo A. Closed form representation of binomial sums and series. Le Matematiche 1999; LIV: 175-186. Brackx F, Delanghe R, Sommen F. Clifford Analysis. Pitman 76: London, 1982. Gürlebeck K, Habetha K, Sprössig W. Holomorphic Functions in the Plane and n-Dimensional Space, Birkäuser Verlag: Basel, 2008. Cação I, Falcão MI, Malonek HR. Matrix representations of a special polynomial sequence in arbitrary dimension. Computational Methods and Function Theory 2012; 12(2):371-391. Krantz SG. Function Theory of Several Complex Variables, 2nd ed. American Mathematical Society, Providenc: RI, 2001. Weierstrass K. Mathematical Werke, Bd. 2: Berlin, 1897. Cação I, Malonek HR. On complete sets of hypercomplex Appell polynomials. AIP Conference Proceedings 2008; 1048: 647-650. 2010; 33 1970; 185 2011; 6784 2010; 1281 1857; 1 1990; 15 2011; 53 2008 1897 1932; 4 2006 2004 2003 2012; 35 1880; 9 2012; 12 1999; LIV 2010; 23 2008; 1048 2012; 1493 2010; 46 2001 1999; 39 1931; 5 1985; 92 1982 2002; 109 2007; 936 1949 2012; 22 1968 1994; 54 Moisil (10.1002/mma.2931-BIB0002|mma2931-cit-0002) 1931; 5 Sofo (10.1002/mma.2931-BIB0019|mma2931-cit-0019) 2003 Cruz (10.1002/mma.2931-BIB0034|mma2931-cit-0034) 2012; 1493 Delanghe (10.1002/mma.2931-BIB0013|mma2931-cit-0013) 2012; 35 Cação (10.1002/mma.2931-BIB0033|mma2931-cit-0033) 2011; 6784 Falcão (10.1002/mma.2931-BIB0022|mma2931-cit-0022) 2012; 22 Fueter (10.1002/mma.2931-BIB0003|mma2931-cit-0003) 1932; 4 Gürlebeck (10.1002/mma.2931-BIB0023|mma2931-cit-0023) 1999; 39 Malonek (10.1002/mma.2931-BIB0024|mma2931-cit-0024) 2004 Malonek (10.1002/mma.2931-BIB0025|mma2931-cit-0025) 1990; 15 Cação (10.1002/mma.2931-BIB0009|mma2931-cit-0009) 2012; 12 Lehmer (10.1002/mma.2931-BIB0017|mma2931-cit-0017) 1985; 92 Faà di Bruno (10.1002/mma.2931-BIB0029|mma2931-cit-0029) 1857; 1 Lávička (10.1002/mma.2931-BIB0012|mma2931-cit-0012) 2010; 46 Fueter (10.1002/mma.2931-BIB0004|mma2931-cit-0004) 1949 Appell (10.1002/mma.2931-BIB0027|mma2931-cit-0027) 1880; 9 Cruz (10.1002/mma.2931-BIB0031|mma2931-cit-0031) 2011; 6784 Weierstrass (10.1002/mma.2931-BIB0001|mma2931-cit-0001) 1897 Sofo (10.1002/mma.2931-BIB0018|mma2931-cit-0018) 1999; LIV Bock (10.1002/mma.2931-BIB0014|mma2931-cit-0014) 2010; 33 Delanghe (10.1002/mma.2931-BIB0005|mma2931-cit-0005) 1970; 185 Falcão (10.1002/mma.2931-BIB0010|mma2931-cit-0010) 2007; 936 Riordan (10.1002/mma.2931-BIB0020|mma2931-cit-0020) 1968 Prodinger (10.1002/mma.2931-BIB0021|mma2931-cit-0021) 1994; 54 Gürlebeck (10.1002/mma.2931-BIB0008|mma2931-cit-0008) 2008 Malonek (10.1002/mma.2931-BIB0015|mma2931-cit-0015) 2006 Krantz (10.1002/mma.2931-BIB0026|mma2931-cit-0026) 2001 Johnson (10.1002/mma.2931-BIB0028|mma2931-cit-0028) 2002; 109 Brackx (10.1002/mma.2931-BIB0007|mma2931-cit-0007) 1982 Falcão (10.1002/mma.2931-BIB0011|mma2931-cit-0011) 2006 Cação (10.1002/mma.2931-BIB0032|mma2931-cit-0032) 2011; 53 Cação (10.1002/mma.2931-BIB0016|mma2931-cit-0016) 2008; 1048 Malonek (10.1002/mma.2931-BIB0030|mma2931-cit-0030) 2010; 23 Brackx (10.1002/mma.2931-BIB0006|mma2931-cit-0006) 2010; 1281 |
| References_xml | – reference: Falcão MI, Malonek HR. On paravector valued homogeneous monogenic polynomials with binomial expansion. Advances in Applied Clifford Algebras 2012; 22(3):789-801. – reference: Gürlebeck K, Malonek HR. A hypercomplex derivative of monogenic functions in Rn+1 and its applications. Complex Variables Theory Applications 1999; 39: 199-228. – reference: Appell P. Sur une classe de pôlynomes. Annals scientifiques de l'École Normal Supérieure 21 série 1880; 9(2):119-144. – reference: Cação I, Falcão MI, Malonek HR. Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Mathematical and Computer Modelling 2011; 53(5-6):1084-1094. – reference: Bock S, Gürlebeck K. On a generalized Appell system and monogenic power series. Mathematical Methods In The Applied Sciences 2010; 33(4):394-411. – reference: Cruz C, Falcão MI, Malonek HR. On pseudo-complex bases for monogenic polynomials. AIP Conference Proceedings 2012; 1493: 350-355. – reference: Riordan J. Combinatorial Identities, John Wiley & Sons Inc.: New York, 1968. – reference: Moisil GrC, Théodoresco N. Fonctions holomorphes dans l'espace. Mathematica 1931; 5: 142-159. – reference: Fueter R. Analytische Funktionen einer Quaternionenvariablen. Commentarii Mathematici Helvetici 1932; 4: 9-20. – reference: Sofo A. Computational Techniques for the Summation of Series, Kluwer: New York, 2003. – reference: Lávička R. Canonical bases for sl(2, C)-modules of spherical monogenics in dimension 3. Archivum Mathematicum 2010; 46: 339-349. – reference: Krantz SG. Function Theory of Several Complex Variables, 2nd ed. American Mathematical Society, Providenc: RI, 2001. – reference: Delanghe R. On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen 1970; 185: 91-111. – reference: Cação I, Malonek HR. On complete sets of hypercomplex Appell polynomials. AIP Conference Proceedings 2008; 1048: 647-650. – reference: Cação I, Falcão MI, Malonek HR. Matrix representations of a special polynomial sequence in arbitrary dimension. Computational Methods and Function Theory 2012; 12(2):371-391. – reference: Fueter R. Funktionentheorie im Hyperkomplexen, Lecture notes written and supplemented by E. Bareiss, Math. Inst. Univ. Zürich. Universität Zürich: Herbstsemester,1948/49, 1949. – reference: Delanghe R, Lávička R, Souček V. The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces. Mathematical Methods In The Applied Sciences 2012; 35(7):745-757. – reference: Cruz C, Falcão MI, Malonek HR. 3D mappings by generalized joukowski transformation. Lecture Notes in Computer Science 2011; 6784: 358-373. – reference: Sofo A. Closed form representation of binomial sums and series. Le Matematiche 1999; LIV: 175-186. – reference: Brackx F, Delanghe R, Sommen F. Clifford Analysis. Pitman 76: London, 1982. – reference: Lehmer HD. Interesting series involving the central binomial coefficient. American Mathematical Monthly 1985; 92: 449-457. – reference: Cação I, Falcão MI, Malonek HR. On generalized hypercomplex Laguerre-type exponentials and applications. Lecture Notes in Computer Science 2011; 6784: 271-286. – reference: Brackx F. Two powerful theorems in Clifford analysis. AIP Conference Proceedings 2010; 1281: 3-7. – reference: Malonek HR. Power series representation for monogenic functions in Rn+1 based on a permutational product. Complex Variables, Theory Applications 1990; 15: 181-191. – reference: Weierstrass K. Mathematical Werke, Bd. 2: Berlin, 1897. – reference: Johnson WP. The curious history of Faà di Bruno's formula. The Mathematical Association of America Monthly 2002; 109(3):217-234. – reference: Prodinger H. Knuth's old sum - a survey. European Association for Theoretical Computer Science Bulletin 1994; 54: 232-245. – reference: Malonek HR, de Almeida R. A note on a generalized Joukowski transformation. Applied Mathematics Letters 2010; 23(10):1174-1178. – reference: Gürlebeck K, Habetha K, Sprössig W. Holomorphic Functions in the Plane and n-Dimensional Space, Birkäuser Verlag: Basel, 2008. – reference: Faà di Bruno CF. Note sur une nouvelle formule, de calcul différentiel. Quarterly Journal of Pure and Applied Math 1857; 1: 359-360. – reference: Falcão MI, Malonek HR. Generalized exponentials through Appell sets in Rn+1 and Bessel functions. AIP Conference Procedings 2007; 936: 738-741. – volume: 39 start-page: 199 year: 1999 end-page: 228 article-title: A hypercomplex derivative of monogenic functions in and its applications publication-title: Complex Variables Theory Applications – start-page: 615 year: 2006 end-page: 619 – volume: 15 start-page: 181 year: 1990 end-page: 191 article-title: Power series representation for monogenic functions in based on a permutational product publication-title: Complex Variables, Theory Applications – year: 1968 – volume: 6784 start-page: 358 year: 2011 end-page: 373 article-title: 3D mappings by generalized joukowski transformation publication-title: Lecture Notes in Computer Science – year: 1897 – year: 2001 – year: 2003 – volume: 185 start-page: 91 year: 1970 end-page: 111 article-title: On regular‐analytic functions with values in a Clifford algebra publication-title: Mathematische Annalen – volume: 22 start-page: 789 issue: 3 year: 2012 end-page: 801 article-title: On paravector valued homogeneous monogenic polynomials with binomial expansion publication-title: Advances in Applied Clifford Algebras – volume: 1493 start-page: 350 year: 2012 end-page: 355 article-title: On pseudo‐complex bases for monogenic polynomials publication-title: AIP Conference Proceedings – volume: 92 start-page: 449 year: 1985 end-page: 457 article-title: Interesting series involving the central binomial coefficient publication-title: American Mathematical Monthly – volume: 4 start-page: 9 year: 1932 end-page: 20 article-title: Analytische Funktionen einer Quaternionenvariablen publication-title: Commentarii Mathematici Helvetici – volume: 53 start-page: 1084 issue: 5‐6 year: 2011 end-page: 1094 article-title: Laguerre derivative and monogenic Laguerre polynomials: an operational approach publication-title: Mathematical and Computer Modelling – volume: 12 start-page: 371 issue: 2 year: 2012 end-page: 391 article-title: Matrix representations of a special polynomial sequence in arbitrary dimension publication-title: Computational Methods and Function Theory – volume: 54 start-page: 232 year: 1994 end-page: 245 article-title: Knuth's old sum ‐ a survey publication-title: European Association for Theoretical Computer Science Bulletin – volume: 9 start-page: 119 issue: 2 year: 1880 end-page: 144 article-title: Sur une classe de pôlynomes publication-title: Annals scientifiques de l’École Normal Supérieure 21 série – year: 1982 – volume: 5 start-page: 142 year: 1931 end-page: 159 article-title: Fonctions holomorphes dans l'espace publication-title: Mathematica – volume: 23 start-page: 1174 issue: 10 year: 2010 end-page: 1178 article-title: A note on a generalized Joukowski transformation publication-title: Applied Mathematics Letters – volume: 33 start-page: 394 issue: 4 year: 2010 end-page: 411 article-title: On a generalized Appell system and monogenic power series publication-title: Mathematical Methods In The Applied Sciences – year: 2008 – year: 2006 – volume: 936 start-page: 738 year: 2007 end-page: 741 article-title: Generalized exponentials through Appell sets in and Bessel functions publication-title: AIP Conference Procedings – year: 1949 – start-page: 111 year: 2004 end-page: 150 – volume: LIV start-page: 175 year: 1999 end-page: 186 article-title: Closed form representation of binomial sums and series publication-title: Le Matematiche – volume: 6784 start-page: 271 year: 2011 end-page: 286 article-title: On generalized hypercomplex Laguerre‐type exponentials and applications publication-title: Lecture Notes in Computer Science – volume: 35 start-page: 745 issue: 7 year: 2012 end-page: 757 article-title: The Gelfand‐Tsetlin bases for Hodge‐de Rham systems in Euclidean spaces publication-title: Mathematical Methods In The Applied Sciences – volume: 1281 start-page: 3 year: 2010 end-page: 7 article-title: Two powerful theorems in Clifford analysis publication-title: AIP Conference Proceedings – volume: 1048 start-page: 647 year: 2008 end-page: 650 article-title: On complete sets of hypercomplex Appell polynomials publication-title: AIP Conference Proceedings – volume: 46 start-page: 339 year: 2010 end-page: 349 article-title: Canonical bases for ‐modules of spherical monogenics in dimension 3 publication-title: Archivum Mathematicum – volume: 109 start-page: 217 issue: 3 year: 2002 end-page: 234 article-title: The curious history of Faà di Bruno's formula publication-title: The Mathematical Association of America Monthly – volume: 1 start-page: 359 year: 1857 end-page: 360 article-title: Note sur une nouvelle formule, de calcul différentiel publication-title: Quarterly Journal of Pure and Applied Math – volume: 6784 start-page: 271 year: 2011 ident: 10.1002/mma.2931-BIB0033|mma2931-cit-0033 article-title: On generalized hypercomplex Laguerre-type exponentials and applications publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-21931-3_22 – volume: 33 start-page: 394 issue: 4 year: 2010 ident: 10.1002/mma.2931-BIB0014|mma2931-cit-0014 article-title: On a generalized Appell system and monogenic power series publication-title: Mathematical Methods In The Applied Sciences doi: 10.1002/mma.1213 – volume: 23 start-page: 1174 issue: 10 year: 2010 ident: 10.1002/mma.2931-BIB0030|mma2931-cit-0030 article-title: A note on a generalized Joukowski transformation publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2010.05.006 – volume: 53 start-page: 1084 issue: 5-6 year: 2011 ident: 10.1002/mma.2931-BIB0032|mma2931-cit-0032 article-title: Laguerre derivative and monogenic Laguerre polynomials: an operational approach publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2010.11.071 – volume-title: Combinatorial Identities year: 1968 ident: 10.1002/mma.2931-BIB0020|mma2931-cit-0020 – volume: 1048 start-page: 647 year: 2008 ident: 10.1002/mma.2931-BIB0016|mma2931-cit-0016 article-title: On complete sets of hypercomplex Appell polynomials publication-title: AIP Conference Proceedings doi: 10.1063/1.2991009 – volume-title: Computational Techniques for the Summation of Series year: 2003 ident: 10.1002/mma.2931-BIB0019|mma2931-cit-0019 doi: 10.1007/978-1-4615-0057-5 – start-page: 615 volume-title: ICNAAM-2006 Conference Proceedings year: 2006 ident: 10.1002/mma.2931-BIB0015|mma2931-cit-0015 – volume: 6784 start-page: 358 year: 2011 ident: 10.1002/mma.2931-BIB0031|mma2931-cit-0031 article-title: 3D mappings by generalized joukowski transformation publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-21931-3_28 – volume-title: Clifford Analysis year: 1982 ident: 10.1002/mma.2931-BIB0007|mma2931-cit-0007 – volume: 936 start-page: 738 year: 2007 ident: 10.1002/mma.2931-BIB0010|mma2931-cit-0010 article-title: Generalized exponentials through Appell sets in Rn+1 and Bessel functions publication-title: AIP Conference Procedings doi: 10.1063/1.2790257 – volume: 22 start-page: 789 issue: 3 year: 2012 ident: 10.1002/mma.2931-BIB0022|mma2931-cit-0022 article-title: On paravector valued homogeneous monogenic polynomials with binomial expansion publication-title: Advances in Applied Clifford Algebras doi: 10.1007/s00006-012-0361-5 – volume: 54 start-page: 232 year: 1994 ident: 10.1002/mma.2931-BIB0021|mma2931-cit-0021 article-title: Knuth's old sum - a survey publication-title: European Association for Theoretical Computer Science Bulletin – volume: 9 start-page: 119 issue: 2 year: 1880 ident: 10.1002/mma.2931-BIB0027|mma2931-cit-0027 article-title: Sur une classe de pôlynomes publication-title: Annals scientifiques de l’École Normal Supérieure 21 série doi: 10.24033/asens.186 – volume: 92 start-page: 449 year: 1985 ident: 10.1002/mma.2931-BIB0017|mma2931-cit-0017 article-title: Interesting series involving the central binomial coefficient publication-title: American Mathematical Monthly doi: 10.2307/2322496 – volume-title: Holomorphic Functions in the Plane and n-Dimensional Space year: 2008 ident: 10.1002/mma.2931-BIB0008|mma2931-cit-0008 – volume: 35 start-page: 745 issue: 7 year: 2012 ident: 10.1002/mma.2931-BIB0013|mma2931-cit-0013 article-title: The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces publication-title: Mathematical Methods In The Applied Sciences doi: 10.1002/mma.1563 – volume: 1 start-page: 359 year: 1857 ident: 10.1002/mma.2931-BIB0029|mma2931-cit-0029 article-title: Note sur une nouvelle formule, de calcul différentiel publication-title: Quarterly Journal of Pure and Applied Math – volume: 46 start-page: 339 year: 2010 ident: 10.1002/mma.2931-BIB0012|mma2931-cit-0012 article-title: Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3 publication-title: Archivum Mathematicum – volume: 109 start-page: 217 issue: 3 year: 2002 ident: 10.1002/mma.2931-BIB0028|mma2931-cit-0028 article-title: The curious history of Faà di Bruno's formula publication-title: The Mathematical Association of America Monthly doi: 10.2307/2695352 – volume: 5 start-page: 142 year: 1931 ident: 10.1002/mma.2931-BIB0002|mma2931-cit-0002 article-title: Fonctions holomorphes dans l'espace publication-title: Mathematica – volume: 1281 start-page: 3 year: 2010 ident: 10.1002/mma.2931-BIB0006|mma2931-cit-0006 article-title: Two powerful theorems in Clifford analysis publication-title: AIP Conference Proceedings doi: 10.1063/1.3498489 – volume: 1493 start-page: 350 year: 2012 ident: 10.1002/mma.2931-BIB0034|mma2931-cit-0034 article-title: On pseudo-complex bases for monogenic polynomials publication-title: AIP Conference Proceedings doi: 10.1063/1.4765512 – volume: 15 start-page: 181 year: 1990 ident: 10.1002/mma.2931-BIB0025|mma2931-cit-0025 article-title: Power series representation for monogenic functions in Rn+1 based on a permutational product publication-title: Complex Variables, Theory Applications doi: 10.1080/17476939008814449 – volume-title: Mathematical Werke, Bd. 2 year: 1897 ident: 10.1002/mma.2931-BIB0001|mma2931-cit-0001 – volume: LIV start-page: 175 year: 1999 ident: 10.1002/mma.2931-BIB0018|mma2931-cit-0018 article-title: Closed form representation of binomial sums and series publication-title: Le Matematiche – volume: 39 start-page: 199 year: 1999 ident: 10.1002/mma.2931-BIB0023|mma2931-cit-0023 article-title: A hypercomplex derivative of monogenic functions in Rn+1 and its applications publication-title: Complex Variables Theory Applications doi: 10.1080/17476939908815192 – volume: 185 start-page: 91 year: 1970 ident: 10.1002/mma.2931-BIB0005|mma2931-cit-0005 article-title: On regular-analytic functions with values in a Clifford algebra publication-title: Mathematische Annalen doi: 10.1007/BF01359699 – volume: 4 start-page: 9 year: 1932 ident: 10.1002/mma.2931-BIB0003|mma2931-cit-0003 article-title: Analytische Funktionen einer Quaternionenvariablen publication-title: Commentarii Mathematici Helvetici doi: 10.1007/BF01202702 – volume-title: Funktionentheorie im Hyperkomplexen year: 1949 ident: 10.1002/mma.2931-BIB0004|mma2931-cit-0004 – volume: 12 start-page: 371 issue: 2 year: 2012 ident: 10.1002/mma.2931-BIB0009|mma2931-cit-0009 article-title: Matrix representations of a special polynomial sequence in arbitrary dimension publication-title: Computational Methods and Function Theory doi: 10.1007/BF03321833 – volume-title: 17th International Conference on the Application of Computer Science and Mathematics on Architecture and Civil Engineering year: 2006 ident: 10.1002/mma.2931-BIB0011|mma2931-cit-0011 – start-page: 111 volume-title: Clifford Algebras and Potential Theory year: 2004 ident: 10.1002/mma.2931-BIB0024|mma2931-cit-0024 – volume-title: Function Theory of Several Complex Variables year: 2001 ident: 10.1002/mma.2931-BIB0026|mma2931-cit-0026 doi: 10.1090/chel/340 |
| SSID | ssj0008112 |
| Score | 2.0341554 |
| Snippet | The use of a non‐commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to... The use of a non-commutative algebra in hypercomplex function theory requires a large variety of different representations of polynomials suitably adapted to... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1723 |
| SubjectTerms | Binomial coefficients Binomials Byproducts Combinatorial analysis combinatorial identities Functions (mathematics) functions of hypercomplex variables generalized Appell polynomials Mathematical analysis Polynomials Representations |
| Title | Monogenic pseudo-complex power functions and their applications |
| URI | https://api.istex.fr/ark:/67375/WNG-RJ0TR929-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.2931 https://www.proquest.com/docview/1543348847 https://www.proquest.com/docview/1559676205 |
| Volume | 37 |
| WOSCitedRecordID | wos000339419100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008112 issn: 0170-4214 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbQLodygP6AWGiRkRCFQ9RNYifOcQVsq4pd0VUrerPGji1VtNnVpot65BF4Rp6EGScbWolKSJxyyES25sczkxl_w9ibMoUCfJZGMrcQiRhcBKoUEYamXriijAVAGDaRT6fq_Lz40nZV0l2YBh-i--FGlhHOazJwMPXBH9DQK4INKugKdT9BtRU91v84G5997s5hFYdaJwHERCKJxRp6dpgcrL-944z6xNebO5Hm7Xg1OJzxk__Z6iZ73IaZfNToxRZ74Kpt9mjSYbTW22yrNeuav2uxp9_vsBHa-Bx16sLyRe1W5fzXj5-h69zd8AUNVOPkCIOucqhKHuoM_HYV_Ck7G386_XAUtVMWIitkHkeJLFVmjTAKlPeSZqCLwjjlczBWQpnZzDuZCUykvctlDrFxgHmzBO8dyjl9xnrVvHLPGcdkM09kCsZgliKcweABfWE2tCk4p1I1YPtrdmvbQpDTJIxL3YAnJxo5pYlTA_a6o1w0sBt_oXkbJNYRwPIbtanlUn-dHurZ8fB0hsGfPhmw3bVIdWuhtcbQkS4ho3PGtbrXaFtUMIHKzVdEI4sMvcVQ4lpBwPduRk8mI3q--FfCl2wDYy_R9BLust71cuX22EP7_fqiXr5qdfk3sWr4xg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NLRLsYbABomOAkRB_HqI1iZ044qkCyoC2gqoTe7Muji1Ng7RqVrRHPgKfkU_C2fnDJoGExFMecpEt353vdzn7dwBPihgztEkciFRjwEM0AcqCBwRNLTdZEXJE32winc3kyUn2cQtetndhan6I7oeb8wy_XzsHdz-kD3-zhn51vEGZu0Pd52RFogf91_Px8aTbiGXoi52OISbgUchb7tlhdNh-eyUa9d3CXlyBmpcBq48445v_NddbsNMATTaqLWMXtky5B9vTjqW12oPdxrEr9rxhn35xG0bk5UuyqlPNVpXZFMuf33_4c-fmgq1cSzXmQqG3VoZlwXylgV2ug9-B4_GbxaujoOmzEGgu0jCIRCETnfNcorRWuC7oPMuNtCnmWmCR6MQakXBKpa1JRYphbpAyZ4HWGtJ0fBd65bI094BRuplGIsY8pzyFm5zgA0XDZKhjNEbGcgDP2vVWuiEhd70wvqiaPjlStFLKrdQAHneSq5p44w8yT73KOgFcn7mDaqlQn2dv1fz9cDEn-Kc-DeCg1alqfLRSBB7dNWQKzzRW95q8y5VMsDTLjZMRWULxYihoLK_hv05GTacj99z_V8FHcP1oMZ2oybvZh_twg5AYr08WHkDvfL0xD-Ca_nZ-Wq0fNob9C5CI_LY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VXYToAWih6kKhRkIUDlE3iZ044rSibGnprtpVK3qzJo4tVUB2temiHnkEnpEnYez80EogIXHKIRPZGs94vsnY3wC8LGLM0CZxIFKNAQ_RBCgLHhA0tdxkRcgRfbOJdDKRFxfZyQq8be_C1PwQ3Q835xl-v3YObuaF3fvNGvrV8QZl7g51j4ssIa_s7U9H58fdRixDX-x0DDEBj0Lecs8Oor3221vRqOcUe30Lat4ErD7ijB7811wfwv0GaLJhbRnrsGLKDVgbdyyt1QasN45dsdcN-_SbRzAkL5-RVV1qNq_Mspj9_P7Dnzs312zuWqoxFwq9tTIsC-YrDexmHfwxnI_en737EDR9FgLNRRoGkShkonOeS5TWCtcFnWe5kTbFXAssEp1YIxJOqbQ1qUgxzA1S5izQWkMrHW_CajkrzRYwSjfTSMSY55SncJMTfKBomAx0jMbIWPZht9W30g0JueuF8UXV9MmRIk0pp6k-vOgk5zXxxh9kXvkl6wRw8dkdVEuF-jQ5UNOjwdmU4J867cN2u6aq8dFKEXh015ApPNNY3WvyLlcywdLMlk6GLIvixUDQWH6F_zoZNR4P3fPJvwruwN2T_ZE6Ppx8fAr3CIjx-mDhNqxeLZbmGdzR364uq8Xzxq5_ASF-_DE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monogenic+pseudo-complex+power+functions+and+their+applications&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Cruz%2C+Carla&rft.au=Irene%E2%80%89Falc%C3%A3o%2C+Maria&rft.au=Malonek%2C+Helmuth+R.&rft.date=2014-08-01&rft.issn=0170-4214&rft.volume=37&rft.issue=12&rft.spage=1723&rft.epage=1735&rft_id=info:doi/10.1002%2Fmma.2931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_2931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |