Software for non‐parametric image registration of 2‐photon imaging data

Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement artifacts which requires high‐accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biophotonics Vol. 15; no. 8; pp. e202100330 - n/a
Main Authors: Flotho, Philipp, Nomura, Shinobu, Kuhn, Bernd, Strauss, Daniel J.
Format: Journal Article
Language:English
Published: Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.08.2022
Wiley Subscription Services, Inc
Subjects:
ISSN:1864-063X, 1864-0648, 1864-0648
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement artifacts which requires high‐accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2‐photon neuroimaging data. In this work, we present the motion compensation method Flow‐Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal‐to‐noise ratio 2‐photon imaging data and is able to compensate high‐divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy‐to‐use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi‐channel support and compatibility with existing 2‐photon imaging suites. We present the non‐parametric, high‐accuracy and fast motion compensation method Flow‐Registration that can compensate challenging 2‐Photon neuroimaging videos which are contaminated with large and or high divergence displacements. Our method is publicly available as a MATLAB toolbox and ImageJ/FIJI plugin on GitHub: https://github.com/phflot/flow_registration
AbstractList Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement artifacts which requires high‐accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2‐photon neuroimaging data. In this work, we present the motion compensation method Flow‐Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal‐to‐noise ratio 2‐photon imaging data and is able to compensate high‐divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy‐to‐use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi‐channel support and compatibility with existing 2‐photon imaging suites. We present the non‐parametric, high‐accuracy and fast motion compensation method Flow‐Registration that can compensate challenging 2‐Photon neuroimaging videos which are contaminated with large and or high divergence displacements. Our method is publicly available as a MATLAB toolbox and ImageJ/FIJI plugin on GitHub: https://github.com/phflot/flow_registration
Functional 2-photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non-rigid movement artifacts which requires high-accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2-photon neuroimaging data. In this work, we present the motion compensation method Flow-Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal-to-noise ratio 2-photon imaging data and is able to compensate high-divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy-to-use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi-channel support and compatibility with existing 2-photon imaging suites.Functional 2-photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non-rigid movement artifacts which requires high-accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2-photon neuroimaging data. In this work, we present the motion compensation method Flow-Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal-to-noise ratio 2-photon imaging data and is able to compensate high-divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy-to-use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi-channel support and compatibility with existing 2-photon imaging suites.
Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement artifacts which requires high‐accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2‐photon neuroimaging data. In this work, we present the motion compensation method Flow‐Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal‐to‐noise ratio 2‐photon imaging data and is able to compensate high‐divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy‐to‐use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi‐channel support and compatibility with existing 2‐photon imaging suites.
Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement artifacts which requires high‐accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2‐photon neuroimaging data. In this work, we present the motion compensation method Flow‐Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal‐to‐noise ratio 2‐photon imaging data and is able to compensate high‐divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy‐to‐use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi‐channel support and compatibility with existing 2‐photon imaging suites.
Author Flotho, Philipp
Strauss, Daniel J.
Nomura, Shinobu
Kuhn, Bernd
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0000-0002-8480-0085
  surname: Flotho
  fullname: Flotho, Philipp
  email: philipp.flotho@uni-saarland.de
  organization: Center for Digital Neurotechnologies Saar (CDNS)
– sequence: 2
  givenname: Shinobu
  orcidid: 0000-0001-8883-5405
  surname: Nomura
  fullname: Nomura, Shinobu
  organization: Okinawa Institute of Science and Technology Graduate University
– sequence: 3
  givenname: Bernd
  orcidid: 0000-0002-6852-2433
  surname: Kuhn
  fullname: Kuhn, Bernd
  organization: Okinawa Institute of Science and Technology Graduate University
– sequence: 4
  givenname: Daniel J.
  orcidid: 0000-0001-8481-499X
  surname: Strauss
  fullname: Strauss, Daniel J.
  organization: Center for Digital Neurotechnologies Saar (CDNS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35289100$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoNUvFS3LmXAjZvWTDIzSZZavAtdqOAuZCYnNWU6qcmU0p2P4DP6JKa2KgjiKjnwfYfk_3dRp3ENIHSQ4n6KMTkZl9b1CSZxoBRvoJ2UF1kPFxnvfN_p0zbaDWGMcYFpTrfQNs0JF1HZQbf3zrRz5SExzidx-fvr21R5NYHW2yqxEzWCxMPIhtar1romcSYhS-jZtXFaArYZJVq1ag9tGlUH2F-fXfR4cf4wuOrdDS-vB6d3vSrLGe4JpTgwwbTR3AjQpWFGY1YWpNSgK2wIoWAwx0QbQklepGnOGS8zmrEKyop20fFq79S7lxmEVk5sqKCuVQNuFiQpqCCEMUEievQLHbuZb-LrIiVYygVJRaQO19SsnICWUx-_5RfyK6YIZCug8i4ED0ZWtv2MI6Zia5liuWxDLtuQ321Erf9L-9r8pyBWwtzWsPiHljdn18Mf9wOEwZ5E
CitedBy_id crossref_primary_10_1038_s41593_024_01828_8
crossref_primary_10_3389_fams_2023_1164491
crossref_primary_10_1038_s41467_023_43920_w
crossref_primary_10_1088_1361_6579_adb369
crossref_primary_10_1016_j_cell_2025_08_021
Cites_doi 10.1093/bioinformatics/bts543
10.3389/fncir.2020.00025
10.1016/j.neuroimage.2010.09.025
10.1016/j.jneumeth.2017.07.031
10.1109/TMI.2009.2035616
10.1096/fj.13-240507
10.1016/0004-3702(81)90024-2
10.1007/978-3-642-03641-5_16
10.3389/fncel.2014.00379
10.1007/978-1-4939-9702-2_13
10.3389/fncel.2021.681066
10.7554/eLife.38173
10.1038/nmeth818
10.1016/j.jneumeth.2021.109076
10.1023/B:VISI.0000045324.43199.43
10.1007/s11263-010-0390-2
10.7554/eLife.59619
10.1016/j.jneumeth.2008.08.020
10.1023/A:1020830525823
10.1007/s11263-005-3960-y
10.1016/j.isci.2020.101710
10.1016/j.media.2007.06.004
10.1038/s41592-020-0851-7
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley‐VCH GmbH.
2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley‐VCH GmbH.
– notice: 2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.202100330
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 35289100
10_1002_jbio_202100330
JBIO202100330
Genre article
Journal Article
GroupedDBID ---
05W
0R~
1OC
24P
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c4570-9aa8e797dfd8f9edbf7fd07b62bdedc0f223ef0802df23256115878b4347cebc3
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795652700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-063X
1864-0648
IngestDate Fri Jul 11 11:59:33 EDT 2025
Sat Nov 29 14:52:31 EST 2025
Mon Jul 21 06:00:35 EDT 2025
Sat Nov 29 03:12:07 EST 2025
Tue Nov 18 20:52:21 EST 2025
Wed Jan 22 16:23:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords MATLAB toolbox
confocal microscopy
image registration
optical imaging
movement correction
two-photon microscopy
optical flow
ImageJ/FIJI plugin
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4570-9aa8e797dfd8f9edbf7fd07b62bdedc0f223ef0802df23256115878b4347cebc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8480-0085
0000-0002-6852-2433
0000-0001-8883-5405
0000-0001-8481-499X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202100330
PMID 35289100
PQID 2697189219
PQPubID 1006377
PageCount 14
ParticipantIDs proquest_miscellaneous_2639227792
proquest_journals_2697189219
pubmed_primary_35289100
crossref_citationtrail_10_1002_jbio_202100330
crossref_primary_10_1002_jbio_202100330
wiley_primary_10_1002_jbio_202100330_JBIO202100330
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2022
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2019; 8
2010
2002; 50
2006; 15
2009; 176
2009
2020; 17
2017; 291
2008; 12
2011; 54
2006
2020; 14
2004
2014; 28
2005; 61
2009; 29
2021; 15
2006; 67
2011; 92
2020; 9
2019
2018
1981; 17
2020; 23
2012; 28
2021; 353
2005; 2
2013
2009; 2
2014; 8
Brox T. (e_1_2_11_16_1) 2004
Zhang Y. (e_1_2_11_28_1) 2019
e_1_2_11_31_1
Flotho P. (e_1_2_11_30_1) 2018
e_1_2_11_14_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
Avants B. B. (e_1_2_11_10_1) 2009; 2
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_2_1
Sun D. (e_1_2_11_15_1) 2010
Theer P. (e_1_2_11_3_1) 2006; 15
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
Chen Z. (e_1_2_11_13_1) 2013
Zimmer H. (e_1_2_11_21_1) 2009
e_1_2_11_19_1
Liu P. (e_1_2_11_32_1) 2019
References_xml – volume: 23
  start-page: 101710
  issue: 11
  year: 2020
  publication-title: iScience
– volume: 15
  start-page: 61
  year: 2006
  publication-title: Encyclop. Mol. Cell Biol. Mol. Med
– start-page: 2443
  year: 2013
– volume: 353
  start-page: 109076
  year: 2021
  publication-title: J. Neurosci. Methods
– volume: 67
  start-page: 141
  issue: 2
  year: 2006
  publication-title: Int. J. Comput. Vis.
– start-page: 11710
  year: 2019
– volume: 14
  start-page: 25
  year: 2020
  publication-title: Front. Neural. Circuits
– volume: 8
  start-page: 379
  year: 2014
  publication-title: Front. Cell. Neurosci.
– volume: 9
  year: 2020
  publication-title: elife
– volume: 2
  start-page: 1
  issue: 365
  year: 2009
  publication-title: Insight j
– start-page: 297
  year: 2019
– volume: 176
  start-page: 1
  issue: 1
  year: 2009
  publication-title: J. Neurosci. Methods
– volume: 29
  start-page: 196
  issue: 1
  year: 2009
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  publication-title: Med. Image Anal.
– start-page: 3586
  year: 2018
– start-page: 207
  year: 2009
– volume: 8
  year: 2019
  publication-title: elife
– volume: 17
  start-page: 741
  issue: 7
  year: 2020
  publication-title: Nat. Methods
– volume: 28
  start-page: 3009
  issue: 22
  year: 2012
  publication-title: Bioinformatics
– volume: 291
  start-page: 83
  year: 2017
  publication-title: J. Neurosci. Methods
– start-page: 2432
  year: 2010
– start-page: 25
  year: 2004
– year: 2006
– volume: 61
  start-page: 211
  issue: 3
  year: 2005
  publication-title: Int. J. Comput. Vis.
– start-page: 4571
  year: 2019
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  publication-title: NeuroImage
– volume: 28
  start-page: 1375
  issue: 3
  year: 2014
  publication-title: FASEB J.
– volume: 50
  start-page: 329
  issue: 3
  year: 2002
  publication-title: Int. J. Comput. Vis.
– volume: 92
  start-page: 1
  issue: 1
  year: 2011
  publication-title: Int. J. Comput. Vis.
– volume: 2
  start-page: 932
  issue: 12
  year: 2005
  publication-title: Nat. Methods
– volume: 17
  start-page: 185
  issue: 1–3
  year: 1981
  publication-title: Artif. Intell.
– volume: 15
  start-page: 176
  year: 2021
  publication-title: Front. Cell. Neurosci.
– start-page: 4571
  volume-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
  year: 2019
  ident: e_1_2_11_32_1
– ident: e_1_2_11_33_1
  doi: 10.1093/bioinformatics/bts543
– ident: e_1_2_11_29_1
  doi: 10.3389/fncir.2020.00025
– volume: 2
  start-page: 1
  issue: 365
  year: 2009
  ident: e_1_2_11_10_1
  publication-title: Insight j
– ident: e_1_2_11_12_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_11_6_1
  doi: 10.1016/j.jneumeth.2017.07.031
– ident: e_1_2_11_9_1
  doi: 10.1109/TMI.2009.2035616
– start-page: 2432
  volume-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
  year: 2010
  ident: e_1_2_11_15_1
– ident: e_1_2_11_17_1
  doi: 10.1096/fj.13-240507
– volume: 15
  start-page: 61
  year: 2006
  ident: e_1_2_11_3_1
  publication-title: Encyclop. Mol. Cell Biol. Mol. Med
– ident: e_1_2_11_4_1
  doi: 10.1016/0004-3702(81)90024-2
– start-page: 207
  volume-title: Energy Minimization Methods Comput Vis Pattern Recognit
  year: 2009
  ident: e_1_2_11_21_1
  doi: 10.1007/978-3-642-03641-5_16
– start-page: 11710
  volume-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn
  year: 2019
  ident: e_1_2_11_28_1
– ident: e_1_2_11_19_1
  doi: 10.3389/fncel.2014.00379
– ident: e_1_2_11_20_1
  doi: 10.1007/978-1-4939-9702-2_13
– start-page: 25
  volume-title: Comput Vis ECCV
  year: 2004
  ident: e_1_2_11_16_1
– ident: e_1_2_11_26_1
  doi: 10.3389/fncel.2021.681066
– ident: e_1_2_11_27_1
  doi: 10.7554/eLife.38173
– start-page: 3586
  volume-title: Annu Int Conf IEEE Eng Med Biol Soc, IEEE
  year: 2018
  ident: e_1_2_11_30_1
– ident: e_1_2_11_2_1
  doi: 10.1038/nmeth818
– start-page: 2443
  volume-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
  year: 2013
  ident: e_1_2_11_13_1
– ident: e_1_2_11_23_1
– ident: e_1_2_11_7_1
  doi: 10.1016/j.jneumeth.2021.109076
– ident: e_1_2_11_25_1
  doi: 10.1023/B:VISI.0000045324.43199.43
– ident: e_1_2_11_14_1
  doi: 10.1007/s11263-010-0390-2
– ident: e_1_2_11_8_1
  doi: 10.7554/eLife.59619
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jneumeth.2008.08.020
– ident: e_1_2_11_22_1
  doi: 10.1023/A:1020830525823
– ident: e_1_2_11_24_1
  doi: 10.1007/s11263-005-3960-y
– ident: e_1_2_11_18_1
  doi: 10.1016/j.isci.2020.101710
– ident: e_1_2_11_11_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_11_31_1
  doi: 10.1038/s41592-020-0851-7
SSID ssj0060353
Score 2.3501623
Snippet Functional 2‐photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non‐rigid movement...
Functional 2-photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non-rigid movement...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202100330
SubjectTerms Computer vision
confocal microscopy
Divergence
Image registration
ImageJ/FIJI plugin
MATLAB toolbox
Medical imaging
Motion compensation
movement correction
Neuroimaging
Nonparametric statistics
optical flow
Optical flow (image analysis)
optical imaging
Photons
Statistical analysis
two‐photon microscopy
Title Software for non‐parametric image registration of 2‐photon imaging data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202100330
https://www.ncbi.nlm.nih.gov/pubmed/35289100
https://www.proquest.com/docview/2697189219
https://www.proquest.com/docview/2639227792
Volume 15
WOSCitedRecordID wos000795652700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-0648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060353
  issn: 1864-063X
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6IEe6BO6lCIjVeopInGysX0sj1VfAlRA2lsU22OxCHarXShXfgK_sb-EmbzKqqoqtZdIUcaJ4_HMfE483wC8S6yzqe27SAUZoiw4S37Q2gg1Sm2zxLmm2IQ6ONDDoTl6kMVf80N0H9zYMip_zQZe2tn2L9LQczvi5D1assS0Jl-ApSRJFc9rmR21vjiP04qHMtF5FlEwHra0jbHcnm8_H5Z-w5rz0LWKPYOn_9_rZ7DS4E7xoZ4oz-ERjl_AkwdshC_hyzG55JtyioKArBhPxj9v75gZ_JKLbjkxuiTXI7iQQ0u1KyZBSBY6mxCCrAToRoI3nb6C08H-ye7HqKm1ELmsr-LIlKVGZZQPXgeD3gYVfKxsLq1H7-JAMAIDJ-b6QCCMUFfS14q0mWbKoXXpKixSx_A1CKQ3xbxMLHpDy0Vrg8M8w9jowE19D6J2qAvXEJFzPYyLoqZQlgUPUtENUg_ed_LfawqOP0putJorGlOcFTI3FH8NeeYebHWXyYj4z0g5xsk1yxBMlEoZ2YO1WuPdo5j-hjAV3VxWiv1LH4rPO58Ou7P1f2n0BpYlJ1lU2ww3YPFqeo1v4bH7cTWaTTerCU5HNdSbsLT3bXD69R7ymv-H
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VLRLl0PJX2FLASEicoiZONraPhXbV0mVB0Ep7i2J7LBbRXbRt4coj8Ix9Emby164QQkIco4wdx5OZ-ex4vgF4kVhnUztwkQoyRFlwlvygtRFqlNpmiXNNsQk1HuvJxLxvThNyLkzND9FtuLFlVP6aDZw3pHeuWEM_2yln79GaJaZF-Q1YzfJU6R6s7n0Ynoxad5zHaUVFmeg8iygeT1rmxljuLPewHJl-g5vL6LUKP8ON_zDwO7DeYE-xW38sd2EFZ_fg9jVGwvtw9JHc8vdygYLArJjNZ5c_fjI7-CkX3nJiekruR3Axh5ZuV8yDkCz0aU4oshKgjgQfPH0AJ8P949cHUVNvIXLZQMWRKUuNyigfvA4GvQ0q-FjZXFqP3sWBoAQGTs71gYAYIa9koBVpNM2UQ-vSTejRwPARCKQ3xbxMLHpDS0Zrg8M8w9jowE19H6J2rgvXkJFzTYwvRU2jLAuepKKbpD687OS_1jQcf5TcblVXNOZ4VsjcUAw25J378Ly7TYbEf0fKGc4vWIagolTKyD48rFXePYopcAhXUeey0uxfxlC8eXX4rrva-pdGz-DWwfHbUTE6HB89hjXJSRfVscNt6J0vLvAJ3HTfzqdni6fN9_4LzX0CjQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BqRAcoE9Y2IIrVeIUbeLNxvGR14qy1bJSW2lvUWyPxaLuQ9sWrv0J_Y38EmbyKqsKIVU9Rhk7zoxn_DnxfANwEBlruqZnA-WlD2JvDcVBYwJMUaYmjqytik2o4TAdj_WoOk3IuTAlP0TzwY09o4jX7OC4cL5zwxr6w0w4e4_2LCFtyh_Co7inCt-U8agOxknYLYgoozSJA1qNxzVvYyg7q-1X16VbYHMVuxaLT__5PQx7A55VyFO8L6fKJjzA2RY8_YuPcBsGxxSUf-VLFARlxWw--311zdzgUy67ZcVkSsFHcCmHmmxXzL2QLPR9ThiyEKCOBB873YHT_ueTj1-CqtpCYElxYaDzPEWllfMu9Rqd8cq7UJlEGofOhp6ABHpOzXWeYBjhrqiXKrJnN1YWje3uwhoNDF-CQHpTTPLIoNO0YTTGW0xiDHXqualrQVDrOrMVFTlXxDjLShJlmbGSskZJLXjXyC9KEo5_SrZr02WVM55nMtG0AmuKzS3Yb26TG_G_kXyG80uWIaAoldKyBS9KkzePYgIcQlXUuSws-58xZF8_HH5rrl7dpdFbeDz61M-ODoeD1_BEcsZFceawDWsXy0vcg3X782JyvnxTTPY_n3EAbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+for+non%E2%80%90parametric+image+registration+of+2%E2%80%90photon+imaging+data&rft.jtitle=Journal+of+biophotonics&rft.au=Flotho%2C+Philipp&rft.au=Nomura%2C+Shinobu&rft.au=Kuhn%2C+Bernd&rft.au=Strauss%2C+Daniel+J.&rft.date=2022-08-01&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1002%2Fjbio.202100330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jbio_202100330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon