A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets

Accurately quantifying the aboveground biomass (AGB) of forests is crucial for understanding global change-related issues such as the carbon cycle and climate change. Many studies have estimated AGB from multiple remotely sensed datasets using various algorithms, but substantial uncertainties remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GIScience and remote sensing Jg. 59; H. 1; S. 234 - 249
Hauptverfasser: Zhang, Yuzhen, Ma, Jun, Liang, Shunlin, Li, Xisheng, Liu, Jindong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 31.12.2022
Taylor & Francis Group
Schlagworte:
ISSN:1548-1603, 1943-7226, 1943-7226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!