The Global Satellite Precipitation Constellation Current Status and Future Requirements
To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has...
Saved in:
| Published in: | Bulletin of the American Meteorological Society Vol. 102; no. 10; pp. E1844 - E1861 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Goddard Space Flight Center
American Meteorological Society
01.10.2021
|
| Subjects: | |
| ISSN: | 0003-0007, 1520-0477 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track-scanning precipitation-capable multichannel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarized as providing 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics, and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low-inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar–radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission Core Observatory. These issues are critical in determining the direction of future constellation requirements while preserving the continuity of the existing constellation necessary for long-term climate-scale studies. |
|---|---|
| AbstractList | To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track-scanning precipitation-capable multichannel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarized as providing 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics, and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low-inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar–radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission
Core Observatory
. These issues are critical in determining the direction of future constellation requirements while preserving the continuity of the existing constellation necessary for long-term climate-scale studies. To address the need to map precipitation on a global scale a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10-12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track scanning precipitation-capable multi-channel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarised as providing: 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar/radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission Core Observatory (CO). These issues are critical in determining the direction of future constellation requirements, while preserving the continuity of the existing constellation necessary for long-term climate-scale studies. To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track-scanning precipitation-capable multichannel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarized as providing 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics, and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low-inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar–radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission Core Observatory. These issues are critical in determining the direction of future constellation requirements while preserving the continuity of the existing constellation necessary for long-term climate-scale studies. Abstract To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20 years to form a constellation of about 10–12 sensors at any one time. Over the same period, a broad range of science and user communities has become increasingly dependent on the precipitation products provided by these sensors. The constellation presently consists of both conical and cross-track-scanning precipitation-capable multichannel instruments, many of which are beyond their operational and design lifetime but continue to operate through the cooperation of the responsible agencies. The Group on Earth Observations and the Coordinating Group for Meteorological Satellites (CGMS), among other groups, have raised the issue of how a robust, future precipitation constellation should be constructed. The key issues of current and future requirements for the mapping of global precipitation from satellite sensors can be summarized as providing 1) sufficiently fine spatial resolutions to capture precipitation-scale systems and reduce the beam-filling effects of the observations; 2) a wide channel diversity for each sensor to cover the range of precipitation types, characteristics, and intensities observed across the globe; 3) an observation interval that provides temporal sampling commensurate with the variability of precipitation; and 4) precipitation radars and radiometers in low-inclination orbit to provide a consistent calibration source, as demonstrated by the first two spaceborne radar–radiometer combinations on the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) mission Core Observatory . These issues are critical in determining the direction of future constellation requirements while preserving the continuity of the existing constellation necessary for long-term climate-scale studies. |
| Audience | PUBLIC |
| Author | Huffman, George Kidd, Chris Maggioni, Viviana Chambon, Philippe Oki, Riko |
| Author_xml | – sequence: 1 givenname: Chris surname: Kidd fullname: Kidd, Chris – sequence: 2 givenname: George surname: Huffman fullname: Huffman, George – sequence: 3 givenname: Viviana surname: Maggioni fullname: Maggioni, Viviana – sequence: 4 givenname: Philippe surname: Chambon fullname: Chambon, Philippe – sequence: 5 givenname: Riko surname: Oki fullname: Oki, Riko |
| BackLink | https://cnrs.hal.science/hal-04950290$$DView record in HAL |
| BookMark | eNp9UD1PwzAQtVCRKIWdAaRKTAwpZyfxx1gKtEhFILXMluvYaqo0LnaKxL_HIYWBgcXWu3vv3bs7Rb3a1QahCwwjjFl-u1LbkBQJgQSIECN8hPo4b1HGWA_1ASBN4sNO0GkImxamHPcRLNdmOK3cSlXDhWpMVZWNGb56o8td2aimdPVw4urQdr7RGTq2qgrm_PAP0Nvjw3IyS-Yv06fJeJ7oLKdNYjDjShlNsM6IBcVSGgeCFmC1MNZazovcElxQvCKcp5kWlgtqCg55VNF0gG4637Wq5M6XW-U_pVOlnI3nsq1BJvK4KnzgyL3uuDvv3vcmNHLj9r6O8SShLPIwkCyyaMfS3oXgjZX6sGHjVVlJDLK9pLwbPy_kvSQg20vK1h7-CH_y_CO57CS1CkrGATEJEAyAKQce21ddexMa53_tCCPAqCDpF5oKiLw |
| CitedBy_id | crossref_primary_10_3390_rs13183676 crossref_primary_10_3390_s22124395 crossref_primary_10_3390_w17142160 crossref_primary_10_5194_essd_16_5643_2024 crossref_primary_10_1007_s11069_022_05582_7 crossref_primary_10_3390_en15228553 crossref_primary_10_1109_TGRS_2023_3306795 crossref_primary_10_5194_amt_17_247_2024 crossref_primary_10_1175_JHM_D_22_0041_1 crossref_primary_10_1016_j_atmosres_2025_108320 crossref_primary_10_3390_rs17091654 crossref_primary_10_1016_j_atmosres_2023_107116 crossref_primary_10_1002_joc_8757 crossref_primary_10_1016_j_wace_2023_100638 crossref_primary_10_1007_s10661_023_11148_2 crossref_primary_10_1007_s12040_025_02550_0 crossref_primary_10_3390_rs15225349 crossref_primary_10_1016_j_jhydrol_2025_134148 crossref_primary_10_1007_s00445_022_01562_8 crossref_primary_10_1016_j_rse_2025_114690 crossref_primary_10_3390_rs16244753 crossref_primary_10_3390_rs14153726 crossref_primary_10_1016_j_jhydrol_2022_128476 crossref_primary_10_1016_j_scib_2024_05_007 crossref_primary_10_1007_s10712_022_09749_6 crossref_primary_10_1029_2023GL104310 crossref_primary_10_3390_atmos14111677 crossref_primary_10_3390_su17125288 crossref_primary_10_1016_j_jhydrol_2023_129563 crossref_primary_10_1175_JHM_D_21_0194_1 crossref_primary_10_3390_rs16224334 crossref_primary_10_1016_j_jhydrol_2023_129384 crossref_primary_10_1016_j_jhydrol_2024_131024 crossref_primary_10_1016_j_jhydrol_2024_132257 crossref_primary_10_1016_j_atmosres_2025_108311 crossref_primary_10_1175_EI_D_21_0022_1 crossref_primary_10_3390_rs16142594 crossref_primary_10_1016_j_jhydrol_2024_131921 crossref_primary_10_1109_ACCESS_2023_3318739 crossref_primary_10_5194_amt_15_6907_2022 crossref_primary_10_3390_atmos13091398 crossref_primary_10_1016_j_atmosres_2025_108075 crossref_primary_10_1109_LGRS_2023_3284278 crossref_primary_10_1002_wea_4342 crossref_primary_10_3390_atmos14121726 |
| Cites_doi | 10.1007/978-3-030-24568-9_19 10.1007/978-3-030-35798-6_21 10.1007/978-3-030-24568-9_7 10.1007/978-3-030-24568-9_1 10.1007/978-3-030-24568-9_20 |
| ContentType | Journal Article |
| Copyright | 2021 American Meteorological Society Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL Copyright American Meteorological Society Oct 2021 Attribution |
| Copyright_xml | – notice: 2021 American Meteorological Society – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL – notice: Copyright American Meteorological Society Oct 2021 – notice: Attribution |
| DBID | CYE CYI AAYXX CITATION 3V. 7QH 7TG 7TN 7UA 7XB 88I 8AF 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H96 HCIFZ KL. L.G M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U R05 S0X 1XC VOOES |
| DOI | 10.1175/bams-d-20-0299.1 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef University of Michigan Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial elibrary ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef University of Michigan |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Oceanography |
| EISSN | 1520-0477 |
| EndPage | E1861 |
| ExternalDocumentID | oai:HAL:hal-04950290v1 10_1175_BAMS_D_20_0299_1 20210016808 27207692 |
| GeographicLocations | United Kingdom--UK |
| GeographicLocations_xml | – name: United Kingdom--UK |
| GrantInformation | NNX17AE79A 573945 |
| GroupedDBID | -DZ -~X .4S .DC 23N 2WC 2XV 4.4 5GY 6J9 6TJ 7XC 85S 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAEFR ABBHK ABDBF ABPPZ ABUWG ABXSQ ACGFO ACGOD ACIHN ACMJI ACUHS AEAQA AEKFB AENEX AEUPB AEUYN AFKRA AFRAH AGFAN AIDUJ ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ CCPQU COF CS3 D1K DU5 DWQXO E3Z EAD EAP EAS EBS EDH EDO EMK EPL ESN EST ESX FAC FAS FJW FRP GNUQQ GUQSH H13 HCIFZ IAO IEA IEP IGS IOF ISR ITC IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- L7B LK5 LU7 M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PV9 PYCSY Q2X QF4 QM1 QM9 QN7 QO4 R05 RWA RWE RWL RXW RZL S0X SA0 SC5 SJFOW SWMRO TAE TN5 TR2 TUS U5U WH7 X6Y ~02 ABCQX ABUFD AFFHD BAIFH BANNL BBTPI CYE CYI PQGLB 186 AAYXX ABEFU ADULT ADXHL AETEA AFFNX AFQQW AI. BCR C1A CAG CITATION EJD H~9 NEJ OHT PEA ROL VH1 VOH WHG ZY4 3V. 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G MBDVC PKEHL PQEST PQUKI Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c456t-e178aaec21c42f0a7363380c90fc9efff88d5f21d61b28834c9f896ed805ec263 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721742900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-0007 |
| IngestDate | Sat Oct 25 08:24:18 EDT 2025 Sat Aug 16 15:22:51 EDT 2025 Tue Nov 18 21:34:06 EST 2025 Sat Nov 29 02:59:41 EST 2025 Fri Nov 21 15:49:40 EST 2025 Thu Jul 03 21:54:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Rainfall Precipitation Snowfall Instrumentation/sensors Satellite Observations Microwave Observations |
| Language | English |
| License | http://www.ametsoc.org/PUBSReuseLicenses Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-e178aaec21c42f0a7363380c90fc9efff88d5f21d61b28834c9f896ed805ec263 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3858-8308 0000-0002-3531-8890 0000-0003-0753-3179 0000-0001-5906-8446 |
| OpenAccessLink | https://cnrs.hal.science/hal-04950290 |
| PQID | 2674951024 |
| PQPubID | 31345 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04950290v1 proquest_journals_2674951024 crossref_citationtrail_10_1175_BAMS_D_20_0299_1 crossref_primary_10_1175_BAMS_D_20_0299_1 nasa_ntrs_20210016808 jstor_primary_27207692 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Boston |
| PublicationTitle | Bulletin of the American Meteorological Society |
| PublicationYear | 2021 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | Goldberg, M. D. (bib22) 2013; 118 Duchon, C. E. (bib16) 2001; 37 Huffman, G. J. (bib27) 2007; 8 Whiton, R. C. (bib88) 1998a; 13 Huffman, G. J. (bib28) 2020; Vol. 67 Kidd, C. (bib34) 2011; 15 Zhang, J. (bib92) 2011; 92 Wu, Y. (bib91) 2011; 25 Adler, R. F. (bib2) 2003; 4 Kundzewicz, Z. W. (bib47) 2014; 59 Behrangi, A. (bib6) 2020; Vol. 67 Kasahara, M. (bib32) 2020; 11530 Accadia, C. (bib1) 2020; Vol. 67 Villarini, G. (bib86) 2008; 113 Kubota, T. (bib44) 2020; Vol. 67 Duruisseau, F. (bib18) 2017; 143 Kochendorfer, J. (bib43) 2017; 21 Chambon, P. (bib12) 2014; 140 Reed, P. M. (bib65) 2015; 10 Joyce, R. J. (bib31) 2011; 12 Kirschbaum, D. B. (bib41) 2017; 98 Overeem, A. (bib63) 2011; 47 Strangeways, I. C. (bib77) 2004; 24 Campos, E. (bib10) 2000; 39 Vicente-Serrano, S. M. (bib85) 2010; 23 Adler, R. F. (bib3) 2017; 38 Michelson, D. B. (bib59) 2004; 290 Thériault, J. M. (bib81) 2012; 51 Blackwell, W. J. (bib8) 2018; 144 Crowther, R. (bib15) 2002; 296 Semplak, R. A. (bib68) 1969; 48 Ciach, G. J. (bib13) 2003; 20 Pumphrey, H. C. (bib64) 1989; 85 Whiton, R. C. (bib89) 1998b; 13 Trenberth, K. E. (bib82) 2009; 90 Luini, L. (bib55) 2012; 47 Bizzarri, B. (bib7) 2002 Kidd, C. (bib38) 2018; 144 Skofronick-Jackson, G. (bib73) 2019; 58 Eriksson, P. (bib19) 2020; 13 Sevruk, B. (bib70) 1989; 39 Forster, J. (bib20) 1994; 19 Witze, A. (bib90) 2018; 561 Imaoka, K. (bib29) 2010; 98 Kidd, C. (bib36) 2016; 17 Kidd, C. (bib39) 2020; Vol. 67 Li, N. (bib54) 2018; 11 Knapp, K. R. (bib42) 2018; 10 Lambrigtsen, B. (bib49) 2019 Tanner, A. B. (bib79) 2007; 45 Sun, Y. (bib78) 2006; 19 Simpson, J. R. (bib71) 1988; 69 Uijlenhoet, R. (bib83) 2001; 5 Guo, Y. (bib23) 2015; 58 Kidd, C. (bib37) 2017; 98 Janowiak, J. E. (bib30) 2001; 82 Kyriakidis, P. C. (bib48) 2001; 40 Brocca, L. (bib9) 2014; 119 Tapiador, F. J. (bib80) 2011; 104–105 Uijlenhoet, R. (bib84) 2003; 4 Duchon, C. E. (bib17) 2010; 25 Roca, R. (bib67) 2018; 144 Ma, B. B. (bib57) 2005; 22 Friedl, L. (bib21) 2014 Skofronick-Jackson, G. (bib72) 2017; 98 Kidd, C. (bib33) 2010 Lawrence, H. (bib51) 2018; 56 Hou, A. Y. (bib26) 2014; 95 Stephens, G. L. (bib76) 2020; 101 Battaglia, A. (bib5) 2020; 58 Roca, R. (bib66) 2015; 3 Wentz, F. J. (bib87) 2016; 33 Ciach, G. J. (bib14) 1999; 38 Sevruk, B. (bib69) 2005 Harrison, D. L. (bib24) 2000; 7 Kidd, C. (bib40) 2021; 13 Kummerow, C. D. (bib46) 1998; 15 Newell, D. (bib62) 2020; 7.1 Lundquist, J. (bib56) 2019; 100 Zhang, J. (bib93) 2016; 97 Medwin, H. (bib58) 1992; 92 Chambon, P. (bib11) 2013; 10 Herold, N. (bib25) 2016; 43 Stephens, G. L. (bib74) 2002; 83 Leijnse, H. (bib52) 2007; 43 Bagaglini, L. (bib4) 2021; 13 Kummerow, C. D. (bib45) 2020; Vol. 67 Stephens, G. L. (bib75) 2018; 99 Mo, T. (bib61) 1995; 33 Levizzani, V. (bib53) 2018; 144 Kidd, C. (bib35) 2019 Lambrigtsen, B. (bib50) 2007 Mimikou, M. A. (bib60) 1996; 122 |
| References_xml | – volume: 7.1 year: 2020 ident: bib62 article-title: Weather Satellite Follow-On–Microwave (WSF-M) design and predicted performance – volume: 12 start-page: 1547 year: 2011 ident: bib31 article-title: Kalman filter–based CMORPH – volume: 48 start-page: 1767 year: 1969 ident: bib68 article-title: Some measurements of attenuation by rainfall at 18.5 GHz – volume: 140 start-page: 1219 year: 2014 ident: bib12 article-title: Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system – start-page: 11 year: 2007 ident: bib50 – volume: 33 start-page: 1141 year: 1995 ident: bib61 article-title: A study of the microwave sounding unit on the NOAA-12 satellite – volume: 118 start-page: 13 463 year: 2013 ident: bib22 article-title: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system – volume: 58 start-page: 20 year: 2015 ident: bib23 article-title: Calibration and validation of microwave humidity and temperature sounder onboard FY-3C satellite – volume: 15 start-page: 809 year: 1998 ident: bib46 article-title: The Tropical Rainfall Measuring Mission (TRMM) sensor package – volume: 56 start-page: 3333 year: 2018 ident: bib51 article-title: Evaluation and assimilation of the microwave sounder MWHS-2 onboard FY-3C in the ECMWF Numerical Weather Prediction system – volume: 104–105 start-page: 70 year: 2011 ident: bib80 article-title: Global precipitation measurement: Methods, datasets and applications – volume: 95 start-page: 701 year: 2014 ident: bib26 article-title: The Global Precipitation Measurement mission – volume: 98 start-page: 69 year: 2017 ident: bib37 article-title: So, how much of the Earth’s surface is covered by rain gauges? – volume: 119 start-page: 5128 year: 2014 ident: bib9 article-title: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data – volume: 25 start-page: 669 year: 2011 ident: bib91 article-title: Detection and correction of AMSR-E radio-frequency interference – volume: 13 start-page: 53 year: 2020 ident: bib19 article-title: Towards an operational Ice Cloud Imager (ICI) retrieval product – volume: 100 start-page: 2473 year: 2019 ident: bib56 article-title: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks – volume: 98 start-page: 717 year: 2010 ident: bib29 article-title: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change – volume: 11 start-page: 4373 year: 2018 ident: bib54 article-title: Precipitation retrieval using 118.75-GHz and 183.31-GHz channels from MWHTS on FY-3C satellite – volume: 21 year: 2017 ident: bib43 article-title: The quantification and correction of wind-induced precipitation measurement errors – volume: 59 start-page: 1 year: 2014 ident: bib47 article-title: Flood risk and climate change: Global and regional perspectives – volume: 22 start-page: 1225 year: 2005 ident: bib57 article-title: Passive acoustic detection and measurement of rainfall at sea – volume: Vol. 67 start-page: 343 year: 2020 ident: bib28 article-title: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement doi: 10.1007/978-3-030-24568-9_19 – volume: Vol. 67 start-page: 881 year: 2020 ident: bib6 article-title: Improving High-latitude and cold region precipitation analysis. Satellite Precipitation Measurement doi: 10.1007/978-3-030-35798-6_21 – volume: 39 start-page: 1088 year: 2000 ident: bib10 article-title: Instrumental uncertainties in Z–R relations – volume: 58 year: 2020 ident: bib5 article-title: Space-borne cloud and precipitation radars: Status, challenges and ways forward – volume: 296 start-page: 1241 year: 2002 ident: bib15 article-title: Space junk–protecting space for future generations – start-page: 7548 year: 2019 ident: bib49 article-title: Observing clouds, convection and precipitation with a geostationary microwave sounder – volume: Vol. 67 start-page: 83 year: 2020 ident: bib1 – volume: 40 start-page: 1855 year: 2001 ident: bib48 article-title: Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics – volume: 82 start-page: 205 year: 2001 ident: bib30 article-title: A real-time global half-hourly pixel-resolution infrared dataset and its applications – volume: 51 start-page: 745 year: 2012 ident: bib81 article-title: Dependence of snow gauge collection efficiency on snowflake characteristics – volume: 13 start-page: 244 year: 1998b ident: bib89 article-title: History of operational use of weather radar by U.S. Weather Services. Part II: Development of operational Doppler weather radars. Wea – volume: 43 start-page: 341 year: 2016 ident: bib25 article-title: How much does it rain over land? – volume: 4 start-page: 1147 year: 2003 ident: bib2 article-title: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present) – volume: 11530 year: 2020 ident: bib32 article-title: Overview and current status of GOSAT-GW mission and AMSR3 instrument – volume: 99 start-page: 569 year: 2018 ident: bib75 article-title: CloudSat and CALIPSO within the A-train: Ten years of actively observing the Earth system – volume: 144 start-page: 16 year: 2018 ident: bib8 article-title: An overview of the TROPICS NASA Earth Venture Mission – volume: 3 start-page: 1 year: 2015 ident: bib66 article-title: The Megha-Tropiques mission: A review after three years in orbit – volume: 83 start-page: 1771 year: 2002 ident: bib74 article-title: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation – volume: Vol. 67 start-page: 123 year: 2020 ident: bib45 article-title: Introduction to passive microwave retrieval methods. Satellite Precipitation Measurement doi: 10.1007/978-3-030-24568-9_7 – volume: Vol. 67 start-page: 3 year: 2020 ident: bib39 article-title: The Global Precipitation Measurement (GPM) mission. Satellite Precipitation Measurement doi: 10.1007/978-3-030-24568-9_1 – volume: 561 start-page: 24 year: 2018 ident: bib90 article-title: The quest to conquer Earth’s space junk problem – start-page: 60 year: 2014 ident: bib21 article-title: GEO Task US-09-01a: Critical Earth observation priorities; Precipitation data characteristics and user types – volume: 39 start-page: 50 year: 1989 ident: bib70 article-title: Catalogue of National Standard Precipitation Gauges – volume: 98 start-page: 1679 year: 2017 ident: bib72 article-title: The Global Precipitation Measurement (GPM) mission for science and society – volume: 10 start-page: 996 year: 2013 ident: bib11 article-title: The sensitivity of tropical rainfall estimation from satellite to the configuration of the microwave imager constellation – volume: Vol. 67 start-page: 355 year: 2020 ident: bib44 article-title: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satellite Precipitation Measurement doi: 10.1007/978-3-030-24568-9_20 – volume: 69 start-page: 278 year: 1988 ident: bib71 article-title: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite – volume: 85 start-page: 1518 year: 1989 ident: bib64 article-title: Underwater sound produced by individual drop impacts and rainfall – volume: 37 start-page: 3253 year: 2001 ident: bib16 article-title: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields – volume: 47 start-page: RS3013 year: 2012 ident: bib55 article-title: The impact of space and time averaging on the spatial correlation of rainfall – start-page: 97 year: 2002 ident: bib7 article-title: Requirements and perspectives for MW/sub-mm sounding from geostationary satellite – volume: 15 start-page: 1109 year: 2011 ident: bib34 article-title: Status of satellite precipitation retrievals – volume: 90 start-page: 311 year: 2009 ident: bib82 article-title: Earth’s global energy budget – volume: 58 start-page: 1429 year: 2019 ident: bib73 article-title: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective – volume: 24 start-page: 1443 year: 2004 ident: bib77 article-title: Improving precipitation measurement – volume: 122 start-page: 151 year: 1996 ident: bib60 article-title: Flood forecasting based on radar rainfall measurements – volume: 13 start-page: 947 year: 2021 ident: bib40 article-title: Precipitation retrievals from passive microwave cross-track sensors: The precipitation retrieval and profiling scheme – volume: 8 start-page: 38 year: 2007 ident: bib27 article-title: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales – volume: 92 start-page: 1321 year: 2011 ident: bib92 article-title: National Mosaic and Multi-sensor QPE (NMQ) system: Description, results, and future plans – volume: 144 start-page: 3 year: 2018 ident: bib53 article-title: The activities of the International Precipitation Working Group – volume: 20 start-page: 752 year: 2003 ident: bib13 article-title: Local random errors in tipping-bucket rain gauge measurements – volume: 92 start-page: 1613 year: 1992 ident: bib58 article-title: The anatomy of underwater rain noise – volume: 13 start-page: 219 year: 1998a ident: bib88 article-title: History of operational use of weather radar by U.S. Weather Services. Part I: The Pre-NEXRAD era. Wea – volume: 113 start-page: D11102 year: 2008 ident: bib86 article-title: Rainfall and sampling uncertainties: A rain gauge perspective – volume: 38 start-page: 679 year: 2017 ident: bib3 article-title: Global precipitation: Means, variations and trends during the satellite era (1979–2014) – start-page: 3 year: 2019 ident: bib35 article-title: Quantitative precipitation estimation from satellite observations – volume: 98 start-page: 1169 year: 2017 ident: bib41 article-title: NASA’s remotely sensed precipitation: A reservoir for applications users – volume: 97 start-page: 621 year: 2016 ident: bib93 article-title: Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities – volume: 19 start-page: 23 year: 1994 ident: bib20 article-title: Rain measurement on buoys using hydrophones – volume: 5 start-page: 615 year: 2001 ident: bib83 article-title: Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology – volume: 23 start-page: 1696 year: 2010 ident: bib85 article-title: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index – start-page: 69 year: 2010 ident: bib33 – volume: 144 start-page: 313 year: 2018 ident: bib38 article-title: Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors – volume: 10 start-page: 1417 year: 2018 ident: bib42 article-title: Gridded satellite (GridSat) GOES and CONUS data – volume: 43 start-page: W03201 year: 2007 ident: bib52 article-title: Rainfall measurement using radio links from cellular communication networks – volume: 144 start-page: 49 year: 2018 ident: bib67 article-title: Quantifying the contribution of the Megha-Tropiques mission to the estimation of daily accumulated rainfall in the Tropics – volume: 7 start-page: 135 year: 2000 ident: bib24 article-title: Improving precipitation estimates from weather radar using quality control and correction techniques – volume: 4 start-page: 43 year: 2003 ident: bib84 article-title: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation – volume: 290 start-page: 161 year: 2004 ident: bib59 article-title: Systematic correction of precipitation gauge observations using analyzed meteorological variables – volume: 13 start-page: 1701 year: 2021 ident: bib4 article-title: The Passive microwave Neural network Precipitation Retrieval algorithm for climate applications (PNPR-CLIM): Design and verification – volume: 33 start-page: 1393 year: 2016 ident: bib87 article-title: On-orbit absolute calibration of the global precipitation measurement microwave imager – volume: 38 start-page: 1519 year: 1999 ident: bib14 article-title: Radar–rain gauge comparisons under observational uncertainties – volume: 143 start-page: 2104 year: 2017 ident: bib18 article-title: Investigating the potential benefit to a mesoscale NWP model of a microwave sounder on board a geostationary satellite – volume: 19 start-page: 916 year: 2006 ident: bib78 article-title: How often does it rain? – volume: 25 start-page: 11 year: 2010 ident: bib17 article-title: Undercatch of tipping-bucket gauges in high rain rate events – volume: 10 year: 2015 ident: bib65 article-title: Internationally coordinated multi-mission planning is now critical to Sustain the space-based rainfall observations needed for managing floods globally – volume: 101 start-page: E274 year: 2020 ident: bib76 article-title: The emerging technological revolution in Earth observations – start-page: 529 year: 2005 ident: bib69 – volume: 45 start-page: 1947 year: 2007 ident: bib79 article-title: Initial results of the Geostationary Synthetic Thinned Array Radiometer – volume: 17 start-page: 383 year: 2016 ident: bib36 article-title: Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme – volume: 47 start-page: W12505 year: 2011 ident: bib63 article-title: Measuring urban rainfall using microwave links from commercial cellular communication networks |
| SSID | ssj0003381 |
| Score | 2.6049783 |
| Snippet | To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20... To address the need to map precipitation on a global scale a collection of satellites carrying passive microwave (PMW) radiometers has grown over the last 20... Abstract To address the need to map precipitation on a global scale, a collection of satellites carrying passive microwave (PMW) radiometers has grown over the... |
| SourceID | hal proquest crossref nasa jstor |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | E1844 |
| SubjectTerms | Atmospheric precipitations Earth Resources And Remote Sensing Earth Sciences Future precipitation Gauges Global precipitation Instruments Measuring instruments Meteorological satellites Meteorology Microwave communications Microwave imagery Microwave radiometers Oceans Precipitation Precipitation types Radar Radiometers Rain Rainfall Satellite constellations Satellite tracking Satellites Sciences of the Universe Sensors Snow Tropical climate Tropical rainfall Tropical Rainfall Measuring Mission (TRMM) |
| Subtitle | Current Status and Future Requirements |
| Title | The Global Satellite Precipitation Constellation |
| URI | https://www.jstor.org/stable/27207692 https://ntrs.nasa.gov/citations/20210016808 https://www.proquest.com/docview/2674951024 https://cnrs.hal.science/hal-04950290 |
| Volume | 102 |
| WOSCitedRecordID | wos000721742900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: PCBAR dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: PATMY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: M2O dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: M2P dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELboxgNCGjA2kTEmCyEkHkwTx0lsXlD3o9rD2kVjoMKL5TiOmDS1pen293PnuEEIaS-8WHJ8thz7dD6fT99HyDtecFepTLBENIKJwkpWxU3FUsO5lAhx6XNzvl0U06mczVQZAm5tSKvc2ERvqOuFxRj5kOeFQG-Ai8_LXwxZo_B1NVBoDMg2IpWJLbJ9fDYtr3pbDBewP5x5cBz2D5XZ8BhuyuwUtITFYJI_Jn8dTIOfmBbZZSiCsZ6b1vxjrP0JNH72v3N_TnaC70lHnbK8II_cfJdEE3CbFysfXafv6cntDfiwvrZLnl5aZ-YB1PolmYFO0Y4kgH4xHspz7WiJ-BjLAPVNkQAUW3ztEw3wTxR92ruWmnlNxx7FhF45zEH2wcl2j3wdn12fnLPAzMAsOFxr5pJCGuMsT6zgTWyKNIeVjq2KG6tc0zRS1lnDkzpPKqQzFlY1UuWulnEGvfJ0H9Z0MXevCE0bZVRuTJrmVtS5UkWFmPe2liJziagiMtxsi7bhX5A941b760uRadxIfap5rHEjdRKRD32PZQfZ8YDsW9jpXgyxts9HFxq_wdUpA6H4HoT2vSL0Yvh2XeSKR2QPNUPDhFoYkyOeFVKZRORwowc6mARo75Xg4OHm1-QJjtVlDB6SrfXqzr0hj-39-qZdHQUNPyKDCb_0ZQllmf2AlnJ0Pfn-G3UfBEQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFA6tCkrBS21xtGoQFXyIO5PJXCKI1K7Llu6ui1bZt5jJJLRQdtedbcU_5W_0nMxFROhbH3ycyZkwly855yRnvo-Q5zzjtpCJYJFwgonM5KwIXcFizXmeI8Wlr835Osomk3w2k9MN8qv9FwbLKts50U_U5cLgGnmPp5nAaICLd8vvDFWjcHe1ldCoYXFkf_6AlK16e9iH7_uC88GH44Mha1QFmIFgYc1slOVaW8MjI7gLdRankKaFRobOSOucy_MycTwq06hAKV5hpMtlass8TOCqNIZ-N8l1AZkQjqsxn3YzP_TzR6EPnG-3LZr03kNezvqASRaCA3gd_eUGN0-wCLOuhwTXMNeV_sc1eH83uPO_vam75HYTWdP9eijcIxt2vk2CMSQFi5XfO6Av6cHZKUTo_mibbH00Vs8byu77ZAYjhtYSCPSz9kSla0unyP6xbIjMKcqbYos_ekMbciuKEft5RfW8pAPP0UI_Wayw9kuv1Q75ciXPvQvfcDG3DwiNndQy1TqOUyPKVMqsQEZ_U-YisZEoAtJrYaBM8yyoDXKmfHKWJQqBo_qKhwqBo6KAvOquWNaEJJfYPgNkdWbIJD7cHyk8B4lhAkbhBRjteuB1Zrgzn6WSB2QHkajghirokyNbFwq1BGSvxZ1qJjxo70D38PLmp-Tm8Hg8UqPDydEjcgv7rWsj98i19ercPiY3zMX6tFo98WOLkm9XDdHfGgJb2w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZ2QQghcRmbCAywECDxEJo4TmIjIdS1VJtWSjUu6ptxHFtMmtLSdEP8NX4d5zhpEELa2x54THxi5fLZ5xz75PsIecZyZguZ8jDmjoc8NyIsIleEiWZMCKS49LU5X8b5ZCJmMzndIL_W_8JgWeV6TvQTdTk3uEbeY1nOMRpgvOfasojpcPR28T1EBSncaV3LaTQQObY_f0D6Vr85GsK3fs7Y6N2nwWHYKgyEBgKHVWjjXGhtDYsNZy7SeZJByhYZGTkjrXNOiDJ1LC6zuEBZXm6kEzKzpYhSuCpLoN9Nsi2yPGJbZHs6OOifdH4Aevqj1weuuNskTXsHkKWHQ0BoGIE7eBX_5RQ3v2FJZlMdCY6i0rX-x1F47ze6_T-_tzvkVhtz034zSO6SDVvtkOA9pAvzpd9VoC_o4OwUYnd_tENufjBWVy2Z9z0yg7FEG3EE-lF7CtOVpVPkBVm0FOcUhU-xxR-9pi3tFcVY_rymuirpyLO30BOLtdd-UbbeJZ-v5Ln34HvOK3uf0MRJLTOtkyQzvMykzAvk-jel4KmNeRGQ3hoSyrTPgqohZ8qnbXmqEERqqFikEEQqDsjL7opFQ1Vyie1TQFlnhhzjh_2xwnOQMqZgFF2A0Z4HYWeGe_Z5JllAdhGVCm6ohj4Z8nihhEtA9tcYVO1UCO0dAB9c3vyEXAdkqvHR5PghuYHdNkWT-2RrtTy3j8g1c7E6rZeP24FGyderxuhvHT1l1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Global+Satellite+Precipitation+Constellation%3A+Current+Status+and+Future+Requirements&rft.jtitle=Bulletin+of+the+American+Meteorological+Society&rft.au=Kidd%2C+Chris&rft.au=Huffman%2C+George&rft.au=Maggioni%2C+Viviana&rft.au=Chambon%2C+Philippe&rft.date=2021-10-01&rft.pub=American+Meteorological+Society&rft.issn=0003-0007&rft.eissn=1520-0477&rft.volume=102&rft.issue=10&rft_id=info:doi/10.1175%2FBAMS-D-20-0299.1&rft.externalDBID=CYI&rft.externalDocID=20210016808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-0007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-0007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-0007&client=summon |