A next-generation dynamic programming language Julia: Its features and applications in biological science

[Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced research Vol. 64; pp. 143 - 154
Main Authors: Pal, Soumen, Bhattacharya, Manojit, Dash, Snehasish, Lee, Sang-Soo, Chakraborty, Chiranjib
Format: Journal Article
Language:English
Published: Egypt Elsevier B.V 01.10.2024
Elsevier
Subjects:
ISSN:2090-1232, 2090-1224, 2090-1224
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated. The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.
AbstractList [Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated. The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.
The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences.BACKGROUNDThe advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences.This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology.THE AIM OF REVIEWThis comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology.The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.KEY SCIENTIFIC CONCEPTS OF THE REVIEWThe review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.
•Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated.
The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.
Author Dash, Snehasish
Lee, Sang-Soo
Chakraborty, Chiranjib
Pal, Soumen
Bhattacharya, Manojit
Author_xml – sequence: 1
  givenname: Soumen
  surname: Pal
  fullname: Pal, Soumen
  organization: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
– sequence: 2
  givenname: Manojit
  surname: Bhattacharya
  fullname: Bhattacharya, Manojit
  organization: Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
– sequence: 3
  givenname: Snehasish
  surname: Dash
  fullname: Dash, Snehasish
  organization: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
– sequence: 4
  givenname: Sang-Soo
  surname: Lee
  fullname: Lee, Sang-Soo
  email: 123sslee@gmail.com
  organization: Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
– sequence: 5
  givenname: Chiranjib
  surname: Chakraborty
  fullname: Chakraborty, Chiranjib
  email: drchiranjib@yahoo.com
  organization: Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37992995$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVARLaV_gAPykUuCP5I0QUioqvgoqsQFztbseBK8SuxgJxX993i7ywo41Iex5Xnvzei95-zEB0-MvZSilEI2b7blFiKVSihdSlkKWT9hZ0p0opBKVSfHt1an7CKlrchHt20n5TN2qi-7TnVdfcbcFff0aykG8hRhccFze-9hcsjnGIYI0-T8wEfwwwoD8S_r6OAtv1kS7wmWNVLi4C2HeR4dPggk7jzfuDCGIf-MPKEjj_SCPe1hTHRxuM_Z948fvl1_Lm6_frq5vrotsKqbpcAeNXaINeQCYNsaVW2ttijrqiGo7EaAwK62WlOjicD22Ciq9CXWVlT6nL3f687rZiKL5JcIo5mjmyDemwDO_Nvx7ocZwp2RsmqqSqms8PqgEMPPldJiJpeQxmwChTUZ1WbzqrbpdtBXfw87TvljcAaoPQBjSClSf4RIYXZBmq3ZBWl2QeYVTA4yk9r_SOiWB2_zwm58nPpuT6Vs8Z2jaA72WxcJF2ODe4z-G59YvKY
CitedBy_id crossref_primary_10_3390_electricity6010014
crossref_primary_10_1016_j_aca_2025_344613
Cites_doi 10.1007/s12652-021-03638-3
10.1142/S0218348X22401478
10.1016/j.cosrev.2020.100254
10.1158/1538-7445.AM2023-2001
10.1016/j.bspc.2022.103594
10.32614/CRAN.package.JuliaConnectoR
10.21105/joss.01284
10.1016/j.bspc.2022.103789
10.1145/3276490
10.1007/978-1-4939-9012-2_31
10.1021/acs.iecr.2c00326
10.1093/bioinformatics/btaa502
10.1109/HPTCDL.2014.11
10.21105/joss.03078
10.3389/ftox.2022.893924
10.1093/bioinformatics/btac770
10.1007/s41781-021-00053-3
10.1186/s13104-020-05371-0
10.1186/1752-0509-6-33
10.1038/s41592-023-01832-z
10.18265/1517-03062015v1n34p132-140
10.1142/S179352452250005X
10.1145/3277104.3277119
10.5334/jors.151
10.3934/mbe.2022018
10.21105/joss.03060
10.1109/CLUSTER51413.2022.00017
10.1177/00375497211068820
10.1016/j.aej.2023.03.010
10.1142/S0218348X21400351
10.1093/bioinformatics/btw646
10.1109/AERO47225.2020.9172277
10.1093/bib/bbab363
10.1137/141000671
10.21105/joss.02704
10.1093/bioinformatics/btab853
10.2478/ijmce-2023-0007
10.1145/3378678.3397528
10.2478/ijmce-2023-0009
10.21105/joss.02721
ContentType Journal Article
Copyright 2024
Copyright © 2024. Production and hosting by Elsevier B.V.
2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Production and hosting by Elsevier B.V.
– notice: 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jare.2023.11.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2090-1224
EndPage 154
ExternalDocumentID PMC11464422
37992995
10_1016_j_jare_2023_11_015
S2090123223003521
Genre Journal Article
Review
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-cfc3c9cc5a9ccaad85c25dd3dc1546ea4db0a0c95d33e63eeadfc62e437c5d043
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321866500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-1232
2090-1224
IngestDate Tue Sep 30 17:07:38 EDT 2025
Thu Jul 10 23:30:05 EDT 2025
Thu Apr 03 06:54:12 EDT 2025
Sat Nov 29 04:21:30 EST 2025
Tue Nov 18 20:40:15 EST 2025
Sat Sep 28 15:59:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Julia
Biological science
Programming language
Computational biology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-cfc3c9cc5a9ccaad85c25dd3dc1546ea4db0a0c95d33e63eeadfc62e437c5d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Authors contributed equally.
OpenAccessLink http://dx.doi.org/10.1016/j.jare.2023.11.015
PMID 37992995
PQID 2892948692
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464422
proquest_miscellaneous_2892948692
pubmed_primary_37992995
crossref_primary_10_1016_j_jare_2023_11_015
crossref_citationtrail_10_1016_j_jare_2023_11_015
elsevier_sciencedirect_doi_10_1016_j_jare_2023_11_015
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Simulation, 2022;00375497211068820.
Welsh, Xu, Smith, Konig, Choi, Sauro (b0225) 2023; 39
Umlai, Bangarusamy, Estivill, Jithesh (b0265) 2022; 23
Bezanson J, Bolewski J, Chen J. Fast flexible function dispatch in Julia. arXiv preprint arXiv:180803370. 2018.
Tomasi M, Giordano M. Towards new solutions for scientific computing: the case of Julia. arXiv preprint arXiv:181201219. 2018.
Stanitzki, Strube (b0135) 2021; 5
Singh R, Mishra J. Gupta VK. The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. International Journal of Mathematics and Computer in Engineering, 2023; 1(1). 115-116. DOI: http://dx.doi.org/10.2478/ijmce-2023-0009.
Sells R, editor. Julia programming language benchmark using a flight simulation. 2020 IEEE Aerospace Conference; 2020: IEEE.http://dx.doi.org/10.1109/AERO47225.2020.9172277.
Andriasyan V, Yakimovich Y, Yakimovich A. MatlabCompat. jl: helping Julia understand Your Matlab/Octave Code. arXiv preprint arXiv:170102220. 2017.
Joe GG, Joel S, Ben JW. BioStructures.jl: read, write and manipulate macromolecular structures in Julia, Bioinformatics, 2020; 36(14), 4206–4207.
Rackauckas, Differentialequations (b0250) 2017; 5
Banville F, Vissault S, Poisot T. Mangal. jl and EcologicalNetworks. jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software. 2021;6(61):2721.
Marcelino M, Leitão AM, editors. Extending PyJL-Transpiling Python Libraries to Julia. 11th Symposium on Languages, Applications and Technologies (SLATE 2022); 2022: Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: A Julia package for composable machine learning. arXiv preprint arXiv:200712285. 2020.
Alam, Chowdhury, Chowdhury, Hasan, Ullah, Ahmed (b0210) 2023; 71
Ozminkowski S, Solis-Lemus C. Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model. arXiv preprint arXiv:220805600. 2022.
Sabir (b0035) 2022; 15
Lu W, Peña LE, Shamis P, Churavy V, Chapman B, Poole S, editors. Bring the BitCODE-Moving Compute and Data in Distributed Heterogeneous Systems. 2022 IEEE International Conference on Cluster Computing (CLUSTER); 2022: IEEE.https://doi.org/10.48550/arXiv.2208.01154.
Lang PF, Shin S, Zavala VM. SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization. arXiv preprint arXiv:201102597. 2020.
Gevorkyan MN, Korolkova AV, Kulyabov DS. Approaches to the implementation of generalized complex numbers in the Julia language. arXiv preprint arXiv:200709737. 2020.
Datseris G, Vahdati AR,DuBois TC. Agents. jl: a performant and feature-full agent-based modeling software of minimal code complexity.
Diego, Diego, Morten, Cristina (b0195) 2017; 33
Sabir, Raja, Alnahdi, Jeelani, Abdelkawy (b0050) 2022; 19
Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V. Diffeqflux. jl-A julia library for neural differential equations. arXiv preprint arXiv:190202376. 2019.
Vulliard, Hancock, Kamnev, Fell, Ferreira da Silva, Loizou (b0285) 2022; 38
Roesch, Greener, MacLean, Nassar, Rackauckas, Holy (b0090) 2023; 20
Chen Y, López RR, Khyat CZBE, Tsering T, Nerguizian V, Burnier JV. Engineering extracellular vesicle like liposomes with integrin αVβ5 to study its role in cancer metastasis. Cancer Research. 2023;83(7_Supplement):2001-.
Churavy V, Godoy WF, Bauer C, Ranocha H, Schlottke-Lakemper M, Räss L, et al. Bridging HPC Communities through the Julia Programming Language. arXiv preprint arXiv:221102740. 2022.
.
Marchiori, Packota, Boughner (b0205) 2019; 1922
Li (b0230) 2019; 4
Sabir, Botmart, Raja, Sadat, Ali, Alsulami (b0060) 2022; 75
Cabutto TA, Heeney SP, Ault SV, Mao G, Wang J, editors. An overview of the Julia programming language. Proceedings of the 2018 International Conference on Computing and Big Data; 2018,87-91. doi.org/10.1145/3277104.3277119.
Ko S, Zhou H, Zhou J, Won J-H. DistStat. jl: Towards unified programming for high-performance statistical computing environments in Julia. arXiv preprint arXiv:201016114. 2020.
Loman TE, Yingbo M, Vasily I, Shashi G, Niklas K, Nikhil Y, Chris R, Samuel A.. Catalyst: fast biochemical modeling with Julia.“ bioRxiv,2022; 2022-07.
Rohn, Hartmann, Junker, Junker, Schreiber (b0255) 2012; 6
Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, et al. Julia: Dynamism and performance reconciled by design. Proceedings of the ACM on Programming Languages. 2018;2(OOPSLA):1-23.
Sabir, Ali, Sadat (b0055) 2023; 14
van Verseveld, Weerts, Visser, Buitink, Imhoff, Boisgontier (b0150) 2022
Wang A, Hai R. FINET: Fast Inferring NETwork. BMC research notes. 2020;13(1):521. Epub 2020/11/12.
Jafari, Goswami, Dubey, Sharma, Chaudhary (b0220) 2023; 1
Xu K, Darve E, editors. ADCME MPI: Distributed Machine Learning for Computational Engineering. AAAI Spring Symposium: MLPS; 2021.
Villescas MR, de Vries B, Stuijk S, Corporaal H, editors. Real-time audio processing for hearing aids using a model-based Bayesian inference framework. Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems; 2020.DOI: 10.1145/3378678.3397528.
Kinetic (b0155) 2021; 6
Gao, Mei, Piccialli, Cuomo, Tu, Huo (b0165) 2020; 37
Cheli A. Metatheory. jl: Fast and elegant algebraic computation in Julia with extensible equality saturation. arXiv preprint arXiv:210207888. 2021.
Bagge Carlson F, Haage M. YuMi low-level motion guidance using the Julia programming language and externally guided motion research interface. Technical Reports TFRT-7651. 2017, 12,0280-5316.
Knopp T, editor. Experimental multi-threading support for the Julia programming language. 2014 First Workshop for High Performance Technical Computing in Dynamic Languages; 2014: IEEE.DOI:10.1109/HPTCDL.2014.11.
Wang, Gomez-Aguilar, Sabir, Raja, Xia, Jahanshahi (b0065) 2021; 30
Roell, Koval, Boyles, Patlewicz, Ring, Rider (b0280) 2022; 4
Cudihins D. Hands-On Computer Vision with Julia: Build Complex Applications with Advanced Julia Packages for Image Processing, Neural Networks, and Artificial Intelligence: Packt Publishing, Limited; 2018. 1-204, 1788998790.
Elsonbaty, Sabir, Ramaswamy, Adel (b0045) 2021; 29
Walker PJ, Yew H-W, Riedemann A. Clapeyron. jl: An extensible, open-source fluid thermodynamics toolkit. Industrial & Engineering Chemistry Research. 2022;61(20):7130-53.
Pereira, de Siqueira (b0010) 2017; 1
Botmart, Sabir, Raja, Ali, Sadat, Aly (b0070) 2022; 77
Bezanson, Edelman, Karpinski, Shah (b0020) 2017; 59
Sanchez, Umar, Sabir, Guirao, Raja (b0040) 2021; 14
Biggs B, McInerney I, Kerrigan EC, Constantinides GA. High-level Synthesis using the Julia Language. arXiv preprint arXiv:220111522. 2022.
Lenz S, Hackenberg M, Binder H. The JuliaConnectoR: A functionally oriented interface for integrating Julia in R. arXiv preprint arXiv:200506334. 2020.
Bezanson (10.1016/j.jare.2023.11.015_b0020) 2017; 59
10.1016/j.jare.2023.11.015_b0080
10.1016/j.jare.2023.11.015_b0160
Li (10.1016/j.jare.2023.11.015_b0230) 2019; 4
Alam (10.1016/j.jare.2023.11.015_b0210) 2023; 71
10.1016/j.jare.2023.11.015_b0125
10.1016/j.jare.2023.11.015_b0005
Jafari (10.1016/j.jare.2023.11.015_b0220) 2023; 1
Elsonbaty (10.1016/j.jare.2023.11.015_b0045) 2021; 29
10.1016/j.jare.2023.11.015_b0085
10.1016/j.jare.2023.11.015_b0240
10.1016/j.jare.2023.11.015_b0120
van Verseveld (10.1016/j.jare.2023.11.015_b0150) 2022
10.1016/j.jare.2023.11.015_b0200
10.1016/j.jare.2023.11.015_b0245
Kinetic (10.1016/j.jare.2023.11.015_b0155) 2021; 6
Pereira (10.1016/j.jare.2023.11.015_b0010) 2017; 1
Rackauckas (10.1016/j.jare.2023.11.015_b0250) 2017; 5
10.1016/j.jare.2023.11.015_b0170
Rohn (10.1016/j.jare.2023.11.015_b0255) 2012; 6
10.1016/j.jare.2023.11.015_b0015
10.1016/j.jare.2023.11.015_b0215
10.1016/j.jare.2023.11.015_b0095
10.1016/j.jare.2023.11.015_b0130
10.1016/j.jare.2023.11.015_b0175
Sabir (10.1016/j.jare.2023.11.015_b0055) 2023; 14
Sabir (10.1016/j.jare.2023.11.015_b0060) 2022; 75
Botmart (10.1016/j.jare.2023.11.015_b0070) 2022; 77
Gao (10.1016/j.jare.2023.11.015_b0165) 2020; 37
10.1016/j.jare.2023.11.015_b0180
Sanchez (10.1016/j.jare.2023.11.015_b0040) 2021; 14
10.1016/j.jare.2023.11.015_b0105
Vulliard (10.1016/j.jare.2023.11.015_b0285) 2022; 38
10.1016/j.jare.2023.11.015_b0260
10.1016/j.jare.2023.11.015_b0140
10.1016/j.jare.2023.11.015_b0185
Umlai (10.1016/j.jare.2023.11.015_b0265) 2022; 23
Roell (10.1016/j.jare.2023.11.015_b0280) 2022; 4
10.1016/j.jare.2023.11.015_b0100
10.1016/j.jare.2023.11.015_b0145
10.1016/j.jare.2023.11.015_b0025
Wang (10.1016/j.jare.2023.11.015_b0065) 2021; 30
Welsh (10.1016/j.jare.2023.11.015_b0225) 2023; 39
Sabir (10.1016/j.jare.2023.11.015_b0035) 2022; 15
10.1016/j.jare.2023.11.015_b0190
Marchiori (10.1016/j.jare.2023.11.015_b0205) 2019; 1922
10.1016/j.jare.2023.11.015_b0270
Stanitzki (10.1016/j.jare.2023.11.015_b0135) 2021; 5
10.1016/j.jare.2023.11.015_b0235
10.1016/j.jare.2023.11.015_b0115
Sabir (10.1016/j.jare.2023.11.015_b0050) 2022; 19
Roesch (10.1016/j.jare.2023.11.015_b0090) 2023; 20
Diego (10.1016/j.jare.2023.11.015_b0195) 2017; 33
10.1016/j.jare.2023.11.015_b0030
10.1016/j.jare.2023.11.015_b0075
10.1016/j.jare.2023.11.015_b0110
10.1016/j.jare.2023.11.015_b0275
References_xml – volume: 30
  start-page: 2240147
  year: 2021
  ident: b0065
  article-title: Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks
  publication-title: Fractals
– reference: Ozminkowski S, Solis-Lemus C. Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model. arXiv preprint arXiv:220805600. 2022.
– reference: Loman TE, Yingbo M, Vasily I, Shashi G, Niklas K, Nikhil Y, Chris R, Samuel A.. Catalyst: fast biochemical modeling with Julia.“ bioRxiv,2022; 2022-07.
– volume: 77
  year: 2022
  ident: b0070
  article-title: A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system
  publication-title: Biomed Signal Process Control
– reference: Tomasi M, Giordano M. Towards new solutions for scientific computing: the case of Julia. arXiv preprint arXiv:181201219. 2018.
– reference: Churavy V, Godoy WF, Bauer C, Ranocha H, Schlottke-Lakemper M, Räss L, et al. Bridging HPC Communities through the Julia Programming Language. arXiv preprint arXiv:221102740. 2022.
– volume: 75
  year: 2022
  ident: b0060
  article-title: Artificial neural network scheme to solve the nonlinear influenza disease model
  publication-title: Biomed Signal Process Control
– reference: Banville F, Vissault S, Poisot T. Mangal. jl and EcologicalNetworks. jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software. 2021;6(61):2721.
– reference: Sells R, editor. Julia programming language benchmark using a flight simulation. 2020 IEEE Aerospace Conference; 2020: IEEE.http://dx.doi.org/10.1109/AERO47225.2020.9172277.
– volume: 33
  start-page: 564
  year: 2017
  end-page: 565
  ident: b0195
  article-title: MIToS.jl: mutual information tools for protein sequence analysis in the Julia language
  publication-title: Bioinformatics
– reference: Chen Y, López RR, Khyat CZBE, Tsering T, Nerguizian V, Burnier JV. Engineering extracellular vesicle like liposomes with integrin αVβ5 to study its role in cancer metastasis. Cancer Research. 2023;83(7_Supplement):2001-.
– reference: Gevorkyan MN, Korolkova AV, Kulyabov DS. Approaches to the implementation of generalized complex numbers in the Julia language. arXiv preprint arXiv:200709737. 2020.
– reference: Simulation, 2022;00375497211068820.
– reference: Cabutto TA, Heeney SP, Ault SV, Mao G, Wang J, editors. An overview of the Julia programming language. Proceedings of the 2018 International Conference on Computing and Big Data; 2018,87-91. doi.org/10.1145/3277104.3277119.
– reference: Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: A Julia package for composable machine learning. arXiv preprint arXiv:200712285. 2020.
– volume: 4
  start-page: 1284
  year: 2019
  ident: b0230
  article-title: JuliaCall: an R package for seamless integration between R and Julia
  publication-title: J Open Source Softw
– reference: Wang A, Hai R. FINET: Fast Inferring NETwork. BMC research notes. 2020;13(1):521. Epub 2020/11/12.
– volume: 39
  year: 2023
  ident: b0225
  article-title: libRoadRunner 2.0: a high performance SBML simulation and analysis library
  publication-title: Bioinformatics
– reference: Knopp T, editor. Experimental multi-threading support for the Julia programming language. 2014 First Workshop for High Performance Technical Computing in Dynamic Languages; 2014: IEEE.DOI:10.1109/HPTCDL.2014.11.
– reference: Lu W, Peña LE, Shamis P, Churavy V, Chapman B, Poole S, editors. Bring the BitCODE-Moving Compute and Data in Distributed Heterogeneous Systems. 2022 IEEE International Conference on Cluster Computing (CLUSTER); 2022: IEEE.https://doi.org/10.48550/arXiv.2208.01154.
– volume: 6
  start-page: 3060
  year: 2021
  ident: b0155
  article-title: jl: A portable finite volume toolbox for scientific and neural computing
  publication-title: J Open Source Softw
– volume: 1922
  start-page: 341
  year: 2019
  end-page: 356
  ident: b0205
  article-title: Three-dimensional assessment of crown size and eruption space for developing third molars: data collection techniques based on cone-beam computed tomography (CBCT)
  publication-title: Methods Mol Biol
– reference: Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V. Diffeqflux. jl-A julia library for neural differential equations. arXiv preprint arXiv:190202376. 2019.
– volume: 5
  year: 2017
  ident: b0250
  article-title: jl–a performant and feature-rich ecosystem for solving differential equations in julia
  publication-title: J Open Res Softw
– reference: Ko S, Zhou H, Zhou J, Won J-H. DistStat. jl: Towards unified programming for high-performance statistical computing environments in Julia. arXiv preprint arXiv:201016114. 2020.
– reference: Walker PJ, Yew H-W, Riedemann A. Clapeyron. jl: An extensible, open-source fluid thermodynamics toolkit. Industrial & Engineering Chemistry Research. 2022;61(20):7130-53.
– volume: 29
  start-page: 2140035
  year: 2021
  ident: b0045
  article-title: Dynamical analysis of a novel discrete fractional SITRS model for COVID-19
  publication-title: Fractals
– reference: Villescas MR, de Vries B, Stuijk S, Corporaal H, editors. Real-time audio processing for hearing aids using a model-based Bayesian inference framework. Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems; 2020.DOI: 10.1145/3378678.3397528.
– volume: 1
  start-page: 91
  year: 2023
  end-page: 104
  ident: b0220
  article-title: Fractional SIZR model of Zombies infection
  publication-title: Int J Math Comput Eng
– volume: 14
  start-page: 3611
  year: 2021
  end-page: 3628
  ident: b0040
  article-title: Solving a class of biological HIV infection model of latently infected cells using heuristic approach
  publication-title: Discrete Discrete Contin Dyn Syst
– volume: 4
  year: 2022
  ident: b0280
  article-title: Development of the InTelligence And Machine LEarning (TAME) toolkit for introductory data science, chemical-biological analyses, predictive modeling, and database mining for environmental health research
  publication-title: Front Toxicol
– reference: Bezanson J, Bolewski J, Chen J. Fast flexible function dispatch in Julia. arXiv preprint arXiv:180803370. 2018.
– reference: Lang PF, Shin S, Zavala VM. SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization. arXiv preprint arXiv:201102597. 2020.
– reference: Bagge Carlson F, Haage M. YuMi low-level motion guidance using the Julia programming language and externally guided motion research interface. Technical Reports TFRT-7651. 2017, 12,0280-5316.
– reference: Datseris G, Vahdati AR,DuBois TC. Agents. jl: a performant and feature-full agent-based modeling software of minimal code complexity.
– reference: Andriasyan V, Yakimovich Y, Yakimovich A. MatlabCompat. jl: helping Julia understand Your Matlab/Octave Code. arXiv preprint arXiv:170102220. 2017.
– volume: 5
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0135
  article-title: Performance of Julia for high energy physics analyses
  publication-title: Comput Softw Big Sci
– volume: 37
  year: 2020
  ident: b0165
  article-title: Julia language in machine learning: Algorithms, applications, and open issues
  publication-title: Comput Sci Rev
– volume: 15
  start-page: 2250005
  year: 2022
  ident: b0035
  article-title: Stochastic numerical investigations for nonlinear three-species food chain system
  publication-title: Int J Biomath
– start-page: 1
  year: 2022
  end-page: 52
  ident: b0150
  article-title: Wflow_sbm v0. 6.1, a spatially distributed hydrologic model: from global data to local applications
  publication-title: Geosci Model Dev Discuss
– reference: Lenz S, Hackenberg M, Binder H. The JuliaConnectoR: A functionally oriented interface for integrating Julia in R. arXiv preprint arXiv:200506334. 2020.
– volume: 19
  start-page: 351
  year: 2022
  end-page: 370
  ident: b0050
  article-title: Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks
  publication-title: Math Biosci Eng
– reference: Cheli A. Metatheory. jl: Fast and elegant algebraic computation in Julia with extensible equality saturation. arXiv preprint arXiv:210207888. 2021.
– reference: Singh R, Mishra J. Gupta VK. The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. International Journal of Mathematics and Computer in Engineering, 2023; 1(1). 115-116. DOI: http://dx.doi.org/10.2478/ijmce-2023-0009.
– volume: 1
  start-page: 132
  year: 2017
  ident: b0010
  article-title: Linguagem de programação JULIA: uma alternativa open source e de alto desempenho ao MATLAB
  publication-title: Rev Principia-Divulgação Cient Tecnol IFPB
– reference: Cudihins D. Hands-On Computer Vision with Julia: Build Complex Applications with Advanced Julia Packages for Image Processing, Neural Networks, and Artificial Intelligence: Packt Publishing, Limited; 2018. 1-204, 1788998790.
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  ident: b0020
  article-title: Julia: A fresh approach to numerical computing
  publication-title: SIAM Rev
– volume: 14
  start-page: 8913
  year: 2023
  end-page: 8922
  ident: b0055
  article-title: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model
  publication-title: J Ambient Intell Hum Comput
– reference: Joe GG, Joel S, Ben JW. BioStructures.jl: read, write and manipulate macromolecular structures in Julia, Bioinformatics, 2020; 36(14), 4206–4207.
– volume: 20
  start-page: 655
  year: 2023
  end-page: 664
  ident: b0090
  article-title: Julia for biologists
  publication-title: Nat Methods
– reference: Biggs B, McInerney I, Kerrigan EC, Constantinides GA. High-level Synthesis using the Julia Language. arXiv preprint arXiv:220111522. 2022.
– reference: Marcelino M, Leitão AM, editors. Extending PyJL-Transpiling Python Libraries to Julia. 11th Symposium on Languages, Applications and Technologies (SLATE 2022); 2022: Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
– volume: 71
  start-page: 173
  year: 2023
  end-page: 183
  ident: b0210
  article-title: Tumor treatment with chemo-virotherapy and MEK inhibitor: A mathematical model of Caputo fractional differential operator
  publication-title: Alex Eng J
– reference: Xu K, Darve E, editors. ADCME MPI: Distributed Machine Learning for Computational Engineering. AAAI Spring Symposium: MLPS; 2021.
– reference: .
– volume: 38
  start-page: 1692
  year: 2022
  end-page: 1699
  ident: b0285
  article-title: BioProfiling.jl: profiling biological perturbations with high-content imaging in single cells and heterogeneous populations
  publication-title: Bioinformatics
– reference: Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, et al. Julia: Dynamism and performance reconciled by design. Proceedings of the ACM on Programming Languages. 2018;2(OOPSLA):1-23.
– volume: 23
  year: 2022
  ident: b0265
  article-title: Genome sequencing data analysis for rare disease gene discovery
  publication-title: Brief Bioinform
– volume: 6
  start-page: 33
  year: 2012
  ident: b0255
  article-title: FluxMap: a VANTED add-on for the visual exploration of flux distributions in biological networks
  publication-title: BMC Syst Biol
– volume: 14
  start-page: 8913
  issue: 7
  year: 2023
  ident: 10.1016/j.jare.2023.11.015_b0055
  article-title: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-021-03638-3
– volume: 30
  start-page: 2240147
  issue: 05
  year: 2021
  ident: 10.1016/j.jare.2023.11.015_b0065
  article-title: Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks
  publication-title: Fractals
  doi: 10.1142/S0218348X22401478
– volume: 37
  year: 2020
  ident: 10.1016/j.jare.2023.11.015_b0165
  article-title: Julia language in machine learning: Algorithms, applications, and open issues
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2020.100254
– ident: 10.1016/j.jare.2023.11.015_b0200
  doi: 10.1158/1538-7445.AM2023-2001
– volume: 75
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0060
  article-title: Artificial neural network scheme to solve the nonlinear influenza disease model
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103594
– ident: 10.1016/j.jare.2023.11.015_b0175
  doi: 10.32614/CRAN.package.JuliaConnectoR
– volume: 4
  start-page: 1284
  issue: 35
  year: 2019
  ident: 10.1016/j.jare.2023.11.015_b0230
  article-title: JuliaCall: an R package for seamless integration between R and Julia
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01284
– volume: 77
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0070
  article-title: A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103789
– ident: 10.1016/j.jare.2023.11.015_b0125
  doi: 10.1145/3276490
– volume: 1922
  start-page: 341
  year: 2019
  ident: 10.1016/j.jare.2023.11.015_b0205
  article-title: Three-dimensional assessment of crown size and eruption space for developing third molars: data collection techniques based on cone-beam computed tomography (CBCT)
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-9012-2_31
– ident: 10.1016/j.jare.2023.11.015_b0095
– ident: 10.1016/j.jare.2023.11.015_b0005
– ident: 10.1016/j.jare.2023.11.015_b0235
  doi: 10.1021/acs.iecr.2c00326
– ident: 10.1016/j.jare.2023.11.015_b0180
  doi: 10.1093/bioinformatics/btaa502
– volume: 14
  start-page: 3611
  issue: 10
  year: 2021
  ident: 10.1016/j.jare.2023.11.015_b0040
  article-title: Solving a class of biological HIV infection model of latently infected cells using heuristic approach
  publication-title: Discrete Discrete Contin Dyn Syst
– ident: 10.1016/j.jare.2023.11.015_b0270
– ident: 10.1016/j.jare.2023.11.015_b0120
  doi: 10.1109/HPTCDL.2014.11
– ident: 10.1016/j.jare.2023.11.015_b0075
– ident: 10.1016/j.jare.2023.11.015_b0085
  doi: 10.21105/joss.03078
– volume: 4
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0280
  article-title: Development of the InTelligence And Machine LEarning (TAME) toolkit for introductory data science, chemical-biological analyses, predictive modeling, and database mining for environmental health research
  publication-title: Front Toxicol
  doi: 10.3389/ftox.2022.893924
– volume: 39
  issue: 1
  year: 2023
  ident: 10.1016/j.jare.2023.11.015_b0225
  article-title: libRoadRunner 2.0: a high performance SBML simulation and analysis library
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac770
– ident: 10.1016/j.jare.2023.11.015_b0245
– ident: 10.1016/j.jare.2023.11.015_b0115
– volume: 5
  start-page: 1
  year: 2021
  ident: 10.1016/j.jare.2023.11.015_b0135
  article-title: Performance of Julia for high energy physics analyses
  publication-title: Comput Softw Big Sci
  doi: 10.1007/s41781-021-00053-3
– ident: 10.1016/j.jare.2023.11.015_b0080
  doi: 10.1186/s13104-020-05371-0
– volume: 6
  start-page: 33
  year: 2012
  ident: 10.1016/j.jare.2023.11.015_b0255
  article-title: FluxMap: a VANTED add-on for the visual exploration of flux distributions in biological networks
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-33
– volume: 20
  start-page: 655
  issue: 5
  year: 2023
  ident: 10.1016/j.jare.2023.11.015_b0090
  article-title: Julia for biologists
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01832-z
– volume: 1
  start-page: 132
  issue: 34
  year: 2017
  ident: 10.1016/j.jare.2023.11.015_b0010
  article-title: Linguagem de programação JULIA: uma alternativa open source e de alto desempenho ao MATLAB
  publication-title: Rev Principia-Divulgação Cient Tecnol IFPB
  doi: 10.18265/1517-03062015v1n34p132-140
– volume: 15
  start-page: 2250005
  issue: 04
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0035
  article-title: Stochastic numerical investigations for nonlinear three-species food chain system
  publication-title: Int J Biomath
  doi: 10.1142/S179352452250005X
– ident: 10.1016/j.jare.2023.11.015_b0110
  doi: 10.1145/3277104.3277119
– ident: 10.1016/j.jare.2023.11.015_b0030
– volume: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.jare.2023.11.015_b0250
  article-title: jl–a performant and feature-rich ecosystem for solving differential equations in julia
  publication-title: J Open Res Softw
  doi: 10.5334/jors.151
– ident: 10.1016/j.jare.2023.11.015_b0160
– volume: 19
  start-page: 351
  issue: 1
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0050
  article-title: Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2022018
– volume: 6
  start-page: 3060
  issue: 62
  year: 2021
  ident: 10.1016/j.jare.2023.11.015_b0155
  article-title: jl: A portable finite volume toolbox for scientific and neural computing
  publication-title: J Open Source Softw
  doi: 10.21105/joss.03060
– ident: 10.1016/j.jare.2023.11.015_b0145
  doi: 10.1109/CLUSTER51413.2022.00017
– ident: 10.1016/j.jare.2023.11.015_b0185
  doi: 10.1177/00375497211068820
– ident: 10.1016/j.jare.2023.11.015_b0140
– ident: 10.1016/j.jare.2023.11.015_b0025
– volume: 71
  start-page: 173
  year: 2023
  ident: 10.1016/j.jare.2023.11.015_b0210
  article-title: Tumor treatment with chemo-virotherapy and MEK inhibitor: A mathematical model of Caputo fractional differential operator
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.03.010
– volume: 29
  start-page: 2140035
  issue: 08
  year: 2021
  ident: 10.1016/j.jare.2023.11.015_b0045
  article-title: Dynamical analysis of a novel discrete fractional SITRS model for COVID-19
  publication-title: Fractals
  doi: 10.1142/S0218348X21400351
– volume: 33
  start-page: 564
  issue: 4
  year: 2017
  ident: 10.1016/j.jare.2023.11.015_b0195
  article-title: MIToS.jl: mutual information tools for protein sequence analysis in the Julia language
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw646
– ident: 10.1016/j.jare.2023.11.015_b0190
– ident: 10.1016/j.jare.2023.11.015_b0105
  doi: 10.1109/AERO47225.2020.9172277
– ident: 10.1016/j.jare.2023.11.015_b0260
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0265
  article-title: Genome sequencing data analysis for rare disease gene discovery
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab363
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.jare.2023.11.015_b0020
  article-title: Julia: A fresh approach to numerical computing
  publication-title: SIAM Rev
  doi: 10.1137/141000671
– ident: 10.1016/j.jare.2023.11.015_b0130
– start-page: 1
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0150
  article-title: Wflow_sbm v0. 6.1, a spatially distributed hydrologic model: from global data to local applications
  publication-title: Geosci Model Dev Discuss
– ident: 10.1016/j.jare.2023.11.015_b0170
  doi: 10.21105/joss.02704
– volume: 38
  start-page: 1692
  issue: 6
  year: 2022
  ident: 10.1016/j.jare.2023.11.015_b0285
  article-title: BioProfiling.jl: profiling biological perturbations with high-content imaging in single cells and heterogeneous populations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab853
– volume: 1
  start-page: 91
  issue: 1
  year: 2023
  ident: 10.1016/j.jare.2023.11.015_b0220
  article-title: Fractional SIZR model of Zombies infection
  publication-title: Int J Math Comput Eng
  doi: 10.2478/ijmce-2023-0007
– ident: 10.1016/j.jare.2023.11.015_b0100
  doi: 10.1145/3378678.3397528
– ident: 10.1016/j.jare.2023.11.015_b0015
– ident: 10.1016/j.jare.2023.11.015_b0215
  doi: 10.2478/ijmce-2023-0009
– ident: 10.1016/j.jare.2023.11.015_b0240
  doi: 10.21105/joss.02721
– ident: 10.1016/j.jare.2023.11.015_b0275
SSID ssj0000388911
Score 2.3329606
SecondaryResourceType review_article
Snippet [Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as...
The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical...
•Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Algorithms
Biological science
Biological Science Disciplines - methods
Computational biology
Computational Biology - methods
Humans
Julia
Mathematics, Engineering, and Computer Science
Programming language
Programming Languages
Software
Title A next-generation dynamic programming language Julia: Its features and applications in biological science
URI https://dx.doi.org/10.1016/j.jare.2023.11.015
https://www.ncbi.nlm.nih.gov/pubmed/37992995
https://www.proquest.com/docview/2892948692
https://pubmed.ncbi.nlm.nih.gov/PMC11464422
Volume 64
WOSCitedRecordID wos001321866500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2090-1224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388911
  issn: 2090-1232
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWctChyKZqu7hKwQA8tDAW2SC3szd3QXoIATgHfBIakYxkJZVhKkH5A_7vDTZYdJGgPvQiGFtryexoORzNvEHonJJg8ylkkiRARZdwUKycyEmImEz5S4MKe2mYT2dFRPp2y417vd6iFuTrPtM6vr9nyv0IN-wBsUzr7D3C3g8IO-AygwxZgh-1fAT8eaLOaPbN60hZd6brOh1ysCxMdCHFKWyBt-_P8aOrBTFmdT6fb3H23bcIiTq9pXUYpNrOI1p5tm1fglYTaiPOx7S4wmFRgEFtSfprzpuGm-usXd9VDulqUbTbOF17byM9Eqzmvy7odzKcQTeBGoklVdcMXMW0T4WD2sWYuHjKTH-IqqYNNTmnHqI6ckNMNY-_iDovDBV8ZwdOYHBo9Vlcd2gF6eWGRJhkDV9B19NyS2A6HdtC9OEtY3lmZ2wmd5DnMCb7kymUHbn_nHnoQRrnNw7m5gtlOxO14NieP0EMPHB47Ku2jntKP0b43-jV-75XJPzxB5RhvcQt7buEOt3DgFrbc-oiBWTgwCwOzcJdZuNR4zSzsmfUU_fz29eTz98j36ogEuOBNJGaCCCZEwmHDucwTAY-8JFKAj54qTuXpkA8FSyQhKiUKDNhMpLGiJBOJHFLyDO3qSqsXCAsxBM8qTQVjkioKLuhpChdl6YwkElbvfTQK_28hvJC96adyXoSMxUVh4CkMPLDCLQCePhq01yydjMudZycBtsLftnMwC6Dende9DRgXYKXNqzeuVXVZF3EO1KB5yuI-eu4wb39H4E0f5RtsaE8wCvCbR3Q5t0rwRlKA0jh-eeugr9De-ql7jXab1aV6g-6Lq6asVwdoJ5vmB5btfwCwrtFw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+next-generation+dynamic+programming+language+Julia%3A+Its+features+and+applications+in+biological+science&rft.jtitle=Journal+of+advanced+research&rft.au=Pal%2C+Soumen&rft.au=Bhattacharya%2C+Manojit&rft.au=Dash%2C+Snehasish&rft.au=Lee%2C+Sang-Soo&rft.date=2024-10-01&rft.eissn=2090-1224&rft.volume=64&rft.spage=143&rft_id=info:doi/10.1016%2Fj.jare.2023.11.015&rft_id=info%3Apmid%2F37992995&rft.externalDocID=37992995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon