A next-generation dynamic programming language Julia: Its features and applications in biological science
[Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into...
Uloženo v:
| Vydáno v: | Journal of advanced research Ročník 64; s. 143 - 154 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Egypt
Elsevier B.V
01.10.2024
Elsevier |
| Témata: | |
| ISSN: | 2090-1232, 2090-1224, 2090-1224 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated.
The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences.
This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology.
The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology. |
|---|---|
| AbstractList | The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences.BACKGROUNDThe advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences.This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology.THE AIM OF REVIEWThis comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology.The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.KEY SCIENTIFIC CONCEPTS OF THE REVIEWThe review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology. •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated. The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology. [Display omitted] •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as mathematical and statistical analysis.•Julia can be applied in biological science because of the packages and their integration into Biology, which is also illustrated.•The review discusses significant features of the programming language, parallel and distributed computing.•Julia’s benchmarking, performance analysis, comparison with other programming languages, future directions, and challenges were also illustrated. The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology. |
| Author | Dash, Snehasish Lee, Sang-Soo Chakraborty, Chiranjib Pal, Soumen Bhattacharya, Manojit |
| Author_xml | – sequence: 1 givenname: Soumen surname: Pal fullname: Pal, Soumen organization: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India – sequence: 2 givenname: Manojit surname: Bhattacharya fullname: Bhattacharya, Manojit organization: Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India – sequence: 3 givenname: Snehasish surname: Dash fullname: Dash, Snehasish organization: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India – sequence: 4 givenname: Sang-Soo surname: Lee fullname: Lee, Sang-Soo email: 123sslee@gmail.com organization: Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea – sequence: 5 givenname: Chiranjib surname: Chakraborty fullname: Chakraborty, Chiranjib email: drchiranjib@yahoo.com organization: Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37992995$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v1DAQtVARLaV_gAPykUuCP5I0QUioqvgoqsQFztbseBK8SuxgJxX993i7ywo41Iex5Xnvzei95-zEB0-MvZSilEI2b7blFiKVSihdSlkKWT9hZ0p0opBKVSfHt1an7CKlrchHt20n5TN2qi-7TnVdfcbcFff0aykG8hRhccFze-9hcsjnGIYI0-T8wEfwwwoD8S_r6OAtv1kS7wmWNVLi4C2HeR4dPggk7jzfuDCGIf-MPKEjj_SCPe1hTHRxuM_Z948fvl1_Lm6_frq5vrotsKqbpcAeNXaINeQCYNsaVW2ttijrqiGo7EaAwK62WlOjicD22Ciq9CXWVlT6nL3f687rZiKL5JcIo5mjmyDemwDO_Nvx7ocZwp2RsmqqSqms8PqgEMPPldJiJpeQxmwChTUZ1WbzqrbpdtBXfw87TvljcAaoPQBjSClSf4RIYXZBmq3ZBWl2QeYVTA4yk9r_SOiWB2_zwm58nPpuT6Vs8Z2jaA72WxcJF2ODe4z-G59YvKY |
| CitedBy_id | crossref_primary_10_3390_electricity6010014 crossref_primary_10_1016_j_aca_2025_344613 |
| Cites_doi | 10.1007/s12652-021-03638-3 10.1142/S0218348X22401478 10.1016/j.cosrev.2020.100254 10.1158/1538-7445.AM2023-2001 10.1016/j.bspc.2022.103594 10.32614/CRAN.package.JuliaConnectoR 10.21105/joss.01284 10.1016/j.bspc.2022.103789 10.1145/3276490 10.1007/978-1-4939-9012-2_31 10.1021/acs.iecr.2c00326 10.1093/bioinformatics/btaa502 10.1109/HPTCDL.2014.11 10.21105/joss.03078 10.3389/ftox.2022.893924 10.1093/bioinformatics/btac770 10.1007/s41781-021-00053-3 10.1186/s13104-020-05371-0 10.1186/1752-0509-6-33 10.1038/s41592-023-01832-z 10.18265/1517-03062015v1n34p132-140 10.1142/S179352452250005X 10.1145/3277104.3277119 10.5334/jors.151 10.3934/mbe.2022018 10.21105/joss.03060 10.1109/CLUSTER51413.2022.00017 10.1177/00375497211068820 10.1016/j.aej.2023.03.010 10.1142/S0218348X21400351 10.1093/bioinformatics/btw646 10.1109/AERO47225.2020.9172277 10.1093/bib/bbab363 10.1137/141000671 10.21105/joss.02704 10.1093/bioinformatics/btab853 10.2478/ijmce-2023-0007 10.1145/3378678.3397528 10.2478/ijmce-2023-0009 10.21105/joss.02721 |
| ContentType | Journal Article |
| Copyright | 2024 Copyright © 2024. Production and hosting by Elsevier B.V. 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024 |
| Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Production and hosting by Elsevier B.V. – notice: 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.jare.2023.11.015 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2090-1224 |
| EndPage | 154 |
| ExternalDocumentID | PMC11464422 37992995 10_1016_j_jare_2023_11_015 S2090123223003521 |
| Genre | Journal Article Review |
| GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE ADVLN AEFWE AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c456t-cfc3c9cc5a9ccaad85c25dd3dc1546ea4db0a0c95d33e63eeadfc62e437c5d043 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321866500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-1232 2090-1224 |
| IngestDate | Tue Sep 30 17:07:38 EDT 2025 Thu Jul 10 23:30:05 EDT 2025 Thu Apr 03 06:54:12 EDT 2025 Sat Nov 29 04:21:30 EST 2025 Tue Nov 18 20:40:15 EST 2025 Sat Sep 28 15:59:48 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Julia Biological science Programming language Computational biology |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c456t-cfc3c9cc5a9ccaad85c25dd3dc1546ea4db0a0c95d33e63eeadfc62e437c5d043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Authors contributed equally. |
| OpenAccessLink | http://dx.doi.org/10.1016/j.jare.2023.11.015 |
| PMID | 37992995 |
| PQID | 2892948692 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464422 proquest_miscellaneous_2892948692 pubmed_primary_37992995 crossref_primary_10_1016_j_jare_2023_11_015 crossref_citationtrail_10_1016_j_jare_2023_11_015 elsevier_sciencedirect_doi_10_1016_j_jare_2023_11_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Egypt |
| PublicationPlace_xml | – name: Egypt |
| PublicationTitle | Journal of advanced research |
| PublicationTitleAlternate | J Adv Res |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Simulation, 2022;00375497211068820. Welsh, Xu, Smith, Konig, Choi, Sauro (b0225) 2023; 39 Umlai, Bangarusamy, Estivill, Jithesh (b0265) 2022; 23 Bezanson J, Bolewski J, Chen J. Fast flexible function dispatch in Julia. arXiv preprint arXiv:180803370. 2018. Tomasi M, Giordano M. Towards new solutions for scientific computing: the case of Julia. arXiv preprint arXiv:181201219. 2018. Stanitzki, Strube (b0135) 2021; 5 Singh R, Mishra J. Gupta VK. The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. International Journal of Mathematics and Computer in Engineering, 2023; 1(1). 115-116. DOI: http://dx.doi.org/10.2478/ijmce-2023-0009. Sells R, editor. Julia programming language benchmark using a flight simulation. 2020 IEEE Aerospace Conference; 2020: IEEE.http://dx.doi.org/10.1109/AERO47225.2020.9172277. Andriasyan V, Yakimovich Y, Yakimovich A. MatlabCompat. jl: helping Julia understand Your Matlab/Octave Code. arXiv preprint arXiv:170102220. 2017. Joe GG, Joel S, Ben JW. BioStructures.jl: read, write and manipulate macromolecular structures in Julia, Bioinformatics, 2020; 36(14), 4206–4207. Rackauckas, Differentialequations (b0250) 2017; 5 Banville F, Vissault S, Poisot T. Mangal. jl and EcologicalNetworks. jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software. 2021;6(61):2721. Marcelino M, Leitão AM, editors. Extending PyJL-Transpiling Python Libraries to Julia. 11th Symposium on Languages, Applications and Technologies (SLATE 2022); 2022: Schloss Dagstuhl-Leibniz-Zentrum für Informatik. Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: A Julia package for composable machine learning. arXiv preprint arXiv:200712285. 2020. Alam, Chowdhury, Chowdhury, Hasan, Ullah, Ahmed (b0210) 2023; 71 Ozminkowski S, Solis-Lemus C. Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model. arXiv preprint arXiv:220805600. 2022. Sabir (b0035) 2022; 15 Lu W, Peña LE, Shamis P, Churavy V, Chapman B, Poole S, editors. Bring the BitCODE-Moving Compute and Data in Distributed Heterogeneous Systems. 2022 IEEE International Conference on Cluster Computing (CLUSTER); 2022: IEEE.https://doi.org/10.48550/arXiv.2208.01154. Lang PF, Shin S, Zavala VM. SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization. arXiv preprint arXiv:201102597. 2020. Gevorkyan MN, Korolkova AV, Kulyabov DS. Approaches to the implementation of generalized complex numbers in the Julia language. arXiv preprint arXiv:200709737. 2020. Datseris G, Vahdati AR,DuBois TC. Agents. jl: a performant and feature-full agent-based modeling software of minimal code complexity. Diego, Diego, Morten, Cristina (b0195) 2017; 33 Sabir, Raja, Alnahdi, Jeelani, Abdelkawy (b0050) 2022; 19 Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V. Diffeqflux. jl-A julia library for neural differential equations. arXiv preprint arXiv:190202376. 2019. Vulliard, Hancock, Kamnev, Fell, Ferreira da Silva, Loizou (b0285) 2022; 38 Roesch, Greener, MacLean, Nassar, Rackauckas, Holy (b0090) 2023; 20 Chen Y, López RR, Khyat CZBE, Tsering T, Nerguizian V, Burnier JV. Engineering extracellular vesicle like liposomes with integrin αVβ5 to study its role in cancer metastasis. Cancer Research. 2023;83(7_Supplement):2001-. Churavy V, Godoy WF, Bauer C, Ranocha H, Schlottke-Lakemper M, Räss L, et al. Bridging HPC Communities through the Julia Programming Language. arXiv preprint arXiv:221102740. 2022. . Marchiori, Packota, Boughner (b0205) 2019; 1922 Li (b0230) 2019; 4 Sabir, Botmart, Raja, Sadat, Ali, Alsulami (b0060) 2022; 75 Cabutto TA, Heeney SP, Ault SV, Mao G, Wang J, editors. An overview of the Julia programming language. Proceedings of the 2018 International Conference on Computing and Big Data; 2018,87-91. doi.org/10.1145/3277104.3277119. Ko S, Zhou H, Zhou J, Won J-H. DistStat. jl: Towards unified programming for high-performance statistical computing environments in Julia. arXiv preprint arXiv:201016114. 2020. Loman TE, Yingbo M, Vasily I, Shashi G, Niklas K, Nikhil Y, Chris R, Samuel A.. Catalyst: fast biochemical modeling with Julia.“ bioRxiv,2022; 2022-07. Rohn, Hartmann, Junker, Junker, Schreiber (b0255) 2012; 6 Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, et al. Julia: Dynamism and performance reconciled by design. Proceedings of the ACM on Programming Languages. 2018;2(OOPSLA):1-23. Sabir, Ali, Sadat (b0055) 2023; 14 van Verseveld, Weerts, Visser, Buitink, Imhoff, Boisgontier (b0150) 2022 Wang A, Hai R. FINET: Fast Inferring NETwork. BMC research notes. 2020;13(1):521. Epub 2020/11/12. Jafari, Goswami, Dubey, Sharma, Chaudhary (b0220) 2023; 1 Xu K, Darve E, editors. ADCME MPI: Distributed Machine Learning for Computational Engineering. AAAI Spring Symposium: MLPS; 2021. Villescas MR, de Vries B, Stuijk S, Corporaal H, editors. Real-time audio processing for hearing aids using a model-based Bayesian inference framework. Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems; 2020.DOI: 10.1145/3378678.3397528. Kinetic (b0155) 2021; 6 Gao, Mei, Piccialli, Cuomo, Tu, Huo (b0165) 2020; 37 Cheli A. Metatheory. jl: Fast and elegant algebraic computation in Julia with extensible equality saturation. arXiv preprint arXiv:210207888. 2021. Bagge Carlson F, Haage M. YuMi low-level motion guidance using the Julia programming language and externally guided motion research interface. Technical Reports TFRT-7651. 2017, 12,0280-5316. Knopp T, editor. Experimental multi-threading support for the Julia programming language. 2014 First Workshop for High Performance Technical Computing in Dynamic Languages; 2014: IEEE.DOI:10.1109/HPTCDL.2014.11. Wang, Gomez-Aguilar, Sabir, Raja, Xia, Jahanshahi (b0065) 2021; 30 Roell, Koval, Boyles, Patlewicz, Ring, Rider (b0280) 2022; 4 Cudihins D. Hands-On Computer Vision with Julia: Build Complex Applications with Advanced Julia Packages for Image Processing, Neural Networks, and Artificial Intelligence: Packt Publishing, Limited; 2018. 1-204, 1788998790. Elsonbaty, Sabir, Ramaswamy, Adel (b0045) 2021; 29 Walker PJ, Yew H-W, Riedemann A. Clapeyron. jl: An extensible, open-source fluid thermodynamics toolkit. Industrial & Engineering Chemistry Research. 2022;61(20):7130-53. Pereira, de Siqueira (b0010) 2017; 1 Botmart, Sabir, Raja, Ali, Sadat, Aly (b0070) 2022; 77 Bezanson, Edelman, Karpinski, Shah (b0020) 2017; 59 Sanchez, Umar, Sabir, Guirao, Raja (b0040) 2021; 14 Biggs B, McInerney I, Kerrigan EC, Constantinides GA. High-level Synthesis using the Julia Language. arXiv preprint arXiv:220111522. 2022. Lenz S, Hackenberg M, Binder H. The JuliaConnectoR: A functionally oriented interface for integrating Julia in R. arXiv preprint arXiv:200506334. 2020. Bezanson (10.1016/j.jare.2023.11.015_b0020) 2017; 59 10.1016/j.jare.2023.11.015_b0080 10.1016/j.jare.2023.11.015_b0160 Li (10.1016/j.jare.2023.11.015_b0230) 2019; 4 Alam (10.1016/j.jare.2023.11.015_b0210) 2023; 71 10.1016/j.jare.2023.11.015_b0125 10.1016/j.jare.2023.11.015_b0005 Jafari (10.1016/j.jare.2023.11.015_b0220) 2023; 1 Elsonbaty (10.1016/j.jare.2023.11.015_b0045) 2021; 29 10.1016/j.jare.2023.11.015_b0085 10.1016/j.jare.2023.11.015_b0240 10.1016/j.jare.2023.11.015_b0120 van Verseveld (10.1016/j.jare.2023.11.015_b0150) 2022 10.1016/j.jare.2023.11.015_b0200 10.1016/j.jare.2023.11.015_b0245 Kinetic (10.1016/j.jare.2023.11.015_b0155) 2021; 6 Pereira (10.1016/j.jare.2023.11.015_b0010) 2017; 1 Rackauckas (10.1016/j.jare.2023.11.015_b0250) 2017; 5 10.1016/j.jare.2023.11.015_b0170 Rohn (10.1016/j.jare.2023.11.015_b0255) 2012; 6 10.1016/j.jare.2023.11.015_b0015 10.1016/j.jare.2023.11.015_b0215 10.1016/j.jare.2023.11.015_b0095 10.1016/j.jare.2023.11.015_b0130 10.1016/j.jare.2023.11.015_b0175 Sabir (10.1016/j.jare.2023.11.015_b0055) 2023; 14 Sabir (10.1016/j.jare.2023.11.015_b0060) 2022; 75 Botmart (10.1016/j.jare.2023.11.015_b0070) 2022; 77 Gao (10.1016/j.jare.2023.11.015_b0165) 2020; 37 10.1016/j.jare.2023.11.015_b0180 Sanchez (10.1016/j.jare.2023.11.015_b0040) 2021; 14 10.1016/j.jare.2023.11.015_b0105 Vulliard (10.1016/j.jare.2023.11.015_b0285) 2022; 38 10.1016/j.jare.2023.11.015_b0260 10.1016/j.jare.2023.11.015_b0140 10.1016/j.jare.2023.11.015_b0185 Umlai (10.1016/j.jare.2023.11.015_b0265) 2022; 23 Roell (10.1016/j.jare.2023.11.015_b0280) 2022; 4 10.1016/j.jare.2023.11.015_b0100 10.1016/j.jare.2023.11.015_b0145 10.1016/j.jare.2023.11.015_b0025 Wang (10.1016/j.jare.2023.11.015_b0065) 2021; 30 Welsh (10.1016/j.jare.2023.11.015_b0225) 2023; 39 Sabir (10.1016/j.jare.2023.11.015_b0035) 2022; 15 10.1016/j.jare.2023.11.015_b0190 Marchiori (10.1016/j.jare.2023.11.015_b0205) 2019; 1922 10.1016/j.jare.2023.11.015_b0270 Stanitzki (10.1016/j.jare.2023.11.015_b0135) 2021; 5 10.1016/j.jare.2023.11.015_b0235 10.1016/j.jare.2023.11.015_b0115 Sabir (10.1016/j.jare.2023.11.015_b0050) 2022; 19 Roesch (10.1016/j.jare.2023.11.015_b0090) 2023; 20 Diego (10.1016/j.jare.2023.11.015_b0195) 2017; 33 10.1016/j.jare.2023.11.015_b0030 10.1016/j.jare.2023.11.015_b0075 10.1016/j.jare.2023.11.015_b0110 10.1016/j.jare.2023.11.015_b0275 |
| References_xml | – volume: 30 start-page: 2240147 year: 2021 ident: b0065 article-title: Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks publication-title: Fractals – reference: Ozminkowski S, Solis-Lemus C. Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model. arXiv preprint arXiv:220805600. 2022. – reference: Loman TE, Yingbo M, Vasily I, Shashi G, Niklas K, Nikhil Y, Chris R, Samuel A.. Catalyst: fast biochemical modeling with Julia.“ bioRxiv,2022; 2022-07. – volume: 77 year: 2022 ident: b0070 article-title: A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system publication-title: Biomed Signal Process Control – reference: Tomasi M, Giordano M. Towards new solutions for scientific computing: the case of Julia. arXiv preprint arXiv:181201219. 2018. – reference: Churavy V, Godoy WF, Bauer C, Ranocha H, Schlottke-Lakemper M, Räss L, et al. Bridging HPC Communities through the Julia Programming Language. arXiv preprint arXiv:221102740. 2022. – volume: 75 year: 2022 ident: b0060 article-title: Artificial neural network scheme to solve the nonlinear influenza disease model publication-title: Biomed Signal Process Control – reference: Banville F, Vissault S, Poisot T. Mangal. jl and EcologicalNetworks. jl: Two complementary packages for analyzing ecological networks in Julia. Journal of Open Source Software. 2021;6(61):2721. – reference: Sells R, editor. Julia programming language benchmark using a flight simulation. 2020 IEEE Aerospace Conference; 2020: IEEE.http://dx.doi.org/10.1109/AERO47225.2020.9172277. – volume: 33 start-page: 564 year: 2017 end-page: 565 ident: b0195 article-title: MIToS.jl: mutual information tools for protein sequence analysis in the Julia language publication-title: Bioinformatics – reference: Chen Y, López RR, Khyat CZBE, Tsering T, Nerguizian V, Burnier JV. Engineering extracellular vesicle like liposomes with integrin αVβ5 to study its role in cancer metastasis. Cancer Research. 2023;83(7_Supplement):2001-. – reference: Gevorkyan MN, Korolkova AV, Kulyabov DS. Approaches to the implementation of generalized complex numbers in the Julia language. arXiv preprint arXiv:200709737. 2020. – reference: Simulation, 2022;00375497211068820. – reference: Cabutto TA, Heeney SP, Ault SV, Mao G, Wang J, editors. An overview of the Julia programming language. Proceedings of the 2018 International Conference on Computing and Big Data; 2018,87-91. doi.org/10.1145/3277104.3277119. – reference: Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: A Julia package for composable machine learning. arXiv preprint arXiv:200712285. 2020. – volume: 4 start-page: 1284 year: 2019 ident: b0230 article-title: JuliaCall: an R package for seamless integration between R and Julia publication-title: J Open Source Softw – reference: Wang A, Hai R. FINET: Fast Inferring NETwork. BMC research notes. 2020;13(1):521. Epub 2020/11/12. – volume: 39 year: 2023 ident: b0225 article-title: libRoadRunner 2.0: a high performance SBML simulation and analysis library publication-title: Bioinformatics – reference: Knopp T, editor. Experimental multi-threading support for the Julia programming language. 2014 First Workshop for High Performance Technical Computing in Dynamic Languages; 2014: IEEE.DOI:10.1109/HPTCDL.2014.11. – reference: Lu W, Peña LE, Shamis P, Churavy V, Chapman B, Poole S, editors. Bring the BitCODE-Moving Compute and Data in Distributed Heterogeneous Systems. 2022 IEEE International Conference on Cluster Computing (CLUSTER); 2022: IEEE.https://doi.org/10.48550/arXiv.2208.01154. – volume: 6 start-page: 3060 year: 2021 ident: b0155 article-title: jl: A portable finite volume toolbox for scientific and neural computing publication-title: J Open Source Softw – volume: 1922 start-page: 341 year: 2019 end-page: 356 ident: b0205 article-title: Three-dimensional assessment of crown size and eruption space for developing third molars: data collection techniques based on cone-beam computed tomography (CBCT) publication-title: Methods Mol Biol – reference: Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V. Diffeqflux. jl-A julia library for neural differential equations. arXiv preprint arXiv:190202376. 2019. – volume: 5 year: 2017 ident: b0250 article-title: jl–a performant and feature-rich ecosystem for solving differential equations in julia publication-title: J Open Res Softw – reference: Ko S, Zhou H, Zhou J, Won J-H. DistStat. jl: Towards unified programming for high-performance statistical computing environments in Julia. arXiv preprint arXiv:201016114. 2020. – reference: Walker PJ, Yew H-W, Riedemann A. Clapeyron. jl: An extensible, open-source fluid thermodynamics toolkit. Industrial & Engineering Chemistry Research. 2022;61(20):7130-53. – volume: 29 start-page: 2140035 year: 2021 ident: b0045 article-title: Dynamical analysis of a novel discrete fractional SITRS model for COVID-19 publication-title: Fractals – reference: Villescas MR, de Vries B, Stuijk S, Corporaal H, editors. Real-time audio processing for hearing aids using a model-based Bayesian inference framework. Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems; 2020.DOI: 10.1145/3378678.3397528. – volume: 1 start-page: 91 year: 2023 end-page: 104 ident: b0220 article-title: Fractional SIZR model of Zombies infection publication-title: Int J Math Comput Eng – volume: 14 start-page: 3611 year: 2021 end-page: 3628 ident: b0040 article-title: Solving a class of biological HIV infection model of latently infected cells using heuristic approach publication-title: Discrete Discrete Contin Dyn Syst – volume: 4 year: 2022 ident: b0280 article-title: Development of the InTelligence And Machine LEarning (TAME) toolkit for introductory data science, chemical-biological analyses, predictive modeling, and database mining for environmental health research publication-title: Front Toxicol – reference: Bezanson J, Bolewski J, Chen J. Fast flexible function dispatch in Julia. arXiv preprint arXiv:180803370. 2018. – reference: Lang PF, Shin S, Zavala VM. SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization. arXiv preprint arXiv:201102597. 2020. – reference: Bagge Carlson F, Haage M. YuMi low-level motion guidance using the Julia programming language and externally guided motion research interface. Technical Reports TFRT-7651. 2017, 12,0280-5316. – reference: Datseris G, Vahdati AR,DuBois TC. Agents. jl: a performant and feature-full agent-based modeling software of minimal code complexity. – reference: Andriasyan V, Yakimovich Y, Yakimovich A. MatlabCompat. jl: helping Julia understand Your Matlab/Octave Code. arXiv preprint arXiv:170102220. 2017. – volume: 5 start-page: 1 year: 2021 end-page: 11 ident: b0135 article-title: Performance of Julia for high energy physics analyses publication-title: Comput Softw Big Sci – volume: 37 year: 2020 ident: b0165 article-title: Julia language in machine learning: Algorithms, applications, and open issues publication-title: Comput Sci Rev – volume: 15 start-page: 2250005 year: 2022 ident: b0035 article-title: Stochastic numerical investigations for nonlinear three-species food chain system publication-title: Int J Biomath – start-page: 1 year: 2022 end-page: 52 ident: b0150 article-title: Wflow_sbm v0. 6.1, a spatially distributed hydrologic model: from global data to local applications publication-title: Geosci Model Dev Discuss – reference: Lenz S, Hackenberg M, Binder H. The JuliaConnectoR: A functionally oriented interface for integrating Julia in R. arXiv preprint arXiv:200506334. 2020. – volume: 19 start-page: 351 year: 2022 end-page: 370 ident: b0050 article-title: Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks publication-title: Math Biosci Eng – reference: Cheli A. Metatheory. jl: Fast and elegant algebraic computation in Julia with extensible equality saturation. arXiv preprint arXiv:210207888. 2021. – reference: Singh R, Mishra J. Gupta VK. The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. International Journal of Mathematics and Computer in Engineering, 2023; 1(1). 115-116. DOI: http://dx.doi.org/10.2478/ijmce-2023-0009. – volume: 1 start-page: 132 year: 2017 ident: b0010 article-title: Linguagem de programação JULIA: uma alternativa open source e de alto desempenho ao MATLAB publication-title: Rev Principia-Divulgação Cient Tecnol IFPB – reference: Cudihins D. Hands-On Computer Vision with Julia: Build Complex Applications with Advanced Julia Packages for Image Processing, Neural Networks, and Artificial Intelligence: Packt Publishing, Limited; 2018. 1-204, 1788998790. – volume: 59 start-page: 65 year: 2017 end-page: 98 ident: b0020 article-title: Julia: A fresh approach to numerical computing publication-title: SIAM Rev – volume: 14 start-page: 8913 year: 2023 end-page: 8922 ident: b0055 article-title: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model publication-title: J Ambient Intell Hum Comput – reference: Joe GG, Joel S, Ben JW. BioStructures.jl: read, write and manipulate macromolecular structures in Julia, Bioinformatics, 2020; 36(14), 4206–4207. – volume: 20 start-page: 655 year: 2023 end-page: 664 ident: b0090 article-title: Julia for biologists publication-title: Nat Methods – reference: Biggs B, McInerney I, Kerrigan EC, Constantinides GA. High-level Synthesis using the Julia Language. arXiv preprint arXiv:220111522. 2022. – reference: Marcelino M, Leitão AM, editors. Extending PyJL-Transpiling Python Libraries to Julia. 11th Symposium on Languages, Applications and Technologies (SLATE 2022); 2022: Schloss Dagstuhl-Leibniz-Zentrum für Informatik. – volume: 71 start-page: 173 year: 2023 end-page: 183 ident: b0210 article-title: Tumor treatment with chemo-virotherapy and MEK inhibitor: A mathematical model of Caputo fractional differential operator publication-title: Alex Eng J – reference: Xu K, Darve E, editors. ADCME MPI: Distributed Machine Learning for Computational Engineering. AAAI Spring Symposium: MLPS; 2021. – reference: . – volume: 38 start-page: 1692 year: 2022 end-page: 1699 ident: b0285 article-title: BioProfiling.jl: profiling biological perturbations with high-content imaging in single cells and heterogeneous populations publication-title: Bioinformatics – reference: Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, et al. Julia: Dynamism and performance reconciled by design. Proceedings of the ACM on Programming Languages. 2018;2(OOPSLA):1-23. – volume: 23 year: 2022 ident: b0265 article-title: Genome sequencing data analysis for rare disease gene discovery publication-title: Brief Bioinform – volume: 6 start-page: 33 year: 2012 ident: b0255 article-title: FluxMap: a VANTED add-on for the visual exploration of flux distributions in biological networks publication-title: BMC Syst Biol – volume: 14 start-page: 8913 issue: 7 year: 2023 ident: 10.1016/j.jare.2023.11.015_b0055 article-title: Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-021-03638-3 – volume: 30 start-page: 2240147 issue: 05 year: 2021 ident: 10.1016/j.jare.2023.11.015_b0065 article-title: Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks publication-title: Fractals doi: 10.1142/S0218348X22401478 – volume: 37 year: 2020 ident: 10.1016/j.jare.2023.11.015_b0165 article-title: Julia language in machine learning: Algorithms, applications, and open issues publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2020.100254 – ident: 10.1016/j.jare.2023.11.015_b0200 doi: 10.1158/1538-7445.AM2023-2001 – volume: 75 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0060 article-title: Artificial neural network scheme to solve the nonlinear influenza disease model publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103594 – ident: 10.1016/j.jare.2023.11.015_b0175 doi: 10.32614/CRAN.package.JuliaConnectoR – volume: 4 start-page: 1284 issue: 35 year: 2019 ident: 10.1016/j.jare.2023.11.015_b0230 article-title: JuliaCall: an R package for seamless integration between R and Julia publication-title: J Open Source Softw doi: 10.21105/joss.01284 – volume: 77 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0070 article-title: A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103789 – ident: 10.1016/j.jare.2023.11.015_b0125 doi: 10.1145/3276490 – volume: 1922 start-page: 341 year: 2019 ident: 10.1016/j.jare.2023.11.015_b0205 article-title: Three-dimensional assessment of crown size and eruption space for developing third molars: data collection techniques based on cone-beam computed tomography (CBCT) publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-9012-2_31 – ident: 10.1016/j.jare.2023.11.015_b0095 – ident: 10.1016/j.jare.2023.11.015_b0005 – ident: 10.1016/j.jare.2023.11.015_b0235 doi: 10.1021/acs.iecr.2c00326 – ident: 10.1016/j.jare.2023.11.015_b0180 doi: 10.1093/bioinformatics/btaa502 – volume: 14 start-page: 3611 issue: 10 year: 2021 ident: 10.1016/j.jare.2023.11.015_b0040 article-title: Solving a class of biological HIV infection model of latently infected cells using heuristic approach publication-title: Discrete Discrete Contin Dyn Syst – ident: 10.1016/j.jare.2023.11.015_b0270 – ident: 10.1016/j.jare.2023.11.015_b0120 doi: 10.1109/HPTCDL.2014.11 – ident: 10.1016/j.jare.2023.11.015_b0075 – ident: 10.1016/j.jare.2023.11.015_b0085 doi: 10.21105/joss.03078 – volume: 4 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0280 article-title: Development of the InTelligence And Machine LEarning (TAME) toolkit for introductory data science, chemical-biological analyses, predictive modeling, and database mining for environmental health research publication-title: Front Toxicol doi: 10.3389/ftox.2022.893924 – volume: 39 issue: 1 year: 2023 ident: 10.1016/j.jare.2023.11.015_b0225 article-title: libRoadRunner 2.0: a high performance SBML simulation and analysis library publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac770 – ident: 10.1016/j.jare.2023.11.015_b0245 – ident: 10.1016/j.jare.2023.11.015_b0115 – volume: 5 start-page: 1 year: 2021 ident: 10.1016/j.jare.2023.11.015_b0135 article-title: Performance of Julia for high energy physics analyses publication-title: Comput Softw Big Sci doi: 10.1007/s41781-021-00053-3 – ident: 10.1016/j.jare.2023.11.015_b0080 doi: 10.1186/s13104-020-05371-0 – volume: 6 start-page: 33 year: 2012 ident: 10.1016/j.jare.2023.11.015_b0255 article-title: FluxMap: a VANTED add-on for the visual exploration of flux distributions in biological networks publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-33 – volume: 20 start-page: 655 issue: 5 year: 2023 ident: 10.1016/j.jare.2023.11.015_b0090 article-title: Julia for biologists publication-title: Nat Methods doi: 10.1038/s41592-023-01832-z – volume: 1 start-page: 132 issue: 34 year: 2017 ident: 10.1016/j.jare.2023.11.015_b0010 article-title: Linguagem de programação JULIA: uma alternativa open source e de alto desempenho ao MATLAB publication-title: Rev Principia-Divulgação Cient Tecnol IFPB doi: 10.18265/1517-03062015v1n34p132-140 – volume: 15 start-page: 2250005 issue: 04 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0035 article-title: Stochastic numerical investigations for nonlinear three-species food chain system publication-title: Int J Biomath doi: 10.1142/S179352452250005X – ident: 10.1016/j.jare.2023.11.015_b0110 doi: 10.1145/3277104.3277119 – ident: 10.1016/j.jare.2023.11.015_b0030 – volume: 5 issue: 1 year: 2017 ident: 10.1016/j.jare.2023.11.015_b0250 article-title: jl–a performant and feature-rich ecosystem for solving differential equations in julia publication-title: J Open Res Softw doi: 10.5334/jors.151 – ident: 10.1016/j.jare.2023.11.015_b0160 – volume: 19 start-page: 351 issue: 1 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0050 article-title: Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks publication-title: Math Biosci Eng doi: 10.3934/mbe.2022018 – volume: 6 start-page: 3060 issue: 62 year: 2021 ident: 10.1016/j.jare.2023.11.015_b0155 article-title: jl: A portable finite volume toolbox for scientific and neural computing publication-title: J Open Source Softw doi: 10.21105/joss.03060 – ident: 10.1016/j.jare.2023.11.015_b0145 doi: 10.1109/CLUSTER51413.2022.00017 – ident: 10.1016/j.jare.2023.11.015_b0185 doi: 10.1177/00375497211068820 – ident: 10.1016/j.jare.2023.11.015_b0140 – ident: 10.1016/j.jare.2023.11.015_b0025 – volume: 71 start-page: 173 year: 2023 ident: 10.1016/j.jare.2023.11.015_b0210 article-title: Tumor treatment with chemo-virotherapy and MEK inhibitor: A mathematical model of Caputo fractional differential operator publication-title: Alex Eng J doi: 10.1016/j.aej.2023.03.010 – volume: 29 start-page: 2140035 issue: 08 year: 2021 ident: 10.1016/j.jare.2023.11.015_b0045 article-title: Dynamical analysis of a novel discrete fractional SITRS model for COVID-19 publication-title: Fractals doi: 10.1142/S0218348X21400351 – volume: 33 start-page: 564 issue: 4 year: 2017 ident: 10.1016/j.jare.2023.11.015_b0195 article-title: MIToS.jl: mutual information tools for protein sequence analysis in the Julia language publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw646 – ident: 10.1016/j.jare.2023.11.015_b0190 – ident: 10.1016/j.jare.2023.11.015_b0105 doi: 10.1109/AERO47225.2020.9172277 – ident: 10.1016/j.jare.2023.11.015_b0260 – volume: 23 issue: 1 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0265 article-title: Genome sequencing data analysis for rare disease gene discovery publication-title: Brief Bioinform doi: 10.1093/bib/bbab363 – volume: 59 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.jare.2023.11.015_b0020 article-title: Julia: A fresh approach to numerical computing publication-title: SIAM Rev doi: 10.1137/141000671 – ident: 10.1016/j.jare.2023.11.015_b0130 – start-page: 1 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0150 article-title: Wflow_sbm v0. 6.1, a spatially distributed hydrologic model: from global data to local applications publication-title: Geosci Model Dev Discuss – ident: 10.1016/j.jare.2023.11.015_b0170 doi: 10.21105/joss.02704 – volume: 38 start-page: 1692 issue: 6 year: 2022 ident: 10.1016/j.jare.2023.11.015_b0285 article-title: BioProfiling.jl: profiling biological perturbations with high-content imaging in single cells and heterogeneous populations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab853 – volume: 1 start-page: 91 issue: 1 year: 2023 ident: 10.1016/j.jare.2023.11.015_b0220 article-title: Fractional SIZR model of Zombies infection publication-title: Int J Math Comput Eng doi: 10.2478/ijmce-2023-0007 – ident: 10.1016/j.jare.2023.11.015_b0100 doi: 10.1145/3378678.3397528 – ident: 10.1016/j.jare.2023.11.015_b0015 – ident: 10.1016/j.jare.2023.11.015_b0215 doi: 10.2478/ijmce-2023-0009 – ident: 10.1016/j.jare.2023.11.015_b0240 doi: 10.21105/joss.02721 – ident: 10.1016/j.jare.2023.11.015_b0275 |
| SSID | ssj0000388911 |
| Score | 2.3328676 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as... The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical... •Julia is a high-level dynamic programming language that launched in 2012. The language is very appropriate for computational programming as well as... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 143 |
| SubjectTerms | Algorithms Biological science Biological Science Disciplines - methods Computational biology Computational Biology - methods Humans Julia Mathematics, Engineering, and Computer Science Programming language Programming Languages Software |
| Title | A next-generation dynamic programming language Julia: Its features and applications in biological science |
| URI | https://dx.doi.org/10.1016/j.jare.2023.11.015 https://www.ncbi.nlm.nih.gov/pubmed/37992995 https://www.proquest.com/docview/2892948692 https://pubmed.ncbi.nlm.nih.gov/PMC11464422 |
| Volume | 64 |
| WOSCitedRecordID | wos001321866500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2090-1224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388911 issn: 2090-1232 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXctIdeiqaruwQs0EMLQ4FMbWRv7ob2EgRwCvgm0CRdy0ipwFKC9GP6rx0uomUHCZpDL4KghRD1nobkaOYNQm_nBVFsoXg0l5JGRmEumpNcRmwOyxGx4CqlwhabKI6O6GzGjgeDP10uzMVpoTW9vGRn_xVqOAZgm9TZW8AdGoUDsA-gwxZgh-0_AT8ZabOa_Wn1pC260lWd72KxfhnvQOentAnStj7P97YZwes0fxScbnP_37Zxizi9pk0apdiOItrMbENcgVcSCh7nY1tdYDStwSAGUn5c8rblJvvrN3fZQ7peVSEa5zNvrOdnqtWSN1UTGvMhRFPoSDSt6777gqQhEM5bORIzEx6SbJnkPO3Z1LHTcfLD89hpTl-x_M4JsTpc8bVRPyXJoRFndami2zLbO8NfCErs4t1WpWmjNG3A-qiMjYTBXVJkjPZW7HagTyhltsJz6IRPy3IRhLuPct3U5-rSZjdCtzflOXmIHnhE8cRxbB8NlH6E9v1o0OB3XrL8_WNUTfAO6bAnHe6RDnekw5Z0HzBQDneUw0A53KccrjTeUA57yj1BP75-Ofn0LfJFPCIBc_M2EguRCCZExmHDuaSZIJmUiRSAZK54KucxjwXLZJKoPFFg2RYiJypNCpHJOE2eoj1da_UcYSLjfCGEIoyTFAZxKrOcmXoJ3ChsxukQjbv3WwqvcG8KrZyW10M7RKNwz5nTd7nx6qyDrfTddjPPEmh4431vOoxLMN_mnxzXqj5vSkJhfZLSnJEheuYwD8-RFAxOMribbrEhXGCk4bfP6GppJeKN1kCaEvLiVt17ie5vPtFXaK9dn6vX6J64aKtmfYDuFDN6YD-BvxSN4EI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+next-generation+dynamic+programming+language+Julia%3A+Its+features+and+applications+in+biological+science&rft.jtitle=Journal+of+advanced+research&rft.au=Pal%2C+Soumen&rft.au=Bhattacharya%2C+Manojit&rft.au=Dash%2C+Snehasish&rft.au=Lee%2C+Sang-Soo&rft.date=2024-10-01&rft.issn=2090-1232&rft.volume=64&rft.spage=143&rft.epage=154&rft_id=info:doi/10.1016%2Fj.jare.2023.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jare_2023_11_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |