A Multi-Objective Genetic Algorithm-Based Resource Scheduling in Mobile Cloud Computing

Mobile cloud computing is an emerging technology in recent years. This technology reduces battery consumption and execution time by executing mobile applications in remote cloud server. The virtual machine (VM) load balancing among cloudlets in MCC improves the performance of application in terms of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of cognitive informatics & natural intelligence Ročník 15; číslo 3; s. 58 - 73
Hlavní autoři: Luhach, Ashish Kumar, Ramasubbareddy, Somula, Swetha, Evakattu, Srinivas, T Aditya Sai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hershey IGI Global 01.07.2021
Témata:
ISSN:1557-3958, 1557-3966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mobile cloud computing is an emerging technology in recent years. This technology reduces battery consumption and execution time by executing mobile applications in remote cloud server. The virtual machine (VM) load balancing among cloudlets in MCC improves the performance of application in terms of response time. Genetic algorithm (GA) is popular for providing optimal solution for load balancing problems. GA can perform well in both homogeneous and heterogeneous environments. In this paper, the authors consider multi-objective genetic algorithm for load balancing in MCC (MOGALMCC) environment. In MOGALMCC, they consider distance, bandwidth, memory, and cloudlet server load to find optimal cloudlet before scheduling VM in another cloudlet. The framework MOGALMCC aims to improve response time as well as minimizes VM failure rate. The experiment result shows that proposed model performed well by reducing execution time and task waiting time at server.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1557-3958
1557-3966
DOI:10.4018/IJCINI.20210701.oa5