NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages
NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. W...
Saved in:
| Published in: | Science advances Vol. 5; no. 2; p. eaav0163 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Association for the Advancement of Science
01.02.2019
|
| Subjects: | |
| ISSN: | 2375-2548, 2375-2548 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation.
Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm
+
NDR2
f/f
) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance. |
|---|---|
| AbstractList | Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm
NDR2
) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance. NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance. NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm + NDR2 f/f ) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance. Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance. |
| Author | Liu, Zhiyong Pan, Yueyun Zhang, Yuanyuan Liu, Huan Wang, Xiumei Wang, Xiaojian Gu, Meidi Yang, Yuting Wu, Cheng |
| Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0002-1403-9606 surname: Liu fullname: Liu, Zhiyong organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 2 givenname: Cheng surname: Wu fullname: Wu, Cheng organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 3 givenname: Yueyun surname: Pan fullname: Pan, Yueyun organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 4 givenname: Huan surname: Liu fullname: Liu, Huan organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 5 givenname: Xiumei surname: Wang fullname: Wang, Xiumei organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 6 givenname: Yuting surname: Yang fullname: Yang, Yuting organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 7 givenname: Meidi surname: Gu fullname: Gu, Meidi organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China – sequence: 8 givenname: Yuanyuan surname: Zhang fullname: Zhang, Yuanyuan organization: The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China – sequence: 9 givenname: Xiaojian orcidid: 0000-0001-8232-0558 surname: Wang fullname: Wang, Xiaojian organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30775439$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1UU1v1DAQtVARLaVXjshHLln8neSChAqUlQpIq3K2Zp3JrlFih9gbiX-Py25RQeLiseT34XnvOTkLMSAhLzlbcS7Mm-Q8dMsKYGHcyCfkQshaV0Kr5uzR_ZxcpfSdMcaVMZq3z8i5ZHWtlWwvyPDl_UbQaY5jzJho3iOFkP3iZxioH8dDQDpjmmJISBcPtAfnB58h-7Cjd5v1Z6GrETsPGTu6Wd9UawquCBRADNQHOoKb47SHHaYX5GkPQ8Kr07wk3z5-uLv-VN1-vVlfv7utnNIml5M3TcOUa1vHhWIOWLd1zunO1DXiFmuQwtVSQN9u61ap3qgC6RrdS8ehk5fk7VF3OmzL3xyGXNax0-xHmH_aCN7-_RL83u7iYo0sAQlWBF6fBOb444Ap29Enh8MAAeMhWcEbyRstDC_QV4-9_pg8RFwA6ggoMaQ0Y2_d7_jivbUfLGf2vkx7LNOeyiy01T-0B-X_EH4BTFKmKw |
| CitedBy_id | crossref_primary_10_12677_amb_2025_142014 crossref_primary_10_1016_j_phrs_2024_107223 crossref_primary_10_1007_s11033_022_08062_0 crossref_primary_10_1038_s41418_021_00791_2 crossref_primary_10_1002_mabi_202000382 crossref_primary_10_1007_s00011_023_01712_4 crossref_primary_10_1038_s41577_020_0288_3 crossref_primary_10_3389_fimmu_2019_01586 crossref_primary_10_3389_fimmu_2020_00323 crossref_primary_10_1016_j_bbrc_2019_08_069 crossref_primary_10_1038_s41467_023_39560_9 crossref_primary_10_1016_j_fsi_2024_109510 crossref_primary_10_1186_s13045_023_01405_9 crossref_primary_10_1016_j_fsi_2022_02_052 crossref_primary_10_1099_jgv_0_001341 crossref_primary_10_3389_fmicb_2021_804511 crossref_primary_10_1016_j_immuni_2020_03_017 crossref_primary_10_1097_CM9_0000000000002617 crossref_primary_10_1186_s12929_022_00793_3 crossref_primary_10_3390_genes14081555 crossref_primary_10_1074_jbc_RA120_013973 crossref_primary_10_3389_fcimb_2021_628275 crossref_primary_10_1016_j_psj_2025_105820 crossref_primary_10_26508_lsa_202201712 crossref_primary_10_3389_fimmu_2020_00534 crossref_primary_10_1007_s00011_024_01906_4 crossref_primary_10_1186_s40779_021_00333_4 crossref_primary_10_1016_j_drudis_2021_04_029 crossref_primary_10_1038_s41423_020_00602_7 crossref_primary_10_1126_sciadv_adq0660 crossref_primary_10_3389_fimmu_2020_01296 crossref_primary_10_1155_2021_6803510 |
| Cites_doi | 10.1111/j.1742-4658.2008.06728.x 10.1146/annurev-immunol-032713-120231 10.4161/cc.10.12.15826 10.1038/s41467-017-01290-0 10.1073/pnas.1401674111 10.1016/j.cub.2008.10.060 10.1016/j.immuni.2011.05.003 10.1038/s41467-018-05176-7 10.1073/pnas.0611551104 10.1074/jbc.M402472200 10.1126/scisignal.2000681 10.1093/jmcb/mju005 10.1021/bi035089a 10.1371/journal.pone.0005760 10.1074/jbc.M511354200 10.1038/nrm1891 10.1523/JNEUROSCI.2728-13.2014 10.1073/pnas.92.11.5022 10.1016/j.virol.2004.10.023 10.1038/emboj.2013.32 10.15252/embj.201694060 10.1016/j.cell.2013.01.011 10.1002/bies.20304 10.1038/nature05732 10.1016/j.cell.2010.01.022 10.1016/j.immuni.2006.08.009 10.7554/eLife.24425 10.1074/jbc.M401999200 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors |
| Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1126/sciadv.aav0163 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2375-2548 |
| ExternalDocumentID | PMC6365120 30775439 10_1126_sciadv_aav0163 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: 31770932, 31570864 – fundername: ; grantid: 2018M632485, 2018T110605 – fundername: ; grantid: 2014CB542101 |
| GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADPDF ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCGUY BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD OVEED RHI RPM TEORI BBORY CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c456t-c4188804c99c1240ca0dbccc5d677eebe7a32c732af9b7944f64a0dd85f3c1ad3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460145700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2375-2548 |
| IngestDate | Tue Sep 30 16:55:24 EDT 2025 Thu Jul 10 21:37:12 EDT 2025 Thu Apr 03 07:08:09 EDT 2025 Tue Nov 18 20:59:23 EST 2025 Sat Nov 29 06:00:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c456t-c4188804c99c1240ca0dbccc5d677eebe7a32c732af9b7944f64a0dd85f3c1ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8232-0558 0000-0002-1403-9606 |
| OpenAccessLink | http://dx.doi.org/10.1126/sciadv.aav0163 |
| PMID | 30775439 |
| PQID | 2183185261 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6365120 proquest_miscellaneous_2183185261 pubmed_primary_30775439 crossref_citationtrail_10_1126_sciadv_aav0163 crossref_primary_10_1126_sciadv_aav0163 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Science advances |
| PublicationTitleAlternate | Sci Adv |
| PublicationYear | 2019 |
| Publisher | American Association for the Advancement of Science |
| Publisher_xml | – name: American Association for the Advancement of Science |
| References | e_1_3_2_29_2 Rentoft M. (e_1_3_2_25_2) 2008; 275 e_1_3_2_20_2 Bhattacharya S. (e_1_3_2_23_2) 2003; 42 Rehberg K. (e_1_3_2_21_2) 2014; 34 e_1_3_2_24_2 Liu Z. (e_1_3_2_17_2) 2018; 9 Gao D. (e_1_3_2_7_2) 2009; 4 Millward T. (e_1_3_2_27_2) 1995; 92 Liu W. (e_1_3_2_12_2) 2017; 6 Stegert M. R. (e_1_3_2_22_2) 2004; 279 Gu M. (e_1_3_2_28_2) 2016; 35 e_1_3_2_15_2 Devroe E. (e_1_3_2_26_2) 2004; 279 Devroe E. (e_1_3_2_16_2) 2005; 331 Yan J. (e_1_3_2_8_2) 2014; 6 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 Arimoto K. (e_1_3_2_10_2) 2007; 104 e_1_3_2_3_2 Kuniyoshi K. (e_1_3_2_9_2) 2014; 111 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 Suzuki A. (e_1_3_2_19_2) 2006; 281 |
| References_xml | – volume: 275 start-page: 5994 year: 2008 ident: e_1_3_2_25_2 article-title: Enhancer requirement for histone methylation linked with gene activation publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06728.x – ident: e_1_3_2_5_2 doi: 10.1146/annurev-immunol-032713-120231 – ident: e_1_3_2_14_2 doi: 10.4161/cc.10.12.15826 – ident: e_1_3_2_29_2 doi: 10.1038/s41467-017-01290-0 – volume: 111 start-page: 5646 year: 2014 ident: e_1_3_2_9_2 article-title: Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1401674111 – ident: e_1_3_2_15_2 doi: 10.1016/j.cub.2008.10.060 – ident: e_1_3_2_3_2 doi: 10.1016/j.immuni.2011.05.003 – volume: 9 start-page: 2789 year: 2018 ident: e_1_3_2_17_2 article-title: Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop publication-title: Nat. Commun. doi: 10.1038/s41467-018-05176-7 – volume: 104 start-page: 7500 year: 2007 ident: e_1_3_2_10_2 article-title: Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0611551104 – volume: 279 start-page: 23806 year: 2004 ident: e_1_3_2_22_2 article-title: Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402472200 – ident: e_1_3_2_18_2 doi: 10.1126/scisignal.2000681 – volume: 6 start-page: 154 year: 2014 ident: e_1_3_2_8_2 article-title: TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mju005 – volume: 42 start-page: 14416 year: 2003 ident: e_1_3_2_23_2 article-title: Structure of the Ca2+/S100B/NDR kinase peptide complex: Insights into S100 target specificity and activation of the kinase publication-title: Biochemistry doi: 10.1021/bi035089a – volume: 4 start-page: e5760 year: 2009 ident: e_1_3_2_7_2 article-title: REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I publication-title: PLOS ONE doi: 10.1371/journal.pone.0005760 – volume: 281 start-page: 13915 year: 2006 ident: e_1_3_2_19_2 article-title: NDR2 acts as the upstream kinase of ARK5 during insulin-like growth factor-1 signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511354200 – ident: e_1_3_2_13_2 doi: 10.1038/nrm1891 – volume: 34 start-page: 5342 year: 2014 ident: e_1_3_2_21_2 article-title: The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2728-13.2014 – volume: 92 start-page: 5022 year: 1995 ident: e_1_3_2_27_2 article-title: Molecular cloning and characterization of a conserved nuclear serine(threonine) protein kinase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.11.5022 – volume: 331 start-page: 181 year: 2005 ident: e_1_3_2_16_2 article-title: HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases publication-title: Virology doi: 10.1016/j.virol.2004.10.023 – ident: e_1_3_2_20_2 doi: 10.1038/emboj.2013.32 – volume: 35 start-page: 2553 year: 2016 ident: e_1_3_2_28_2 article-title: RKIP and TBK1 form a positive feedback loop to promote type I interferon production in innate immunity publication-title: EMBO J. doi: 10.15252/embj.201694060 – ident: e_1_3_2_11_2 doi: 10.1016/j.cell.2013.01.011 – ident: e_1_3_2_24_2 doi: 10.1002/bies.20304 – ident: e_1_3_2_6_2 doi: 10.1038/nature05732 – ident: e_1_3_2_2_2 doi: 10.1016/j.cell.2010.01.022 – ident: e_1_3_2_4_2 doi: 10.1016/j.immuni.2006.08.009 – volume: 6 start-page: e24425 year: 2017 ident: e_1_3_2_12_2 article-title: Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses publication-title: eLife doi: 10.7554/eLife.24425 – volume: 279 start-page: 24444 year: 2004 ident: e_1_3_2_26_2 article-title: Human Mob proteins regulate the NDR1 and NDR2 serine-threonine kinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401999200 |
| SSID | ssj0001466519 |
| Score | 2.2823312 |
| Snippet | NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation.
Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor,... Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational... NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor,... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | eaav0163 |
| SubjectTerms | Animals Biomarkers Cytokines DEAD Box Protein 58 - metabolism Disease Models, Animal Enzyme Activation Host-Pathogen Interactions - immunology Humans Immunity Immunology Immunomodulation Macrophages - immunology Macrophages - metabolism Macrophages - virology Mice Mice, Knockout Protein Serine-Threonine Kinases - metabolism Receptors, Immunologic SciAdv r-articles Signal Transduction Transcription Factors - metabolism Tripartite Motif Proteins - metabolism Ubiquitin-Protein Ligases - metabolism Ubiquitination Virus Diseases - immunology Virus Diseases - metabolism Virus Diseases - virology |
| Title | NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30775439 https://www.proquest.com/docview/2183185261 https://pubmed.ncbi.nlm.nih.gov/PMC6365120 |
| Volume | 5 |
| WOSCitedRecordID | wos000460145700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2375-2548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466519 issn: 2375-2548 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2375-2548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466519 issn: 2375-2548 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdrN0ZfxrrP7CNoMNhG8Ugk27Iex74aaEMJ2ciejCori6FVQh2H9mV_--5k2XGyFraHvZggKwrJ75fz3en0O0Jec6W0gCdzEHMBAYoxMlBKmEBr00tknzHjise_H4nhMJlM5InPKhWunYCwNrm8lIv_CjWMAdh4dPYf4G4WhQF4DaDDFWCH618BP_w0Ylh2BRigfMMM9wewRYST18DTINgoxRXGmoNVrrDjjlfqtj8PxqPBMYsCd54EfdHR4GswcIIbVeoW0yPnCtt-zcAQFW3XtrYSvqqg8dWP8tLtgMzyq7l_TOJDoKw2-8166KTKxf4ozVVpt959WHoW-wQFnolqij2MM2SMiyiAQDRpW92oRS7WsqBGqRW4ofx68143pISv8v6aiYDE4tzhyp20X6WTtCWoXd_aIbeZiCTWAR7_aiXmwjgGt9YLfPoDVq3P2yN36xU2fZk_ApTtOtuW4zK-T-75iIN-qJiyT24Z-4Dse7QK-tYLj797SM6QOrSmDgXq0IY6tKIOralDgTq0TR26RR3qqEPX1KG5pS3qPCLfvnwefzwMfDeOQIOTvYRrPwFjH2opNTiFPa162anWOspiIQzYAqE404IzNZWnYOXDaRzClCyJplz3VcYfk107t-YpoZEwicyEhKXiUJppEkHUzxMTgS-p-lp2SFD_rqn2UvXYMeUsdSEri9MKktRD0iFvmvmLSqTlxpmvaphSsKO4OaasmZdFiqECCgnE_Q55UsHWrFXj3SFiA9BmAmq0b96x-cxptcccyMR6z25c8znZW_9pXpDd5UVpXpI7erXMi4su2RGTpOsSRV1H099h9rOR |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NDR2+promotes+the+antiviral+immune+response+via+facilitating+TRIM25-mediated+RIG-I+activation+in+macrophages&rft.jtitle=Science+advances&rft.au=Liu%2C+Zhiyong&rft.au=Wu%2C+Cheng&rft.au=Pan%2C+Yueyun&rft.au=Liu%2C+Huan&rft.date=2019-02-01&rft.eissn=2375-2548&rft.volume=5&rft.issue=2&rft.spage=eaav0163&rft_id=info:doi/10.1126%2Fsciadv.aav0163&rft_id=info%3Apmid%2F30775439&rft.externalDocID=30775439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |