NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages

NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. W...

Full description

Saved in:
Bibliographic Details
Published in:Science advances Vol. 5; no. 2; p. eaav0163
Main Authors: Liu, Zhiyong, Wu, Cheng, Pan, Yueyun, Liu, Huan, Wang, Xiumei, Yang, Yuting, Gu, Meidi, Zhang, Yuanyuan, Wang, Xiaojian
Format: Journal Article
Language:English
Published: United States American Association for the Advancement of Science 01.02.2019
Subjects:
ISSN:2375-2548, 2375-2548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm + NDR2 f/f ) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.
AbstractList NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm + NDR2 f/f ) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.
Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm NDR2 ) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.
NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I–mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus–induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I–mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus–infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.
Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.
Author Liu, Zhiyong
Pan, Yueyun
Zhang, Yuanyuan
Liu, Huan
Wang, Xiumei
Wang, Xiaojian
Gu, Meidi
Yang, Yuting
Wu, Cheng
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0002-1403-9606
  surname: Liu
  fullname: Liu, Zhiyong
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 2
  givenname: Cheng
  surname: Wu
  fullname: Wu, Cheng
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 3
  givenname: Yueyun
  surname: Pan
  fullname: Pan, Yueyun
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 4
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 5
  givenname: Xiumei
  surname: Wang
  fullname: Wang, Xiumei
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 6
  givenname: Yuting
  surname: Yang
  fullname: Yang, Yuting
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 7
  givenname: Meidi
  surname: Gu
  fullname: Gu, Meidi
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
– sequence: 8
  givenname: Yuanyuan
  surname: Zhang
  fullname: Zhang, Yuanyuan
  organization: The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
– sequence: 9
  givenname: Xiaojian
  orcidid: 0000-0001-8232-0558
  surname: Wang
  fullname: Wang, Xiaojian
  organization: Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30775439$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1v1DAQtVARLaVXjshHLln8neSChAqUlQpIq3K2Zp3JrlFih9gbiX-Py25RQeLiseT34XnvOTkLMSAhLzlbcS7Mm-Q8dMsKYGHcyCfkQshaV0Kr5uzR_ZxcpfSdMcaVMZq3z8i5ZHWtlWwvyPDl_UbQaY5jzJho3iOFkP3iZxioH8dDQDpjmmJISBcPtAfnB58h-7Cjd5v1Z6GrETsPGTu6Wd9UawquCBRADNQHOoKb47SHHaYX5GkPQ8Kr07wk3z5-uLv-VN1-vVlfv7utnNIml5M3TcOUa1vHhWIOWLd1zunO1DXiFmuQwtVSQN9u61ap3qgC6RrdS8ehk5fk7VF3OmzL3xyGXNax0-xHmH_aCN7-_RL83u7iYo0sAQlWBF6fBOb444Ap29Enh8MAAeMhWcEbyRstDC_QV4-9_pg8RFwA6ggoMaQ0Y2_d7_jivbUfLGf2vkx7LNOeyiy01T-0B-X_EH4BTFKmKw
CitedBy_id crossref_primary_10_12677_amb_2025_142014
crossref_primary_10_1016_j_phrs_2024_107223
crossref_primary_10_1007_s11033_022_08062_0
crossref_primary_10_1038_s41418_021_00791_2
crossref_primary_10_1002_mabi_202000382
crossref_primary_10_1007_s00011_023_01712_4
crossref_primary_10_1038_s41577_020_0288_3
crossref_primary_10_3389_fimmu_2019_01586
crossref_primary_10_3389_fimmu_2020_00323
crossref_primary_10_1016_j_bbrc_2019_08_069
crossref_primary_10_1038_s41467_023_39560_9
crossref_primary_10_1016_j_fsi_2024_109510
crossref_primary_10_1186_s13045_023_01405_9
crossref_primary_10_1016_j_fsi_2022_02_052
crossref_primary_10_1099_jgv_0_001341
crossref_primary_10_3389_fmicb_2021_804511
crossref_primary_10_1016_j_immuni_2020_03_017
crossref_primary_10_1097_CM9_0000000000002617
crossref_primary_10_1186_s12929_022_00793_3
crossref_primary_10_3390_genes14081555
crossref_primary_10_1074_jbc_RA120_013973
crossref_primary_10_3389_fcimb_2021_628275
crossref_primary_10_1016_j_psj_2025_105820
crossref_primary_10_26508_lsa_202201712
crossref_primary_10_3389_fimmu_2020_00534
crossref_primary_10_1007_s00011_024_01906_4
crossref_primary_10_1186_s40779_021_00333_4
crossref_primary_10_1016_j_drudis_2021_04_029
crossref_primary_10_1038_s41423_020_00602_7
crossref_primary_10_1126_sciadv_adq0660
crossref_primary_10_3389_fimmu_2020_01296
crossref_primary_10_1155_2021_6803510
Cites_doi 10.1111/j.1742-4658.2008.06728.x
10.1146/annurev-immunol-032713-120231
10.4161/cc.10.12.15826
10.1038/s41467-017-01290-0
10.1073/pnas.1401674111
10.1016/j.cub.2008.10.060
10.1016/j.immuni.2011.05.003
10.1038/s41467-018-05176-7
10.1073/pnas.0611551104
10.1074/jbc.M402472200
10.1126/scisignal.2000681
10.1093/jmcb/mju005
10.1021/bi035089a
10.1371/journal.pone.0005760
10.1074/jbc.M511354200
10.1038/nrm1891
10.1523/JNEUROSCI.2728-13.2014
10.1073/pnas.92.11.5022
10.1016/j.virol.2004.10.023
10.1038/emboj.2013.32
10.15252/embj.201694060
10.1016/j.cell.2013.01.011
10.1002/bies.20304
10.1038/nature05732
10.1016/j.cell.2010.01.022
10.1016/j.immuni.2006.08.009
10.7554/eLife.24425
10.1074/jbc.M401999200
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1126/sciadv.aav0163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC6365120
30775439
10_1126_sciadv_aav0163
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31770932, 31570864
– fundername: ;
  grantid: 2018M632485, 2018T110605
– fundername: ;
  grantid: 2014CB542101
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADPDF
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCGUY
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
OVEED
RHI
RPM
TEORI
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-c4188804c99c1240ca0dbccc5d677eebe7a32c732af9b7944f64a0dd85f3c1ad3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460145700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2375-2548
IngestDate Tue Sep 30 16:55:24 EDT 2025
Thu Jul 10 21:37:12 EDT 2025
Thu Apr 03 07:08:09 EDT 2025
Tue Nov 18 20:59:23 EST 2025
Sat Nov 29 06:00:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-c4188804c99c1240ca0dbccc5d677eebe7a32c732af9b7944f64a0dd85f3c1ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8232-0558
0000-0002-1403-9606
OpenAccessLink http://dx.doi.org/10.1126/sciadv.aav0163
PMID 30775439
PQID 2183185261
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6365120
proquest_miscellaneous_2183185261
pubmed_primary_30775439
crossref_citationtrail_10_1126_sciadv_aav0163
crossref_primary_10_1126_sciadv_aav0163
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2019
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_29_2
Rentoft M. (e_1_3_2_25_2) 2008; 275
e_1_3_2_20_2
Bhattacharya S. (e_1_3_2_23_2) 2003; 42
Rehberg K. (e_1_3_2_21_2) 2014; 34
e_1_3_2_24_2
Liu Z. (e_1_3_2_17_2) 2018; 9
Gao D. (e_1_3_2_7_2) 2009; 4
Millward T. (e_1_3_2_27_2) 1995; 92
Liu W. (e_1_3_2_12_2) 2017; 6
Stegert M. R. (e_1_3_2_22_2) 2004; 279
Gu M. (e_1_3_2_28_2) 2016; 35
e_1_3_2_15_2
Devroe E. (e_1_3_2_26_2) 2004; 279
Devroe E. (e_1_3_2_16_2) 2005; 331
Yan J. (e_1_3_2_8_2) 2014; 6
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
Arimoto K. (e_1_3_2_10_2) 2007; 104
e_1_3_2_3_2
Kuniyoshi K. (e_1_3_2_9_2) 2014; 111
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
Suzuki A. (e_1_3_2_19_2) 2006; 281
References_xml – volume: 275
  start-page: 5994
  year: 2008
  ident: e_1_3_2_25_2
  article-title: Enhancer requirement for histone methylation linked with gene activation
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06728.x
– ident: e_1_3_2_5_2
  doi: 10.1146/annurev-immunol-032713-120231
– ident: e_1_3_2_14_2
  doi: 10.4161/cc.10.12.15826
– ident: e_1_3_2_29_2
  doi: 10.1038/s41467-017-01290-0
– volume: 111
  start-page: 5646
  year: 2014
  ident: e_1_3_2_9_2
  article-title: Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1401674111
– ident: e_1_3_2_15_2
  doi: 10.1016/j.cub.2008.10.060
– ident: e_1_3_2_3_2
  doi: 10.1016/j.immuni.2011.05.003
– volume: 9
  start-page: 2789
  year: 2018
  ident: e_1_3_2_17_2
  article-title: Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05176-7
– volume: 104
  start-page: 7500
  year: 2007
  ident: e_1_3_2_10_2
  article-title: Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0611551104
– volume: 279
  start-page: 23806
  year: 2004
  ident: e_1_3_2_22_2
  article-title: Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402472200
– ident: e_1_3_2_18_2
  doi: 10.1126/scisignal.2000681
– volume: 6
  start-page: 154
  year: 2014
  ident: e_1_3_2_8_2
  article-title: TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination
  publication-title: J. Mol. Cell Biol.
  doi: 10.1093/jmcb/mju005
– volume: 42
  start-page: 14416
  year: 2003
  ident: e_1_3_2_23_2
  article-title: Structure of the Ca2+/S100B/NDR kinase peptide complex: Insights into S100 target specificity and activation of the kinase
  publication-title: Biochemistry
  doi: 10.1021/bi035089a
– volume: 4
  start-page: e5760
  year: 2009
  ident: e_1_3_2_7_2
  article-title: REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0005760
– volume: 281
  start-page: 13915
  year: 2006
  ident: e_1_3_2_19_2
  article-title: NDR2 acts as the upstream kinase of ARK5 during insulin-like growth factor-1 signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511354200
– ident: e_1_3_2_13_2
  doi: 10.1038/nrm1891
– volume: 34
  start-page: 5342
  year: 2014
  ident: e_1_3_2_21_2
  article-title: The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2728-13.2014
– volume: 92
  start-page: 5022
  year: 1995
  ident: e_1_3_2_27_2
  article-title: Molecular cloning and characterization of a conserved nuclear serine(threonine) protein kinase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.11.5022
– volume: 331
  start-page: 181
  year: 2005
  ident: e_1_3_2_16_2
  article-title: HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases
  publication-title: Virology
  doi: 10.1016/j.virol.2004.10.023
– ident: e_1_3_2_20_2
  doi: 10.1038/emboj.2013.32
– volume: 35
  start-page: 2553
  year: 2016
  ident: e_1_3_2_28_2
  article-title: RKIP and TBK1 form a positive feedback loop to promote type I interferon production in innate immunity
  publication-title: EMBO J.
  doi: 10.15252/embj.201694060
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cell.2013.01.011
– ident: e_1_3_2_24_2
  doi: 10.1002/bies.20304
– ident: e_1_3_2_6_2
  doi: 10.1038/nature05732
– ident: e_1_3_2_2_2
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_3_2_4_2
  doi: 10.1016/j.immuni.2006.08.009
– volume: 6
  start-page: e24425
  year: 2017
  ident: e_1_3_2_12_2
  article-title: Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses
  publication-title: eLife
  doi: 10.7554/eLife.24425
– volume: 279
  start-page: 24444
  year: 2004
  ident: e_1_3_2_26_2
  article-title: Human Mob proteins regulate the NDR1 and NDR2 serine-threonine kinases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401999200
SSID ssj0001466519
Score 2.2824283
Snippet NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor,...
Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational...
NDR2 functions as an antiviral molecule via regulating TRIM25-mediated RIG-I activation. Retinoic acid–inducible gene I (RIG-I), a pivotal cytosolic sensor,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eaav0163
SubjectTerms Animals
Biomarkers
Cytokines
DEAD Box Protein 58 - metabolism
Disease Models, Animal
Enzyme Activation
Host-Pathogen Interactions - immunology
Humans
Immunity
Immunology
Immunomodulation
Macrophages - immunology
Macrophages - metabolism
Macrophages - virology
Mice
Mice, Knockout
Protein Serine-Threonine Kinases - metabolism
Receptors, Immunologic
SciAdv r-articles
Signal Transduction
Transcription Factors - metabolism
Tripartite Motif Proteins - metabolism
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Virus Diseases - immunology
Virus Diseases - metabolism
Virus Diseases - virology
Title NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages
URI https://www.ncbi.nlm.nih.gov/pubmed/30775439
https://www.proquest.com/docview/2183185261
https://pubmed.ncbi.nlm.nih.gov/PMC6365120
Volume 5
WOSCitedRecordID wos000460145700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2375-2548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466519
  issn: 2375-2548
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2375-2548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466519
  issn: 2375-2548
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZot4e9TOuu7II8adpFVSZiJ3HyOG3tikRZhajEniLjOCMSC6wQ1L70t-8cxwmBdVL3sBcLGZMEvo_j42Of7xDyxocpSE5C7jCedh3PDRMH6zs4UoSuSKPIS72y2IQYDMLxODprta6rXJj1TOR5eHkZLf4r1NAHYGPq7D_AXV8UOuA1gA4twA7trYAffBkyPHYFGKB8wxT3B7BEhJHXwGwQLJRiDsbqw3UmseKOVerOfxyOhr1T5jsmnwR90WHvq9Mzghtl6BbDIz8llv2agiFaNl3bykrYUwW1r97PCrMDMs2u5naaxEmgKDf79abrrIzFfi_0VZHvfPqksCy2AQrMiaoPexg7xrjwHViHlmZW39BnDbHf4BtrGFUt5Ro8U36zxa9qVMK3-9gYuC2tPfgWH5_3-_HoaDx6u_jlYNUx3J23JVj2yB0m_AiPBJ5eN2J0XhD4pjZM_bxW99PmXTXuue3X_LFY2T1z23BiRg_Ifbv6oJ9K1hyQls4fkgOL3JK-tyLkHx6RGdKIVjSiQCNa04iWNKIVjSjQiDZpRHdoRA2N6IZGNMtpg0aPyfnx0ejziWMrczgKHO4VtG4Iht9TUaTAQewq2U0mSik_CYTQYBeE5EwJzmQaTcDie2ngwZAk9FOuXJnwJ2Q_n-f6GaFKC-2qJGVcCk_7LJIM3EahIqZ96Xu6TZzqd42Vla3H6imz2CxfWRCXOMQWhzZ5V49flIItfx35uoIpBpuKG2Uy1_NiGeOyAUUFArdNnpaw1dfiRjOSR20itgCtB6Be-_Y7eTY1uu0BBzax7vNb3PcFubf5K70k-6uLQr8id9V6lS0vOmRPjMOOCR91DGN_A_quvOM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NDR2+promotes+the+antiviral+immune+response+via+facilitating+TRIM25-mediated+RIG-I+activation+in+macrophages&rft.jtitle=Science+advances&rft.au=Liu%2C+Zhiyong&rft.au=Wu%2C+Cheng&rft.au=Pan%2C+Yueyun&rft.au=Liu%2C+Huan&rft.date=2019-02-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=5&rft.issue=2&rft.spage=eaav0163&rft_id=info:doi/10.1126%2Fsciadv.aav0163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon