In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments
Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface...
Uloženo v:
| Vydáno v: | International journal of hyperthermia Ročník 38; číslo 1; s. 846 - 861 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
01.01.2021
Taylor & Francis Group |
| Témata: | |
| ISSN: | 0265-6736, 1464-5157, 1464-5157 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient.
Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach.
Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met.
Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window. |
|---|---|
| AbstractList | Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient. Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach. Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met. Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window. Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient.Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach.Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met.Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window.Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient.Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach.Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met.Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window. Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient. Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach. Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met. Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window. |
| Author | Zilberti, Luca Bottauscio, Oriano Chiampi, Mario Ortega, Daniel Arduino, Alessandro Rubia-Rodríguez, Irene |
| Author_xml | – sequence: 1 givenname: Irene orcidid: 0000-0002-0664-5809 surname: Rubia-Rodríguez fullname: Rubia-Rodríguez, Irene organization: IMDEA Nanoscience – sequence: 2 givenname: Luca orcidid: 0000-0002-2382-4710 surname: Zilberti fullname: Zilberti, Luca organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 3 givenname: Alessandro orcidid: 0000-0002-4829-5130 surname: Arduino fullname: Arduino, Alessandro organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 4 givenname: Oriano orcidid: 0000-0002-5437-4396 surname: Bottauscio fullname: Bottauscio, Oriano organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 5 givenname: Mario orcidid: 0000-0003-0049-3792 surname: Chiampi fullname: Chiampi, Mario organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 6 givenname: Daniel orcidid: 0000-0002-7441-8640 surname: Ortega fullname: Ortega, Daniel organization: Condensed Matter Physics department, University of Cádiz |
| BookMark | eNqFkU-P0zAQxS20SHQLHwHJRy4pdhI7ibiAVvyptBIXOFsTe9y6cuxgu0I98dU3oQsHDsvJGs97vxnNuyU3IQYk5DVnO8569pbVUsiukbua1XzHBzZ0on9GNryVbSW46G7IZtVUq-gFuc35xBhrRd1tyK99oNl5pyOFnDHnCUOh0VIdvYeCCTxFYy5Un1NaW0eE4sKBukBHF3Wc5qUePVI3zR5CyTSfxxPqgoaWSCc4BCxO0-NlxlSOmCYHtKSFsk7KL8lzCz7jq8d3S75_-vjt7kt1__Xz_u7DfaVbIUs1GJCga9mzoWlHzkcxjHIceGvAmnrkPW8ajSg6C1YbC71lDBD6Vpq616xvtmR_5ZoIJzUnN0G6qAhO_f6I6aAgLXt6VI1B1jV1J9CatpNtP_ZmMFoYLlAgiIX15sqaU_xxxlzU5LLG5V4B4zmrWjSyHRq2LLUl4irVKeac0P4dzZlaw1N_wlNreOoxvMX37h-fdmU5dAwlgfP_db-_ul2wMU3wMyZvVIGLj8kmCNpl1TyNeABCyLiz |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2025_109009 crossref_primary_10_1080_02656736_2022_2121863 crossref_primary_10_1109_TIM_2023_3325860 crossref_primary_10_1088_2057_1976_acbeaf crossref_primary_10_3389_fbioe_2023_1191327 crossref_primary_10_1016_j_cmpb_2021_106543 crossref_primary_10_1016_j_cmpb_2022_107316 crossref_primary_10_1039_D1NR05311F crossref_primary_10_3390_ma14040706 crossref_primary_10_1002_bem_22490 crossref_primary_10_1039_D3NR01269G |
| Cites_doi | 10.1109/TMAG.2013.2280523 10.1007/978-3-319-47540-0 10.1109/TBME.1984.325372 10.3109/02656736.2013.790092 10.1007/s40134-015-0128-6 10.1002/adhm.201400738 10.1016/j.eururo.2006.11.023 10.1007/s11060-010-0389-0 10.1109/TMAG.2014.2323119 10.3109/02656736.2010.534527 10.1088/0031-9155/59/18/5287 10.1080/0265673031000090701 10.1007/s11060-006-9195-0 10.1152/jappl.1948.1.2.93 10.1118/1.1748629 10.1109/TBME.1984.325373 10.1080/02656736.2018.1424945 10.1088/0031-9155/56/23/008 10.1016/S0360-3016(00)00425-9 10.1002/mrm.25687 10.1002/(SICI)1099-1360(199703)6:2<107::AID-MCDA147>3.0.CO;2-1 10.1088/0031-9155/60/18/7293 10.1002/mrm.26652 10.1097/HP.0000000000001210 10.1088/0031-9155/58/4/903 10.1088/0031-9155/45/5/201 10.1080/02656730500158360 10.1186/s12911-017-0524-3 10.1515/bmt-2013-0065 10.1016/j.biomaterials.2016.04.023 10.1088/1361-6560/ab5428 10.1080/0265673031000119006 10.1088/0034-4885/71/5/056701 10.1038/nature03808 10.1186/s12911-015-0225-8 10.1063/1.4935688 10.2528/PIER08072704 10.1152/jappl.1998.85.1.5 10.1002/adhm.201900102 10.1080/02656730601175479 10.1038/s41467-019-09704-x 10.1002/adhm.201600725 10.1088/0031-9155/60/14/5655 10.1016/j.dental.2007.07.002 10.2176/nmc.26.116 10.1371/journal.pone.0062663 10.1016/j.biomaterials.2015.07.034 10.1002/bem.21745 10.1097/HP.0b013e3181aff9db 10.17265/2159-5313/2016.09.003 10.1097/HP.0b013e3181f06c86 10.1016/B978-0-08-101925-2.00007-3 10.1088/0031-9155/55/2/N01 10.2320/matertrans.MRA2007317 10.1080/02656736.2016.1195018 10.1080/02656730110049529 10.1088/0031-9155/54/13/012 10.1109/22.97482 10.1016/S0360-3016(02)04144-5 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021 |
| Copyright_xml | – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021 |
| DBID | 0YH AAYXX CITATION 7X8 DOA |
| DOI | 10.1080/02656736.2021.1909758 |
| DatabaseName | Taylor & Francis Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1464-5157 |
| EndPage | 861 |
| ExternalDocumentID | oai_doaj_org_article_3de073275efd47648b8d9dc5d15e5ea5 10_1080_02656736_2021_1909758 1909758 |
| Genre | Research Article |
| GroupedDBID | --- 00X 0YH 29J 36B 4.4 5GY 5RE AALUX AAPXX AATTQ ABDBF ABLKL ACGEJ ACGFS ACUHS ADBBV ADCVX ADRBQ ADXPE AENEX AFKVX AIJEM AJWEG ALMA_UNASSIGNED_HOLDINGS AQTUD BABNJ BCNDV BLEHA BOHLJ CCCUG CS3 DKSSO DU5 EAP EAS EBB EBC EBD EBO EBS EBX EHN EMB EMK EMOBN EPL EPT ESX F5P GROUPED_DOAJ H13 HZ~ I-F KRBQP KSSTO KTTOD KWAYT L7B M4Z O9- P2P QZIEQ Q~Q SV3 TDBHL TFDNU TFL TFW TH9 TUS V1S ~1N AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c456t-9da6ac2680934b11b59b6b914dafd2b18133cee57fafcdfa8f00aea846d28c083 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656691000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-6736 1464-5157 |
| IngestDate | Fri Oct 03 12:53:52 EDT 2025 Thu Jul 10 18:44:35 EDT 2025 Tue Nov 18 21:11:33 EST 2025 Sat Nov 29 06:35:15 EST 2025 Mon Oct 20 23:48:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-9da6ac2680934b11b59b6b914dafd2b18133cee57fafcdfa8f00aea846d28c083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7441-8640 0000-0002-4829-5130 0000-0002-2382-4710 0000-0003-0049-3792 0000-0002-5437-4396 0000-0002-0664-5809 |
| OpenAccessLink | https://doaj.org/article/3de073275efd47648b8d9dc5d15e5ea5 |
| PQID | 2536493081 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2536493081 crossref_primary_10_1080_02656736_2021_1909758 crossref_citationtrail_10_1080_02656736_2021_1909758 informaworld_taylorfrancis_310_1080_02656736_2021_1909758 doaj_primary_oai_doaj_org_article_3de073275efd47648b8d9dc5d15e5ea5 |
| PublicationCentury | 2000 |
| PublicationDate | 1/1/2021 2021-01-01 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 1/1/2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hyperthermia |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | CIT0072 CIT0071 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0033 CIT0077 Ortega D (CIT0003) 2013 CIT0070 CIT0036 CIT0035 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Head WC (CIT0054) 1995 Ahlbom A (CIT0030) 1998; 74 CIT0047 Rubia-Rodríguez I (CIT0066) 2020 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0053 CIT0012 CIT0056 CIT0011 Bottauscio O (CIT0038) 2015; 51 CIT0055 Arduino A (CIT0024) 2017; 53 CIT0014 CIT0058 CIT0013 CIT0057 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 Andrä W (CIT0016) 2007 CIT0025 CIT0069 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0039 doi: 10.1109/TMAG.2013.2280523 – ident: CIT0068 doi: 10.1007/978-3-319-47540-0 – ident: CIT0026 doi: 10.1109/TBME.1984.325372 – ident: CIT0048 – ident: CIT0007 doi: 10.3109/02656736.2013.790092 – ident: CIT0019 doi: 10.1007/s40134-015-0128-6 – ident: CIT0004 doi: 10.1002/adhm.201400738 – ident: CIT0076 doi: 10.1016/j.eururo.2006.11.023 – ident: CIT0029 – ident: CIT0012 doi: 10.1007/s11060-010-0389-0 – ident: CIT0022 doi: 10.1109/TMAG.2014.2323119 – ident: CIT0073 doi: 10.3109/02656736.2010.534527 – ident: CIT0043 doi: 10.1088/0031-9155/59/18/5287 – ident: CIT0058 – ident: CIT0074 doi: 10.1080/0265673031000090701 – volume: 53 start-page: 1 year: 2017 ident: CIT0024 publication-title: IEEE Trans Magn – year: 2020 ident: CIT0066 publication-title: Int J Hyperthermia – ident: CIT0013 doi: 10.1007/s11060-006-9195-0 – ident: CIT0041 doi: 10.1152/jappl.1948.1.2.93 – ident: CIT0064 – ident: CIT0051 doi: 10.1118/1.1748629 – ident: CIT0032 doi: 10.1109/TBME.1984.325373 – ident: CIT0037 – ident: CIT0031 doi: 10.1080/02656736.2018.1424945 – ident: CIT0042 doi: 10.1088/0031-9155/56/23/008 – ident: CIT0009 doi: 10.1016/S0360-3016(00)00425-9 – ident: CIT0023 doi: 10.1002/mrm.25687 – ident: CIT0070 doi: 10.1002/(SICI)1099-1360(199703)6:2<107::AID-MCDA147>3.0.CO;2-1 – ident: CIT0021 doi: 10.1088/0031-9155/60/18/7293 – ident: CIT0025 doi: 10.1002/mrm.26652 – ident: CIT0033 doi: 10.1097/HP.0000000000001210 – ident: CIT0060 doi: 10.1088/0031-9155/58/4/903 – ident: CIT0008 doi: 10.1088/0031-9155/45/5/201 – volume: 51 start-page: 1 year: 2015 ident: CIT0038 publication-title: IEEE Trans Magn – ident: CIT0001 doi: 10.1080/02656730500158360 – ident: CIT0071 doi: 10.1186/s12911-017-0524-3 – ident: CIT0061 doi: 10.1515/bmt-2013-0065 – ident: CIT0014 doi: 10.1016/j.biomaterials.2016.04.023 – ident: CIT0053 doi: 10.1088/1361-6560/ab5428 – ident: CIT0065 – ident: CIT0075 doi: 10.1080/0265673031000119006 – ident: CIT0069 doi: 10.1088/0034-4885/71/5/056701 – ident: CIT0062 doi: 10.1038/nature03808 – ident: CIT0017 – ident: CIT0072 doi: 10.1186/s12911-015-0225-8 – ident: CIT0046 – ident: CIT0049 doi: 10.1063/1.4935688 – ident: CIT0059 doi: 10.2528/PIER08072704 – ident: CIT0077 doi: 10.1152/jappl.1998.85.1.5 – ident: CIT0005 doi: 10.1002/adhm.201900102 – ident: CIT0052 – ident: CIT0002 doi: 10.1080/02656730601175479 – volume-title: Magnetism in medicine: a handbook year: 2007 ident: CIT0016 – ident: CIT0063 doi: 10.1038/s41467-019-09704-x – ident: CIT0006 doi: 10.1002/adhm.201600725 – ident: CIT0040 doi: 10.1088/0031-9155/60/14/5655 – ident: CIT0057 doi: 10.1016/j.dental.2007.07.002 – ident: CIT0028 doi: 10.2176/nmc.26.116 – ident: CIT0067 doi: 10.1371/journal.pone.0062663 – ident: CIT0015 doi: 10.1016/j.biomaterials.2015.07.034 – ident: CIT0020 doi: 10.1002/bem.21745 – ident: CIT0034 doi: 10.1097/HP.0b013e3181aff9db – ident: CIT0047 doi: 10.17265/2159-5313/2016.09.003 – start-page: 60 volume-title: Nanoscience: volume 1: nanostructures through chemistry year: 2013 ident: CIT0003 – ident: CIT0035 doi: 10.1097/HP.0b013e3181f06c86 – ident: CIT0050 doi: 10.1016/B978-0-08-101925-2.00007-3 – ident: CIT0044 doi: 10.1088/0031-9155/55/2/N01 – ident: CIT0056 doi: 10.2320/matertrans.MRA2007317 – ident: CIT0045 – volume: 74 start-page: 494 year: 1998 ident: CIT0030 publication-title: Health Phys – ident: CIT0036 doi: 10.1080/02656736.2016.1195018 – ident: CIT0010 doi: 10.1080/02656730110049529 – ident: CIT0018 doi: 10.1088/0031-9155/54/13/012 – start-page: 85 year: 1995 ident: CIT0054 publication-title: Clin Orthop Relat Res – ident: CIT0027 doi: 10.1109/22.97482 – ident: CIT0011 doi: 10.1016/S0360-3016(02)04144-5 – ident: CIT0055 |
| SSID | ssj0004527 |
| Score | 2.352206 |
| Snippet | Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but... |
| SourceID | doaj proquest crossref informaworld |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 846 |
| SubjectTerms | eddy currents electromagnetic dosimetry in silico Magnetic hyperthermia medical implants |
| SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA46irjxLV5fRHDbsWmStlmqOIyggwuVcRVOXmOhtx1uewdczV_3JG0voyKz0F1bmtAm550vXwh5mRsljJIhY2j-M7w0GQjwGQNegvRQFqmm-_VDdXRUHx-rTzOacJhhlTGHDhNRRLLVUbnBDAsi7hWmDTLCkTC7K9g-ejSFQe9Vcq3A1CSiuvJvhxcJw6upzCITyn3ZxPO3bn5xT4nF_zcO0z9sdnJEB7f_wy_cIbfmKJS-nsTmLrniu3vkxsd5nf0-OX_f0aFpUUoo7Kg7aR9oEpu4abml3rkf1E70TjSadHSCtOmoafoEbB8b03rarE_bCLWhw9bEko93dOzpGk66uHuSfsc0eBNj0HUDdAd6Hx6QLwfvPr89zOajGjKLEdiYKQcl2KKsc8WFYcxIZUqjmHAQXGEwjOAc3bGsAgTrAtQhz8EDBj-uqC2GgQ_JXtd3_hGhsg6l5yAr571gQakgsOfKSAu2MnW9ImKZIW1nHvN4nEar2UJ3Og-ujoOr58Fdkf1ds9OJyOOyBm_i9O9ejjzc6UG_OdGzWmvuPNrIopI-OFGVoja1U85Kx6RHSZcroi4Kjx5TGSZMZ6ZofskHvFgkTaPOx4Uc6Hy_HXQheSkUx2ju8T_0_4TcjLdTPekp2Rs3W_-MXLdnYzNsnic1-gkBVxuO priority: 102 providerName: Taylor & Francis |
| Title | In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02656736.2021.1909758 https://www.proquest.com/docview/2536493081 https://doaj.org/article/3de073275efd47648b8d9dc5d15e5ea5 |
| Volume | 38 |
| WOSCitedRecordID | wos000656691000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1464-5157 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004527 issn: 0265-6736 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1464-5157 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004527 issn: 0265-6736 databaseCode: TFW dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1464-5157 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004527 issn: 0265-6736 databaseCode: 0YH dateStart: 20180503 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1464-5157 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004527 issn: 0265-6736 databaseCode: 0YH dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6iHgR1w8cV5cIXrs2bdIkRxWHXdDFw6rjKeRTC512mXaEPfmv-5K246CHuXgpJTRpyO8l7-Xl5fcQepUbSY1kISOw_GfwajJNtc-ILivNvK6K5NP98oFfXorVSn7aS_UVY8JGeuBx4F6XzoMUFpz54CivqDDCSWeZI8xDW4m9FKyeeTP1hyecj94VloLb57s7kVUbymIR7A0Lcgb6UPKY731PKyXy_r-oS_9ZqpP-WT5A9yfDEb8ZO3yMbvn2Ibr7cToaf4R-XbS4rxsAFusd2ybuAk5Ix3vGDfbO3WA7MjLhuAqD3sJ1i03dpVj0oTaNx_X6uonRMbjfmuil8Q4PHV7r72288Ih_wM51E83Gda3xLk69f4w-L99fvTvPpuwKmQWjacik05W2RSVyWVJDiGHSVEYS6nRwhQHNX5agQRkPOlgXtAh5rr0Ge8UVwoLl9gQdtV3rnyLMRKh8qRl33lMSpAwUWuaGWW25EWKB6Dy6yk7U4zEDRqPIzFA6gaIiKGoCZYHOdtWuR-6NQxXeRuh2H0fq7FQAAqUmgVKHBGqB5D7wakiekzCmOVHlgQ68nKVEwTSNZy-69d22VwUrKypLMMCe_Y9OnqB78b-jL-g5Oho2W_8C3bE_h7rfnKLb-bdzePKVOE3zAp5Xy6-_AUDmDq0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMqFd9UtLyNxTVkndmIfC2LViu2eFujN8rNEyibVJluJE3-dsZOsFhDqAW5REluJPZ75ZjzzGaG3Uy2oFswnBNR_Apc6UVS5hKgsV8ypPI0x3S_zYrHgFxditxYmpFUGH9r3RBFRV4fFHYLRY0rcO_AbWMhHAvcuJcdg0gSg3tvoDgNbG9L6lrOvu4zhRR9nYTHNfazi-Vs3v9inSOP_G4npH0o7WqLZw__xD4_QgwGH4pNecB6jW65-gu6dDzvtT9GPsxq3ZQVygtWWvBM3HkfBCWXLFXbWfsemJ3jCQamDGcRljXXZxNT2rtSVw-XqqgrJNrjd6BD0cRZ3DV6pyzrUT-Jv4AivAwpdlQpv097bZ-jz7OPyw2kyHNaQGMBgXSKsypVJcz4VGdWEaCZ0rgWhVnmbagASWQYGmRVeeWO94n46VU4B_LEpNwAED9Be3dTuEGHGfe4yxQrrHCVeCE-h50Izo0yhOZ8gOk6RNAOTeThQo5JkJDwdBleGwZXD4E7Q8bbZVU_lcVOD92H-ty8HJu54o1lfymFhy8w60JJpwZy3tMgp19wKa5glzIGsswkSu9IjuxiI8f2pKTK74QPejKImYdWHrRxVu2bTypRlORUZ4Lmjf-j_Ndo_XZ7P5fxs8ek5uh8e9dGlF2ivW2_cS3TXXHdlu34V19RPVTQfuA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagoIoLO2JYjcQ1ZRzbSXxkG1FRRj0U6M3y2kbKJKNJBokTf51nxxkVEOoBblESW4n9lu89P39G6OVcC6YF9xkB85_Bpc4UUy4jihaKO1XkMaf75ahcLqvTU3Gcqgn7VFYZYmg_EkVEWx2Ue239VBH3CsIGHsqRILrLyQF4NAGg9yq6FsmxQKRPFl8vEoaXY5qFxyr3aRPP37r5xT1FFv_fOEz_sNnRES1u_YdfuI1uJhSKX49icwddce1dtP8prbPfQz8OW9zXDUgJVjvqTtx5HMUmbFpusLP2OzYjvRMOJh2cIK5brOsuFrYPtW4crlfrJpTa4H6rQ8rHWTx0eKXO2rB7Ep9DGLwJGHRVK7wreu_vo8-L9ydvP2TpqIbMAAIbMmFVoUxeVHNBmSZEc6ELLQizyttcA4ygFNwxL73yxnpV-flcOQXgx-aVARj4AO21XeseIswrXziqeGmdY8QL4Rn0XGpulCl1Vc0Qm2ZImsRjHo7TaCSZ6E7T4MowuDIN7gwd7JqtRyKPyxq8CdO_eznwcMcb3eZMJrWW1DqwkXnJnbesLFilKyus4ZZwB5LOZ0hcFB45xDSMH89MkfSSD3gxSZoEnQ8LOap13baXOacFExTQ3KN_6P852j9-t5BHh8uPj9GN8GRMLT1Be8Nm656i6-bbUPebZ1GjfgKsKh5c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+assessment+of+collateral+eddy+current+heating+in+biocompatible+implants+subjected+to+magnetic+hyperthermia+treatments&rft.jtitle=International+journal+of+hyperthermia&rft.au=Irene+Rubia-Rodr%C3%ADguez&rft.au=Luca+Zilberti&rft.au=Alessandro+Arduino&rft.au=Oriano+Bottauscio&rft.date=2021-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0265-6736&rft.eissn=1464-5157&rft.volume=38&rft.issue=1&rft.spage=846&rft.epage=861&rft_id=info:doi/10.1080%2F02656736.2021.1909758&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3de073275efd47648b8d9dc5d15e5ea5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-6736&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-6736&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-6736&client=summon |