Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period
Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in Nort...
Gespeichert in:
| Veröffentlicht in: | Climate dynamics Jg. 54; H. 5-6; S. 3003 - 3020 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0930-7575, 1432-0894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC’s EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC’s EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (− AMO) phase to a negative PDO (− PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC’s EHT in 1996. PDO could impact NC’s EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC’s EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (− PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and − AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and − AMO changing to − PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and − PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant. |
|---|---|
| AbstractList | Based on the 1979-2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC's EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC's EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (- AMO) phase to a negative PDO (- PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC's EHT in 1996. PDO could impact NC's EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC's EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (- PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and - AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and - AMO changing to - PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and - PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant. Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC’s EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC’s EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (− AMO) phase to a negative PDO (− PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC’s EHT in 1996. PDO could impact NC’s EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC’s EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (− PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and − AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and − AMO changing to − PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and − PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant. |
| Audience | Academic |
| Author | Li, Chun Zhang, Guwei Yang, Xiaoye Zeng, Gang |
| Author_xml | – sequence: 1 givenname: Guwei orcidid: 0000-0001-8272-3007 surname: Zhang fullname: Zhang, Guwei organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology – sequence: 2 givenname: Gang surname: Zeng fullname: Zeng, Gang email: zenggang@nuist.edu.cn organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology – sequence: 3 givenname: Chun surname: Li fullname: Li, Chun organization: Physical Oceanography Laboratory and Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China – sequence: 4 givenname: Xiaoye surname: Yang fullname: Yang, Xiaoye organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology |
| BookMark | eNp9kk1v1DAQhiNUJLaFP8DJEhKCQ4qd2I5zXG35WKmwiI-zNZtMNq4Se7Gdiu2Nf46XIMH2UPlgaeZ5rNH4Pc_OrLOYZc8ZvWSUVm8CpaUqclrQnAomRH73KFswXqaSqvlZtqB1SfNKVOJJdh7CDaWMy6pYZL_W4x6aSFxHPl9tCNiWLD9uiLPE2Ii-xQZaGMgteANbM5h4SA2CP6PHEUlvdj2JOO7RQ5w8hmPzk_OxJ6veWCDuFj2JPZLRhUg8Nmgj4TQ_IHiSLOPap9njDoaAz_7eF9n3d2-_rT7k15v369XyOm-4kDGvm4pJznmNwLkEAR3f1lvRIKtaRQVt1bZQUpalqpVE1gkBCnnRqgJkJba0vMheze_uvfsxYYh6NKHBYQCLbgq64DStrpaKJ_TFPfTGTd6m6XRRVpLWvKJH6nKmdjCgNrZz0UOTToujadL_dCbVl5JVrKacqyS8PhESE9MmdzCFoNdfv5yyL_9je4Qh9sENUzTOhlNQzWDjXQgeO92YCEcsTWMGzag-JkTPCdEpIfpPQvRdUot76t6bEfzhYamcpZBgu0P_bzcPWL8BTy_NkA |
| CitedBy_id | crossref_primary_10_1016_j_accre_2025_04_002 crossref_primary_10_1007_s00704_023_04567_1 crossref_primary_10_1038_s41598_022_22628_9 crossref_primary_10_1186_s40645_024_00619_w crossref_primary_10_1016_j_uclim_2024_102002 crossref_primary_10_1088_1748_9326_acfaaf crossref_primary_10_1007_s00382_021_06051_w crossref_primary_10_1007_s00704_023_04454_9 crossref_primary_10_1007_s00382_023_06963_9 crossref_primary_10_1016_j_scitotenv_2023_166098 crossref_primary_10_1016_j_jenvman_2024_123549 crossref_primary_10_1002_joc_7099 crossref_primary_10_1016_j_atmosres_2022_106474 crossref_primary_10_1002_joc_8066 crossref_primary_10_1002_joc_7772 crossref_primary_10_3390_atmos13050649 crossref_primary_10_1007_s10584_025_03943_2 crossref_primary_10_3390_en16237768 crossref_primary_10_1007_s00382_022_06299_w crossref_primary_10_1016_j_atmosres_2024_107688 crossref_primary_10_1016_j_scitotenv_2024_177393 crossref_primary_10_3390_atmos12101265 crossref_primary_10_1016_j_atmosres_2022_106507 crossref_primary_10_1080_04353676_2025_2480999 crossref_primary_10_1007_s00382_024_07505_7 crossref_primary_10_1007_s00468_023_02467_5 crossref_primary_10_1029_2022PA004495 crossref_primary_10_1007_s00382_023_06667_0 crossref_primary_10_1002_joc_8113 crossref_primary_10_3390_atmos13030387 crossref_primary_10_3389_feart_2023_1120800 crossref_primary_10_1016_j_jhydrol_2025_132888 crossref_primary_10_1360_N072025_0052 crossref_primary_10_1002_joc_70074 crossref_primary_10_3390_atmos14010036 crossref_primary_10_1007_s11356_023_31790_0 crossref_primary_10_1007_s00382_022_06457_0 crossref_primary_10_1002_joc_8362 crossref_primary_10_1016_j_dendro_2024_126178 crossref_primary_10_1029_2022EA002359 crossref_primary_10_1002_joc_7951 crossref_primary_10_3390_jmse13061170 crossref_primary_10_1016_j_dynatmoce_2021_101260 crossref_primary_10_1007_s00382_023_06829_0 crossref_primary_10_1038_s41598_024_59812_y crossref_primary_10_1016_j_gloplacha_2024_104438 crossref_primary_10_1029_2023JD039147 crossref_primary_10_3389_feart_2022_1076396 crossref_primary_10_1016_j_gloplacha_2021_103645 crossref_primary_10_1007_s00382_020_05541_7 crossref_primary_10_1016_j_procs_2024_09_480 crossref_primary_10_1007_s00382_022_06465_0 crossref_primary_10_1007_s00704_023_04583_1 crossref_primary_10_3390_atmos13071031 crossref_primary_10_1088_1748_9326_ad95a1 crossref_primary_10_1007_s00382_024_07449_y crossref_primary_10_1007_s00376_020_0182_8 crossref_primary_10_3390_atmos14030495 crossref_primary_10_1007_s10584_021_03072_6 crossref_primary_10_3390_en18061554 crossref_primary_10_1038_s41467_024_48895_w crossref_primary_10_3390_su132212774 crossref_primary_10_1016_j_scitotenv_2023_162377 crossref_primary_10_1175_JCLI_D_21_0701_1 crossref_primary_10_1016_j_apgeochem_2025_106413 crossref_primary_10_1007_s00376_022_1415_9 crossref_primary_10_1002_joc_7617 crossref_primary_10_1002_joc_8828 crossref_primary_10_1088_1748_9326_ad80ae crossref_primary_10_1175_JCLI_D_21_0408_1 crossref_primary_10_1016_j_jhydrol_2022_128296 crossref_primary_10_1002_joc_7976 crossref_primary_10_1007_s13351_024_3162_6 crossref_primary_10_1029_2023JD039765 crossref_primary_10_5194_acp_21_11889_2021 crossref_primary_10_1016_j_jhydrol_2025_133982 crossref_primary_10_1016_j_palaeo_2024_112320 crossref_primary_10_1088_1748_9326_ac3f61 crossref_primary_10_1007_s00382_024_07354_4 crossref_primary_10_1016_j_gloplacha_2024_104458 crossref_primary_10_1007_s10584_022_03383_2 crossref_primary_10_1002_joc_8275 crossref_primary_10_1016_j_atmosres_2023_107053 crossref_primary_10_1007_s00382_023_06899_0 crossref_primary_10_1029_2021GL095563 crossref_primary_10_1186_s40562_024_00352_8 crossref_primary_10_1007_s00382_021_05827_4 crossref_primary_10_1007_s00382_021_05866_x crossref_primary_10_1007_s00382_025_07803_8 crossref_primary_10_1007_s11356_023_29052_0 crossref_primary_10_1029_2020JD033918 crossref_primary_10_3390_rs16193706 crossref_primary_10_3390_su17010199 crossref_primary_10_3390_atmos14010119 crossref_primary_10_3390_su152014882 crossref_primary_10_1016_j_accre_2020_08_003 crossref_primary_10_1002_joc_7596 crossref_primary_10_1002_joc_7353 crossref_primary_10_7717_peerj_13741 crossref_primary_10_1002_joc_7479 crossref_primary_10_1002_joc_7478 crossref_primary_10_1016_j_gloplacha_2023_104181 crossref_primary_10_1088_1748_9326_abdc8a crossref_primary_10_1007_s00382_022_06191_7 crossref_primary_10_1016_j_scitotenv_2022_155762 crossref_primary_10_1002_hyp_14417 crossref_primary_10_1007_s00382_023_06823_6 crossref_primary_10_1007_s00382_021_06009_y crossref_primary_10_1007_s11069_025_07317_w crossref_primary_10_3389_feart_2023_1138985 crossref_primary_10_1073_pnas_2218274120 crossref_primary_10_1002_joc_7917 crossref_primary_10_1016_j_atmosres_2021_105739 crossref_primary_10_1007_s00376_023_2319_z crossref_primary_10_1016_j_agrformet_2025_110631 crossref_primary_10_1007_s11430_025_1642_3 |
| Cites_doi | 10.1175/jcli-d-13-00235.1 10.1175/jcli-d-15-0792.1 10.1002/joc.6158 10.1002/qj.406 10.3878/j.issn.1006-9895.1503.14294 10.1002/asl.677 10.1175/1520-0477 10.1038/nature12268 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2 10.1002/qj.49712455204 10.1029/2002jd002670 10.1038/ngeo2738 10.1175/1520-0442 10.1029/2007JD009626 10.1126/science.1098704 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 10.1002/joc.3893 10.1175/BAMS-83-11-1631 10.1175/jcli-d-18-0218.1 10.1029/2002JD002193 10.1029/2008JD010929 10.1175/jcli-d-15-0105.1 10.1126/science.1201224 10.6038/cjg20130406 10.1175/JCLI-D-17-0657.1 10.1029/2006GL026894 10.1007/s00376-009-9029-z 10.1023/a:1005428602279 10.1080/16742834.2017.1335580 10.1080/16742834.2019.1605807 10.1007/3-540-28862-7_2 10.1029/2007jd008956 10.1002/joc.1989 10.1007/s11434-014-0425-0 10.1007/s00382-016-3283-4 10.1175/JCLI-D-19-0148.1 10.1029/2018GL079836 10.1175/JCLI-D-14-00647.1 10.1038/nclimate2617 10.1007/s00376-009-8148-x 10.1007/s003820000075 10.1007/s00376-016-5269-x 10.1080/16742834.2012.11446996 10.1175/JCLI3460.1 10.1002/jgrd.50779 10.1175/jcli-d-17-0340.1 10.1007/s00382-017-3694-x 10.1007/s00376-007-0126-6 10.1080/16742834.2019.1610326 10.1038/s41598-019-49974-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 COPYRIGHT 2020 Springer Climate Dynamics is a copyright of Springer, (2020). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Climate Dynamics is a copyright of Springer, (2020). All Rights Reserved. |
| DBID | AAYXX CITATION ISR 3V. 7TG 7TN 7UA 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7S9 L.6 |
| DOI | 10.1007/s00382-020-05155-z |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Military Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection (ProQuest) ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Oceanography |
| EISSN | 1432-0894 |
| EndPage | 3020 |
| ExternalDocumentID | A617190448 10_1007_s00382_020_05155_z |
| GeographicLocations | Eastern Europe East Asia China |
| GeographicLocations_xml | – name: Eastern Europe – name: East Asia – name: China |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 41575085; 41430528 – fundername: the Postgraduate Research & Practice Innovation Program of Jiangsu Province grantid: KYCX19_1026 – fundername: the National Key Research and Development Program of China grantid: 2017YFA0603804 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IFM IHE IHR IHW IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI PRINS Q9U 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c456t-9c7164449ea446a5af4b9b5ce17d8050d8b2866338986e1f55a8e42d82a675b03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516093100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0930-7575 |
| IngestDate | Thu Oct 02 09:56:48 EDT 2025 Sat Nov 01 15:19:26 EDT 2025 Sat Nov 29 10:15:47 EST 2025 Wed Nov 26 10:09:25 EST 2025 Thu May 22 21:19:22 EDT 2025 Sat Nov 29 02:46:44 EST 2025 Tue Nov 18 20:57:54 EST 2025 Fri Feb 21 02:33:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | North China Numerical simulation PDO Extreme high temperature AMO Interdecadal variation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-9c7164449ea446a5af4b9b5ce17d8050d8b2866338986e1f55a8e42d82a675b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8272-3007 |
| PQID | 2376094704 |
| PQPubID | 54165 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2400519684 proquest_journals_2376094704 gale_infotracacademiconefile_A617190448 gale_incontextgauss_ISR_A617190448 gale_healthsolutions_A617190448 crossref_citationtrail_10_1007_s00382_020_05155_z crossref_primary_10_1007_s00382_020_05155_z springer_journals_10_1007_s00382_020_05155_z |
| PublicationCentury | 2000 |
| PublicationDate | 20200300 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Observational, Theoretical and Computational Research on the Climate System |
| PublicationTitle | Climate dynamics |
| PublicationTitleAbbrev | Clim Dyn |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | HanTHeSXinHWangHRecent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian OceansClim Dyn2017503–41413142410.1007/s00382-017-3694-x XiaoDLiJSpatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970sJ Geophys Res200710.1029/2007jd008956 WangYLiSLuoDSeasonal response of Asian monsoonal climate to the Atlantic Multidecadal OscillationJ Geophys Res2009114D0211210.1029/2008JD010929 McGregorGRFerroCATStephensonDBProjected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses2005BerlinSpringer10.1007/3-540-28862-7_2 DuchonCELanczos filtering in one and two dimensionsJ Appl Meteorol19791881016102210.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10(5):1004–1020. https://doi.org/10.1175/1520-0442 BarrioPThe hot summer of 2010: redrawing the temperature record map of EuropeScience2011332602622022410.1126/science.1201224 ZhangGWZengGNiDHZhouGBDecadal shift of autumn drought in Southwest China and its possible causesChin J Atmos Sci201640231132310.3878/j.issn.1006-9895.1503.14294(in Chinese) DelworthTLMannMEObserved and simulated multi- decadal variability in the Northern hemisphereClim Dyn20001666167110.1007/s003820000075 KucharskiFBraccoAYooJHTompkinsAMFeudaleLRutiPDell’AquilaAA Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfallQ J R Meteorol Soc200913564056957910.1002/qj.406 Trednberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geol Res Lett 33(12):L12704. https://doi:10.1029/2006gl026894 DengKSongYTingMLinAWangZAn intensified mode of variability modulating the summer heat waves in eastern Europe and northern ChinaGeol Res Lett2018451136136910.1029/2018GL079836 MeehlGATebaldiCMore intense, more frequent, and longer lasting heat waves in the 21st centuryScience2004305568699499710.1126/science.1098704 XiePArkinPAGlobal precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputsBull Am Meteorol Soc199778112539255810.1175/1520-0477 NapoliACrespiARagoneFMaugeriMPasqueroCVariability of orographic enhancement of precipitation in the Alpine regionSci Rep201910.1038/s41598-019-49974-5 RaynerNAParkerDEHortonEBFollandCKAlexanderLVRowellDPKentECKaplanAGlobal analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth centuryJ Geophys Res2003108D1410.1029/2002jd002670 LiRXSunJQInterdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patternsAtmos Ocean Sci Lett2017111637010.1080/16742834.2017.1335580 DelworthTLZengFVecchiGAYangXZhangLZhangRThe North Atlantic Oscillation as a driver of rapid climate change in the Northern hemisphereNat Geosci2016950951210.1038/ngeo2738 SunJQPossible impact of the summer North Atlantic oscillation on extreme hot events in ChinaAtmos Ocean Sci Lett20125323123410.1080/16742834.2012.11446996 GhoshRMüllerWABaehrJBaderJImpact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heatingClim Dyn2017483547356310.1007/s00382-016-3283-4 ZhangRDelworthTLSimulated tropical response to a substantial weakening of the Atlantic thermohaline circulationJ Clim2005181853186010.1175/JCLI3460.1 SiDDingYOceanic forcings of the interdecadal variability in East Asian summer rainfallJ Clim201629217633764910.1175/jcli-d-15-0792.1 ZhaiPMChanges of climate extremes in ChinaClim Chang199942120321810.1023/a:1005428602279 SunJQWangHJYuanWDecadal variability of the extreme hot events in China and its associated with atmospheric circulationsClim Environ Res2011162199208(in Chinese) LeiYNGongDYZhangZYGuoDHeXZSpatial-temporal characteristics of high-temperature events in summer in eastern China and the associated atmospheric circulationGeograph Res2009283654662(in Chinese) SunJQWangHJYuanWDecadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperatureJ Geophys Res2008113D1510710.1029/2007JD009626 DingTQianWHYanZWChanges in hot days and heat waves in China during 1961–2007Int J Climatol2009301452146210.1002/joc.1989 WangLXuPChenWLiuYInterdecadal variations of the silk road patternJ Clim201730249915993210.1175/jcli-d-17-0340.1 FischerEMKnuttiRAnthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremesNat Clim Chang20155656056410.1038/nclimate2617 MiaoJPWangTWangHJInterdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulationsJ Clim201910.1175/JCLI-D-19-0148.1 SunJQRecord-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013Chin Sci Bull2014593465347010.1007/s11434-014-0425-0(in Chinese) Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM5.0). NCAR Tech Note NCAR/TN-486 +STR, p 274 WangYJRenFMZhangXBSpatial and temporal variations of regional high temperature events in ChinaInt J Clim201334103054306510.1002/joc.3893 XuYGaoXJShenYXuCHShiYGiorgiFA daily temperature dataset over China and its application in validating a RCM simulationAdv Atmos Sci20092676377210.1007/s00376-009-9029-z MantuaNJHareSRZhangYWallaceJMFrancisRCA Pacific Interdecadal Climate Oscillation with umpacts on Salmon productionBull Am Meteorol Soc19977861069107910.1175/1520-0477 KanamitsuMEbisuzakiWWoollenJYangSKHniloJJFiorinoMPotterGLNCEP-DOE AMIP-II reanalysis (R-2)Bull Am Meteorol Soc200210.1175/BAMS-83-11-1631 GongDYHoCHArctic Oscillation signals in the East Asian summer monsoonJ Geophys Res2003108406610.1029/2002JD002193 ZhuJHuangDQZhangYCHuangANKuangXYHuangYDecadal changes of meiyu rainfall around 1991 and its relationship with two types of ENSOJ Geophys Res Atmos20131189766977710.1002/jgrd.50779 WeiJYangHSunSQRelationship between the anomaly longitude position of subtropical high in the western Pacific and severe hot weather in North China in summerActa Meteorol Sin2004623308316(in Chinese) ChengQZhouTJMultidecadal variability of north china aridity and its relationship to PDO during 1900–2010J Clim20142731210122210.1175/jcli-d-13-00235.1 DengKSongYLinALiCHuCUnprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST modeAtmos Ocean Sci Lett201912424625310.1080/16742834.2019.1605807 TaoPZhangYLarge-scale circulation features associated with the heat wave over Northeast China in summer 2018Atmos Ocean Sci Lett201912425426010.1080/16742834.2019.1610326 BrethertonCSWidmannMDymnikovVPWallaceJMBladéIThe effective number of spatial degrees of freedom of a time-varying fieldJ Clim1999121990200910.1175/1520-0442 GulevSKNorth Atlantic Ocean-control on surface heat flux on multidecadal timescalesNature2013499745946446710.1038/nature12268 ZhangLDelworthTLAnalysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics LaboratoryJ Clim2015287678770110.1175/JCLI-D-14-00647.1 WuBZhouTLiTImpacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoonJ Clim20162993253327110.1175/jcli-d-15-0105.1 HuangDQDaiAGYangBYanPZhuJZhangYCContributions of different combinations of the IPO and AMO to recent changes in winter East Asian JetsJ Clim201810.1175/jcli-d-18-0218.1 WuJGaoXJA gridded daily observation dataset over China region and comparison with the other datasetsChin J Geophys2013561102111110.6038/cjg20130406(in Chinese) PlumbRAOn the three-dimensional propagation of stationary wavesJ Atmos Sci198542321722910.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2 WuBLinJZhouTInterdecadal circumglobal teleconnection pattern during boreal summerAtmos Sci Lett20161744645210.1002/asl.677 ZhangZQSunXGYangXQUnderstanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signalsJ Clim201831145485556010.1175/JCLI-D-17-0657.1 LuRYOhJHKimBJBeakHJHuangRHAssociations with the interannual variations of onset and withdrawal of the ChangmaAdv Atmos Sci20011861066108010.1002/qj.49712455204 YangHLiCYDiagnostic study of serious high temperature over South China in 2003 summerClim Environ Res20051018085(in Chinese) WangMGuQJiaXGeJAn assessment of the impact of PDO on autumn droughts in North China based on the PDSIInt J Clim2019395338535010.1002/joc.6158 LiangXZWangWCAssociation between China monsoon rainfall and tropospheric jetsQ J R Meteorol Soc19981242597262310.1002/qj.49712455204 AikenLSWestSGMultiple regression: testing and interpreting interactions1991Newbury ParkSage LiSBatesGTInfluence of the Atlantic multidecadal oscillation on the winter climate of East ChinaAdv Atmos Sci200724112613510.1007/s00376-007-0126-6 ZhuYLWangTMaJHInfluence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4Adv Atmos Sci201633670671410.1007/s00376-016-5269-x YuanWSunJQEnhancement of the summer North Atlantic Oscillation influence on Northern Hemisphere air temperatureAdv Atmos Sci20092661209121410.1007/s00376-009-8148-x NJ Mantua (5155_CR25) 1997; 78 T Han (5155_CR15) 2017; 50 P Tao (5155_CR36) 2019; 12 RX Li (5155_CR21) 2017; 11 GW Zhang (5155_CR55) 2016; 40 TL Delworth (5155_CR6) 2016; 9 5155_CR37 S Li (5155_CR20) 2007; 24 ZQ Zhang (5155_CR56) 2018; 31 NA Rayner (5155_CR30) 2003; 108 YN Lei (5155_CR19) 2009; 28 K Deng (5155_CR8) 2019; 12 JQ Sun (5155_CR33) 2014; 59 YL Zhu (5155_CR58) 2016; 33 DQ Huang (5155_CR16) 2018 RY Lu (5155_CR23) 2001; 18 5155_CR28 P Barrio (5155_CR2) 2011; 332 B Wu (5155_CR45) 2016; 29 J Zhu (5155_CR57) 2013; 118 CE Duchon (5155_CR10) 1979; 18 CS Bretherton (5155_CR3) 1999; 12 M Kanamitsu (5155_CR17) 2002 JQ Sun (5155_CR32) 2012; 5 H Yang (5155_CR49) 2005; 10 D Xiao (5155_CR46) 2007 R Ghosh (5155_CR12) 2017; 48 EM Fischer (5155_CR11) 2015; 5 F Kucharski (5155_CR18) 2009; 135 JQ Sun (5155_CR35) 2011; 16 J Wu (5155_CR43) 2013; 56 SK Gulev (5155_CR14) 2013; 499 JQ Sun (5155_CR34) 2008; 113 5155_CR54 Q Cheng (5155_CR4) 2014; 27 GA Meehl (5155_CR27) 2004; 305 T Ding (5155_CR9) 2009; 30 A Napoli (5155_CR59) 2019 J Wei (5155_CR42) 2004; 62 DY Gong (5155_CR13) 2003; 108 W Yuan (5155_CR50) 2009; 26 RA Plumb (5155_CR29) 1985; 42 JP Miao (5155_CR60) 2019 M Wang (5155_CR41) 2019; 39 P Xie (5155_CR47) 1997; 78 YJ Wang (5155_CR39) 2013; 34 GR McGregor (5155_CR26) 2005 PM Zhai (5155_CR51) 1999; 42 B Wu (5155_CR44) 2016; 17 D Si (5155_CR31) 2016; 29 Y Wang (5155_CR38) 2009; 114 L Zhang (5155_CR53) 2015; 28 K Deng (5155_CR7) 2018; 45 XZ Liang (5155_CR22) 1998; 124 Y Xu (5155_CR48) 2009; 26 TL Delworth (5155_CR5) 2000; 16 LS Aiken (5155_CR1) 1991 L Wang (5155_CR40) 2017; 30 R Zhang (5155_CR52) 2005; 18 |
| References_xml | – reference: KanamitsuMEbisuzakiWWoollenJYangSKHniloJJFiorinoMPotterGLNCEP-DOE AMIP-II reanalysis (R-2)Bull Am Meteorol Soc200210.1175/BAMS-83-11-1631 – reference: ZhangLDelworthTLAnalysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics LaboratoryJ Clim2015287678770110.1175/JCLI-D-14-00647.1 – reference: ZhuJHuangDQZhangYCHuangANKuangXYHuangYDecadal changes of meiyu rainfall around 1991 and its relationship with two types of ENSOJ Geophys Res Atmos20131189766977710.1002/jgrd.50779 – reference: LuRYOhJHKimBJBeakHJHuangRHAssociations with the interannual variations of onset and withdrawal of the ChangmaAdv Atmos Sci20011861066108010.1002/qj.49712455204 – reference: WuBLinJZhouTInterdecadal circumglobal teleconnection pattern during boreal summerAtmos Sci Lett20161744645210.1002/asl.677 – reference: SiDDingYOceanic forcings of the interdecadal variability in East Asian summer rainfallJ Clim201629217633764910.1175/jcli-d-15-0792.1 – reference: DengKSongYTingMLinAWangZAn intensified mode of variability modulating the summer heat waves in eastern Europe and northern ChinaGeol Res Lett2018451136136910.1029/2018GL079836 – reference: WangYJRenFMZhangXBSpatial and temporal variations of regional high temperature events in ChinaInt J Clim201334103054306510.1002/joc.3893 – reference: XiePArkinPAGlobal precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputsBull Am Meteorol Soc199778112539255810.1175/1520-0477 – reference: BarrioPThe hot summer of 2010: redrawing the temperature record map of EuropeScience2011332602622022410.1126/science.1201224 – reference: RaynerNAParkerDEHortonEBFollandCKAlexanderLVRowellDPKentECKaplanAGlobal analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth centuryJ Geophys Res2003108D1410.1029/2002jd002670 – reference: DingTQianWHYanZWChanges in hot days and heat waves in China during 1961–2007Int J Climatol2009301452146210.1002/joc.1989 – reference: WeiJYangHSunSQRelationship between the anomaly longitude position of subtropical high in the western Pacific and severe hot weather in North China in summerActa Meteorol Sin2004623308316(in Chinese) – reference: Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM5.0). NCAR Tech Note NCAR/TN-486 +STR, p 274 – reference: YangHLiCYDiagnostic study of serious high temperature over South China in 2003 summerClim Environ Res20051018085(in Chinese) – reference: ZhaiPMChanges of climate extremes in ChinaClim Chang199942120321810.1023/a:1005428602279 – reference: GulevSKNorth Atlantic Ocean-control on surface heat flux on multidecadal timescalesNature2013499745946446710.1038/nature12268 – reference: DuchonCELanczos filtering in one and two dimensionsJ Appl Meteorol19791881016102210.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 – reference: XiaoDLiJSpatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970sJ Geophys Res200710.1029/2007jd008956 – reference: ZhangGWZengGNiDHZhouGBDecadal shift of autumn drought in Southwest China and its possible causesChin J Atmos Sci201640231132310.3878/j.issn.1006-9895.1503.14294(in Chinese) – reference: ZhangZQSunXGYangXQUnderstanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signalsJ Clim201831145485556010.1175/JCLI-D-17-0657.1 – reference: BrethertonCSWidmannMDymnikovVPWallaceJMBladéIThe effective number of spatial degrees of freedom of a time-varying fieldJ Clim1999121990200910.1175/1520-0442 – reference: Trednberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geol Res Lett 33(12):L12704. https://doi:10.1029/2006gl026894 – reference: WangLXuPChenWLiuYInterdecadal variations of the silk road patternJ Clim201730249915993210.1175/jcli-d-17-0340.1 – reference: MiaoJPWangTWangHJInterdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulationsJ Clim201910.1175/JCLI-D-19-0148.1 – reference: LiRXSunJQInterdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patternsAtmos Ocean Sci Lett2017111637010.1080/16742834.2017.1335580 – reference: SunJQPossible impact of the summer North Atlantic oscillation on extreme hot events in ChinaAtmos Ocean Sci Lett20125323123410.1080/16742834.2012.11446996 – reference: ChengQZhouTJMultidecadal variability of north china aridity and its relationship to PDO during 1900–2010J Clim20142731210122210.1175/jcli-d-13-00235.1 – reference: PlumbRAOn the three-dimensional propagation of stationary wavesJ Atmos Sci198542321722910.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2 – reference: GongDYHoCHArctic Oscillation signals in the East Asian summer monsoonJ Geophys Res2003108406610.1029/2002JD002193 – reference: SunJQWangHJYuanWDecadal variability of the extreme hot events in China and its associated with atmospheric circulationsClim Environ Res2011162199208(in Chinese) – reference: WangYLiSLuoDSeasonal response of Asian monsoonal climate to the Atlantic Multidecadal OscillationJ Geophys Res2009114D0211210.1029/2008JD010929 – reference: MeehlGATebaldiCMore intense, more frequent, and longer lasting heat waves in the 21st centuryScience2004305568699499710.1126/science.1098704 – reference: DengKSongYLinALiCHuCUnprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST modeAtmos Ocean Sci Lett201912424625310.1080/16742834.2019.1605807 – reference: WuJGaoXJA gridded daily observation dataset over China region and comparison with the other datasetsChin J Geophys2013561102111110.6038/cjg20130406(in Chinese) – reference: HanTHeSXinHWangHRecent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian OceansClim Dyn2017503–41413142410.1007/s00382-017-3694-x – reference: ZhuYLWangTMaJHInfluence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4Adv Atmos Sci201633670671410.1007/s00376-016-5269-x – reference: LiangXZWangWCAssociation between China monsoon rainfall and tropospheric jetsQ J R Meteorol Soc19981242597262310.1002/qj.49712455204 – reference: ZhangRDelworthTLSimulated tropical response to a substantial weakening of the Atlantic thermohaline circulationJ Clim2005181853186010.1175/JCLI3460.1 – reference: XuYGaoXJShenYXuCHShiYGiorgiFA daily temperature dataset over China and its application in validating a RCM simulationAdv Atmos Sci20092676377210.1007/s00376-009-9029-z – reference: MantuaNJHareSRZhangYWallaceJMFrancisRCA Pacific Interdecadal Climate Oscillation with umpacts on Salmon productionBull Am Meteorol Soc19977861069107910.1175/1520-0477 – reference: SunJQWangHJYuanWDecadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperatureJ Geophys Res2008113D1510710.1029/2007JD009626 – reference: TaoPZhangYLarge-scale circulation features associated with the heat wave over Northeast China in summer 2018Atmos Ocean Sci Lett201912425426010.1080/16742834.2019.1610326 – reference: WangMGuQJiaXGeJAn assessment of the impact of PDO on autumn droughts in North China based on the PDSIInt J Clim2019395338535010.1002/joc.6158 – reference: DelworthTLZengFVecchiGAYangXZhangLZhangRThe North Atlantic Oscillation as a driver of rapid climate change in the Northern hemisphereNat Geosci2016950951210.1038/ngeo2738 – reference: McGregorGRFerroCATStephensonDBProjected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses2005BerlinSpringer10.1007/3-540-28862-7_2 – reference: LeiYNGongDYZhangZYGuoDHeXZSpatial-temporal characteristics of high-temperature events in summer in eastern China and the associated atmospheric circulationGeograph Res2009283654662(in Chinese) – reference: SunJQRecord-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013Chin Sci Bull2014593465347010.1007/s11434-014-0425-0(in Chinese) – reference: AikenLSWestSGMultiple regression: testing and interpreting interactions1991Newbury ParkSage – reference: GhoshRMüllerWABaehrJBaderJImpact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heatingClim Dyn2017483547356310.1007/s00382-016-3283-4 – reference: LiSBatesGTInfluence of the Atlantic multidecadal oscillation on the winter climate of East ChinaAdv Atmos Sci200724112613510.1007/s00376-007-0126-6 – reference: WuBZhouTLiTImpacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoonJ Clim20162993253327110.1175/jcli-d-15-0105.1 – reference: FischerEMKnuttiRAnthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremesNat Clim Chang20155656056410.1038/nclimate2617 – reference: DelworthTLMannMEObserved and simulated multi- decadal variability in the Northern hemisphereClim Dyn20001666167110.1007/s003820000075 – reference: NapoliACrespiARagoneFMaugeriMPasqueroCVariability of orographic enhancement of precipitation in the Alpine regionSci Rep201910.1038/s41598-019-49974-5 – reference: HuangDQDaiAGYangBYanPZhuJZhangYCContributions of different combinations of the IPO and AMO to recent changes in winter East Asian JetsJ Clim201810.1175/jcli-d-18-0218.1 – reference: KucharskiFBraccoAYooJHTompkinsAMFeudaleLRutiPDell’AquilaAA Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfallQ J R Meteorol Soc200913564056957910.1002/qj.406 – reference: Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10(5):1004–1020. https://doi.org/10.1175/1520-0442 – reference: YuanWSunJQEnhancement of the summer North Atlantic Oscillation influence on Northern Hemisphere air temperatureAdv Atmos Sci20092661209121410.1007/s00376-009-8148-x – volume: 27 start-page: 1210 issue: 3 year: 2014 ident: 5155_CR4 publication-title: J Clim doi: 10.1175/jcli-d-13-00235.1 – volume: 29 start-page: 7633 issue: 21 year: 2016 ident: 5155_CR31 publication-title: J Clim doi: 10.1175/jcli-d-15-0792.1 – volume: 39 start-page: 5338 year: 2019 ident: 5155_CR41 publication-title: Int J Clim doi: 10.1002/joc.6158 – volume: 16 start-page: 199 issue: 2 year: 2011 ident: 5155_CR35 publication-title: Clim Environ Res – volume: 135 start-page: 569 issue: 640 year: 2009 ident: 5155_CR18 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.406 – volume: 40 start-page: 311 issue: 2 year: 2016 ident: 5155_CR55 publication-title: Chin J Atmos Sci doi: 10.3878/j.issn.1006-9895.1503.14294 – volume: 17 start-page: 446 year: 2016 ident: 5155_CR44 publication-title: Atmos Sci Lett doi: 10.1002/asl.677 – volume: 78 start-page: 1069 issue: 6 year: 1997 ident: 5155_CR25 publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477 – volume: 499 start-page: 464 issue: 7459 year: 2013 ident: 5155_CR14 publication-title: Nature doi: 10.1038/nature12268 – volume: 42 start-page: 217 issue: 3 year: 1985 ident: 5155_CR29 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2 – volume: 18 start-page: 1066 issue: 6 year: 2001 ident: 5155_CR23 publication-title: Adv Atmos Sci doi: 10.1002/qj.49712455204 – volume: 108 start-page: D14 year: 2003 ident: 5155_CR30 publication-title: J Geophys Res doi: 10.1029/2002jd002670 – volume: 9 start-page: 509 year: 2016 ident: 5155_CR6 publication-title: Nat Geosci doi: 10.1038/ngeo2738 – ident: 5155_CR54 doi: 10.1175/1520-0442 – volume: 113 start-page: D15107 year: 2008 ident: 5155_CR34 publication-title: J Geophys Res doi: 10.1029/2007JD009626 – volume: 305 start-page: 994 issue: 5686 year: 2004 ident: 5155_CR27 publication-title: Science doi: 10.1126/science.1098704 – volume: 18 start-page: 1016 issue: 8 year: 1979 ident: 5155_CR10 publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 – volume: 34 start-page: 3054 issue: 10 year: 2013 ident: 5155_CR39 publication-title: Int J Clim doi: 10.1002/joc.3893 – year: 2002 ident: 5155_CR17 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-83-11-1631 – volume: 28 start-page: 654 issue: 3 year: 2009 ident: 5155_CR19 publication-title: Geograph Res – year: 2018 ident: 5155_CR16 publication-title: J Clim doi: 10.1175/jcli-d-18-0218.1 – volume: 10 start-page: 80 issue: 1 year: 2005 ident: 5155_CR49 publication-title: Clim Environ Res – volume: 108 start-page: 4066 year: 2003 ident: 5155_CR13 publication-title: J Geophys Res doi: 10.1029/2002JD002193 – volume: 78 start-page: 2539 issue: 11 year: 1997 ident: 5155_CR47 publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477 – volume: 114 start-page: D02112 year: 2009 ident: 5155_CR38 publication-title: J Geophys Res doi: 10.1029/2008JD010929 – volume: 29 start-page: 3253 issue: 9 year: 2016 ident: 5155_CR45 publication-title: J Clim doi: 10.1175/jcli-d-15-0105.1 – volume: 332 start-page: 220 issue: 6026 year: 2011 ident: 5155_CR2 publication-title: Science doi: 10.1126/science.1201224 – volume: 56 start-page: 1102 year: 2013 ident: 5155_CR43 publication-title: Chin J Geophys doi: 10.6038/cjg20130406 – volume: 31 start-page: 5485 issue: 14 year: 2018 ident: 5155_CR56 publication-title: J Clim doi: 10.1175/JCLI-D-17-0657.1 – ident: 5155_CR37 doi: 10.1029/2006GL026894 – volume: 26 start-page: 763 year: 2009 ident: 5155_CR48 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-9029-z – volume: 42 start-page: 203 issue: 1 year: 1999 ident: 5155_CR51 publication-title: Clim Chang doi: 10.1023/a:1005428602279 – volume: 11 start-page: 63 issue: 1 year: 2017 ident: 5155_CR21 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2017.1335580 – volume: 12 start-page: 246 issue: 4 year: 2019 ident: 5155_CR8 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2019.1605807 – volume-title: Projected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses year: 2005 ident: 5155_CR26 doi: 10.1007/3-540-28862-7_2 – year: 2007 ident: 5155_CR46 publication-title: J Geophys Res doi: 10.1029/2007jd008956 – volume-title: Multiple regression: testing and interpreting interactions year: 1991 ident: 5155_CR1 – volume: 30 start-page: 1452 year: 2009 ident: 5155_CR9 publication-title: Int J Climatol doi: 10.1002/joc.1989 – volume: 59 start-page: 3465 year: 2014 ident: 5155_CR33 publication-title: Chin Sci Bull doi: 10.1007/s11434-014-0425-0 – volume: 62 start-page: 308 issue: 3 year: 2004 ident: 5155_CR42 publication-title: Acta Meteorol Sin – volume: 48 start-page: 3547 year: 2017 ident: 5155_CR12 publication-title: Clim Dyn doi: 10.1007/s00382-016-3283-4 – year: 2019 ident: 5155_CR60 publication-title: J Clim doi: 10.1175/JCLI-D-19-0148.1 – ident: 5155_CR28 – volume: 45 start-page: 361 issue: 11 year: 2018 ident: 5155_CR7 publication-title: Geol Res Lett doi: 10.1029/2018GL079836 – volume: 28 start-page: 7678 year: 2015 ident: 5155_CR53 publication-title: J Clim doi: 10.1175/JCLI-D-14-00647.1 – volume: 5 start-page: 560 issue: 6 year: 2015 ident: 5155_CR11 publication-title: Nat Clim Chang doi: 10.1038/nclimate2617 – volume: 26 start-page: 1209 issue: 6 year: 2009 ident: 5155_CR50 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-8148-x – volume: 16 start-page: 661 year: 2000 ident: 5155_CR5 publication-title: Clim Dyn doi: 10.1007/s003820000075 – volume: 33 start-page: 706 issue: 6 year: 2016 ident: 5155_CR58 publication-title: Adv Atmos Sci doi: 10.1007/s00376-016-5269-x – volume: 12 start-page: 1990 year: 1999 ident: 5155_CR3 publication-title: J Clim doi: 10.1175/1520-0442 – volume: 5 start-page: 231 issue: 3 year: 2012 ident: 5155_CR32 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2012.11446996 – volume: 124 start-page: 2597 year: 1998 ident: 5155_CR22 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49712455204 – volume: 18 start-page: 1853 year: 2005 ident: 5155_CR52 publication-title: J Clim doi: 10.1175/JCLI3460.1 – volume: 118 start-page: 9766 year: 2013 ident: 5155_CR57 publication-title: J Geophys Res Atmos doi: 10.1002/jgrd.50779 – volume: 30 start-page: 9915 issue: 24 year: 2017 ident: 5155_CR40 publication-title: J Clim doi: 10.1175/jcli-d-17-0340.1 – volume: 50 start-page: 1413 issue: 3–4 year: 2017 ident: 5155_CR15 publication-title: Clim Dyn doi: 10.1007/s00382-017-3694-x – volume: 24 start-page: 126 issue: 1 year: 2007 ident: 5155_CR20 publication-title: Adv Atmos Sci doi: 10.1007/s00376-007-0126-6 – volume: 12 start-page: 254 issue: 4 year: 2019 ident: 5155_CR36 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2019.1610326 – year: 2019 ident: 5155_CR59 publication-title: Sci Rep doi: 10.1038/s41598-019-49974-5 |
| SSID | ssj0014672 |
| Score | 2.6123133 |
| Snippet | Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific... Based on the 1979-2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3003 |
| SubjectTerms | Air temperature Analysis Anomalies Anticyclones Anticyclonic circulation Atlantic Oscillation Atmospheric models Atmospheric research Atmospheric waves basins China Circulation anomalies climate Climate cycles climate models Climate prediction Climatology Cold Computer simulation data collection Earth and Environmental Science Earth Sciences Easterlies Extreme heat Extreme high temperatures Geophysics/Geodesy High temperature Interdecadal variability latitude Mathematical models Northern Hemisphere Numerical analysis Numerical simulations observational studies Oceanography Pacific Decadal Oscillation Sea surface Sea surface temperature Sea surface temperature anomalies Simulation summer Surface temperature surface water temperature Teleconnection patterns Teleconnections Temperature Temperature anomalies Variability Wave packets Wind wind direction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4FLeYtACwNCcACLbOI09gktpRU9dLsqIPVmObZTVSpJ2exWam_88854vakWRC8cI09e8nj8jWfmG8bemKyopS1TXuTooojMe07RJV4rVUhFoSlbhWYT5Xgsj47UJB64dTGtcmkTg6F2raUz8o8he0OJMhWfzn5x6hpF0dXYQuM2WyOmMjFga593xpPDPo6AZiDEEVSe8hKRSSybCcVzFBTLOLlPoc8Jv1zZmv400H9FSsMGtHvvfz_9PluP0BNGC115wG755iFL9hE1t9NwuA5vYfv0BCFsuHrEfu-FEkpoa5h8OQDTOBjtH0DbAJFMTJ23xuEDz9HdXrB9X-AAoLWnM0cgImQg5qtI29zRYAgTQWjaDZQ8Cog_4WfbzQAtL-5_IFJ-gYsPiIC5dY_Zj92d79tfeWzZwC0isRlXlvwvIZQ36GeawtSiUlVh_bB0Mi1SJ6tMIshBmCS3_LAuCiO9yJzMDHouVZo_YYOmbfxTBgj1pC-9csO8FEVmpcp87nFr8U4IU9uEDZezpW3kM6e2Gqe6Z2IOM6xxhnWYYX2ZsPf9PWcLNo8bpV-SEuhFRWpvCvQIUR_iKHRsE_Y6SBCRRkOZOsdm3nV679vhitC7KFS3-IHWxMIH_E3i3lqR3FgqkI6mpNPX2pOwV_0wGgGK7JjGt3OUEQGKb0mU-bBU0-tH_PsXn938xufsbhYWCOXcbbDBbDr3m-yOPZ-ddNMXcbFdAQunLeQ priority: 102 providerName: ProQuest |
| Title | Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period |
| URI | https://link.springer.com/article/10.1007/s00382-020-05155-z https://www.proquest.com/docview/2376094704 https://www.proquest.com/docview/2400519684 |
| Volume | 54 |
| WOSCitedRecordID | wos000516093100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014672 issn: 0930-7575 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoywEh8SggAmUxCMGBWkocp7GPS2lFD_tgC6g3y3EcVKlNqs1upfbGP2fG6wQtLwkukSLPWol3PP4mM_MNIa8Mzypp85hlKbgogjvHMLrEKqUyqTA0ZQvfbCIfj-XJiZqGorC2y3bvQpLeUvfFbhjE4gzdHd-XhF1vkC047iRux9nxlz52AFvfxw5UGrMc0Egolfn9HGvH0c9G-ZfoqD90Du_-3-PeI3cCyKTDlVbcJzdcvU2iEeDjZu4_o9PXdP_sFMCqv9smtyfWmTqwVz8g34587SRtKjp9P6GmLulwNKFNTZFdYl46a0qY_xL87BXN9xUMUDDz-LGRIgMyRcqrwNfc4qCPD1HfrZti1igF4EnPm3ZBweTCwUdFzK5g11FkXm7Kh-Tz4cGn_Q8s9GpgFiDYgimLjpcQyhlwME1mKlGoIrMuyUsZZ3EpCy4B3QA-knsuqbLMSCd4KbkBl6WI00dks25q95hQwHjS5U6VSZqLjFupuEsdnCmuFMJUNiJJ95dpG4jMsZ_Gme4pmP3aa1h77ddeX0fkbf-bixWNx1-ln6Mm6FUpam8D9BDgHgAo8Ggj8tJLIINGjSk6X82ybfXR8WxN6E0Qqhp4QGtCxQO8JpJurUnudDqngw1ptc9XUiKPRURe9MOw-zGkY2rXLEFGeAy-J0Fmt9PDH1P8-RWf_Jv4U3KLe1XG5LsdsrmYL90zctNeLk7b-YBsvTsYT2cDsjFKPuKVTwd-T34HHa0rwA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQX3ohAoQPicYAVznpd7x4QilqqRm3SAkXqbVmv16hSsUucFKU3_hC_kZmNnSogeuuBY7Tjdbyep2fmG8aeWZEUyqURT2IMUaTwnlN2iRdaJ0pTasplYdhEOhyqgwO9t8R-tb0wVFbZ6sSgqPPK0TfyN6F6Q8s0ku-Ov3OaGkXZ1XaExowttv30B4Zs9dv-Br7f50Jsvt9f3-LNVAHu0FkYc-0oRJBSe4uhkE1sITOdJc5301xFSZSrTCi0w2jJ1ZrvFklilZciV8Kic51FMe57iV2W6OmQRA26H-ZZC1Q6IWuh44in6Ac1TTqhVY9ScIJTsBamqvDTBUP4pzn4Ky8bzN3mjf_toG6y641jDb2ZJNxiS768zToDjAmqUUgdwAtYPzpEBz38usN-9kODKFQF7G3sgi1z6A12oSqBIDRGuXc2xw1PLIpoqCCe4gKgLaMvqkAwz0C4Xg0odU2LIQkGYSQ5UGksoHcN36p6DGhX0LqDjPgUjwYIXrrK77LPF3Ii99hyWZX-PgN0ZJVPvc67cSoT4ZQWPvZoOH0upS1ch3Vb7jCuQWunoSFHZo4zHTjKIEeZwFHmtMNeza85nmGVnEu9SkxnZv22c0VneujTopeIYXuHPQ0UBBNSUh3SVzupa9P_9HGB6GVDVFT4B51t2jrwMQlZbIFypWVY0yjK2pxxa4c9mS-jiqO8lS19NUEaGQKNNYU0r1uxONvi34_44Pw7rrKrW_uDHbPTH24_ZNdEEE6qLlxhy-PRxD9iV9zJ-LAePQ5iDuzLRYvLbzGmhzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKihAX3ohAoQPicQCrG8ebtQ8IhYSKqDSNCki9GcfrRZXKbskmRemNv8WvY8bZTRUQvfXAMfKsEzvz3G8ejD21Is6USyIetzFEkcJ7TugSz7SOlSZoyo3DsIlkOFQHB3q0xn7VtTCUVlnrxKCo08LRO_KtkL2hZRLJraxKixj1t98cf-c0QYqQ1nqcxoJFdvz8B4Zv5etBH__rZ0Jsv_vUe8-rCQPcoeMw5dpRuCCl9hbDIhvbTI71OHa-laQqiqNUjYVCm4xWXXV8K4tjq7wUqRIWHe1x1MZ9L7F11Uki0WDro97b7v4Sw0AVFDAM3Y54gl5RVbITCvcIkBOcQrcwY4WfrpjFP43DXyhtMH7b1__na7vBrlUuN3QXMnKTrfn8FmvuYrRQTAKoAM-hd3SIrnv4dJv9HITSUSgyGPX3wOYpdHf3oMiBmmtMUu9sihueWBTekFs8xwXAM9O7VqAG0EAdv6p21SUtBngMwrByoKRZQL8bvhXlFNDioN0HGfE5Xg1Q4-kivcM-X8iN3GWNvMj9PQbo4iqfeJ222omMhVNa-LZHk-pTKW3mmqxVc4pxVR93GidyZJYdqAN3GeQuE7jLnDbZy-Uzx4suJudSbxIDmkUl7lIFmi56u-g_YkDfZE8CBTUQyYmnvtpZWZrBx_0VohcVUVbgD3S2KvjAY1LPsRXKjZp5TaVCS3PGuU32eLmMyo8QLZv7YoY0MoQgHYU0r2oROdvi30e8f_43brIrKCXmw2C484BdFUFOKe1wgzWmk5l_yC67k-lhOXlUyTywLxctL78BpgSRNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+PDO+and+AMO+on+interdecadal+variability+in+extreme+high+temperatures+in+North+China+over+the+most+recent+40-year+period&rft.jtitle=Climate+dynamics&rft.au=Zhang%2C+Guwei&rft.au=Zeng%2C+Gang&rft.au=Li%2C+Chun&rft.au=Yang%2C+Xiaoye&rft.date=2020-03-01&rft.issn=0930-7575&rft.eissn=1432-0894&rft.volume=54&rft.issue=5-6&rft.spage=3003&rft.epage=3020&rft_id=info:doi/10.1007%2Fs00382-020-05155-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00382_020_05155_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon |