Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period

Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in Nort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics Jg. 54; H. 5-6; S. 3003 - 3020
Hauptverfasser: Zhang, Guwei, Zeng, Gang, Li, Chun, Yang, Xiaoye
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer
Springer Nature B.V
Schlagworte:
ISSN:0930-7575, 1432-0894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC’s EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC’s EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (− AMO) phase to a negative PDO (− PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC’s EHT in 1996. PDO could impact NC’s EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC’s EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (− PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and − AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and − AMO changing to − PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and − PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant.
AbstractList Based on the 1979-2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC's EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC's EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (- AMO) phase to a negative PDO (- PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC's EHT in 1996. PDO could impact NC's EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC's EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (- PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and - AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and - AMO changing to - PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and - PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant.
Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC’s EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC’s EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (− AMO) phase to a negative PDO (− PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC’s EHT in 1996. PDO could impact NC’s EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC’s EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (− PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and − AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and − AMO changing to − PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and − PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant.
Audience Academic
Author Li, Chun
Zhang, Guwei
Yang, Xiaoye
Zeng, Gang
Author_xml – sequence: 1
  givenname: Guwei
  orcidid: 0000-0001-8272-3007
  surname: Zhang
  fullname: Zhang, Guwei
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Gang
  surname: Zeng
  fullname: Zeng, Gang
  email: zenggang@nuist.edu.cn
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Chun
  surname: Li
  fullname: Li, Chun
  organization: Physical Oceanography Laboratory and Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China
– sequence: 4
  givenname: Xiaoye
  surname: Yang
  fullname: Yang, Xiaoye
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology
BookMark eNp9kk1v1DAQhiNUJLaFP8DJEhKCQ4qd2I5zXG35WKmwiI-zNZtMNq4Se7Gdiu2Nf46XIMH2UPlgaeZ5rNH4Pc_OrLOYZc8ZvWSUVm8CpaUqclrQnAomRH73KFswXqaSqvlZtqB1SfNKVOJJdh7CDaWMy6pYZL_W4x6aSFxHPl9tCNiWLD9uiLPE2Ii-xQZaGMgteANbM5h4SA2CP6PHEUlvdj2JOO7RQ5w8hmPzk_OxJ6veWCDuFj2JPZLRhUg8Nmgj4TQ_IHiSLOPap9njDoaAz_7eF9n3d2-_rT7k15v369XyOm-4kDGvm4pJznmNwLkEAR3f1lvRIKtaRQVt1bZQUpalqpVE1gkBCnnRqgJkJba0vMheze_uvfsxYYh6NKHBYQCLbgq64DStrpaKJ_TFPfTGTd6m6XRRVpLWvKJH6nKmdjCgNrZz0UOTToujadL_dCbVl5JVrKacqyS8PhESE9MmdzCFoNdfv5yyL_9je4Qh9sENUzTOhlNQzWDjXQgeO92YCEcsTWMGzag-JkTPCdEpIfpPQvRdUot76t6bEfzhYamcpZBgu0P_bzcPWL8BTy_NkA
CitedBy_id crossref_primary_10_1016_j_accre_2025_04_002
crossref_primary_10_1007_s00704_023_04567_1
crossref_primary_10_1038_s41598_022_22628_9
crossref_primary_10_1186_s40645_024_00619_w
crossref_primary_10_1016_j_uclim_2024_102002
crossref_primary_10_1088_1748_9326_acfaaf
crossref_primary_10_1007_s00382_021_06051_w
crossref_primary_10_1007_s00704_023_04454_9
crossref_primary_10_1007_s00382_023_06963_9
crossref_primary_10_1016_j_scitotenv_2023_166098
crossref_primary_10_1016_j_jenvman_2024_123549
crossref_primary_10_1002_joc_7099
crossref_primary_10_1016_j_atmosres_2022_106474
crossref_primary_10_1002_joc_8066
crossref_primary_10_1002_joc_7772
crossref_primary_10_3390_atmos13050649
crossref_primary_10_1007_s10584_025_03943_2
crossref_primary_10_3390_en16237768
crossref_primary_10_1007_s00382_022_06299_w
crossref_primary_10_1016_j_atmosres_2024_107688
crossref_primary_10_1016_j_scitotenv_2024_177393
crossref_primary_10_3390_atmos12101265
crossref_primary_10_1016_j_atmosres_2022_106507
crossref_primary_10_1080_04353676_2025_2480999
crossref_primary_10_1007_s00382_024_07505_7
crossref_primary_10_1007_s00468_023_02467_5
crossref_primary_10_1029_2022PA004495
crossref_primary_10_1007_s00382_023_06667_0
crossref_primary_10_1002_joc_8113
crossref_primary_10_3390_atmos13030387
crossref_primary_10_3389_feart_2023_1120800
crossref_primary_10_1016_j_jhydrol_2025_132888
crossref_primary_10_1360_N072025_0052
crossref_primary_10_1002_joc_70074
crossref_primary_10_3390_atmos14010036
crossref_primary_10_1007_s11356_023_31790_0
crossref_primary_10_1007_s00382_022_06457_0
crossref_primary_10_1002_joc_8362
crossref_primary_10_1016_j_dendro_2024_126178
crossref_primary_10_1029_2022EA002359
crossref_primary_10_1002_joc_7951
crossref_primary_10_3390_jmse13061170
crossref_primary_10_1016_j_dynatmoce_2021_101260
crossref_primary_10_1007_s00382_023_06829_0
crossref_primary_10_1038_s41598_024_59812_y
crossref_primary_10_1016_j_gloplacha_2024_104438
crossref_primary_10_1029_2023JD039147
crossref_primary_10_3389_feart_2022_1076396
crossref_primary_10_1016_j_gloplacha_2021_103645
crossref_primary_10_1007_s00382_020_05541_7
crossref_primary_10_1016_j_procs_2024_09_480
crossref_primary_10_1007_s00382_022_06465_0
crossref_primary_10_1007_s00704_023_04583_1
crossref_primary_10_3390_atmos13071031
crossref_primary_10_1088_1748_9326_ad95a1
crossref_primary_10_1007_s00382_024_07449_y
crossref_primary_10_1007_s00376_020_0182_8
crossref_primary_10_3390_atmos14030495
crossref_primary_10_1007_s10584_021_03072_6
crossref_primary_10_3390_en18061554
crossref_primary_10_1038_s41467_024_48895_w
crossref_primary_10_3390_su132212774
crossref_primary_10_1016_j_scitotenv_2023_162377
crossref_primary_10_1175_JCLI_D_21_0701_1
crossref_primary_10_1016_j_apgeochem_2025_106413
crossref_primary_10_1007_s00376_022_1415_9
crossref_primary_10_1002_joc_7617
crossref_primary_10_1002_joc_8828
crossref_primary_10_1088_1748_9326_ad80ae
crossref_primary_10_1175_JCLI_D_21_0408_1
crossref_primary_10_1016_j_jhydrol_2022_128296
crossref_primary_10_1002_joc_7976
crossref_primary_10_1007_s13351_024_3162_6
crossref_primary_10_1029_2023JD039765
crossref_primary_10_5194_acp_21_11889_2021
crossref_primary_10_1016_j_jhydrol_2025_133982
crossref_primary_10_1016_j_palaeo_2024_112320
crossref_primary_10_1088_1748_9326_ac3f61
crossref_primary_10_1007_s00382_024_07354_4
crossref_primary_10_1016_j_gloplacha_2024_104458
crossref_primary_10_1007_s10584_022_03383_2
crossref_primary_10_1002_joc_8275
crossref_primary_10_1016_j_atmosres_2023_107053
crossref_primary_10_1007_s00382_023_06899_0
crossref_primary_10_1029_2021GL095563
crossref_primary_10_1186_s40562_024_00352_8
crossref_primary_10_1007_s00382_021_05827_4
crossref_primary_10_1007_s00382_021_05866_x
crossref_primary_10_1007_s00382_025_07803_8
crossref_primary_10_1007_s11356_023_29052_0
crossref_primary_10_1029_2020JD033918
crossref_primary_10_3390_rs16193706
crossref_primary_10_3390_su17010199
crossref_primary_10_3390_atmos14010119
crossref_primary_10_3390_su152014882
crossref_primary_10_1016_j_accre_2020_08_003
crossref_primary_10_1002_joc_7596
crossref_primary_10_1002_joc_7353
crossref_primary_10_7717_peerj_13741
crossref_primary_10_1002_joc_7479
crossref_primary_10_1002_joc_7478
crossref_primary_10_1016_j_gloplacha_2023_104181
crossref_primary_10_1088_1748_9326_abdc8a
crossref_primary_10_1007_s00382_022_06191_7
crossref_primary_10_1016_j_scitotenv_2022_155762
crossref_primary_10_1002_hyp_14417
crossref_primary_10_1007_s00382_023_06823_6
crossref_primary_10_1007_s00382_021_06009_y
crossref_primary_10_1007_s11069_025_07317_w
crossref_primary_10_3389_feart_2023_1138985
crossref_primary_10_1073_pnas_2218274120
crossref_primary_10_1002_joc_7917
crossref_primary_10_1016_j_atmosres_2021_105739
crossref_primary_10_1007_s00376_023_2319_z
crossref_primary_10_1016_j_agrformet_2025_110631
crossref_primary_10_1007_s11430_025_1642_3
Cites_doi 10.1175/jcli-d-13-00235.1
10.1175/jcli-d-15-0792.1
10.1002/joc.6158
10.1002/qj.406
10.3878/j.issn.1006-9895.1503.14294
10.1002/asl.677
10.1175/1520-0477
10.1038/nature12268
10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
10.1002/qj.49712455204
10.1029/2002jd002670
10.1038/ngeo2738
10.1175/1520-0442
10.1029/2007JD009626
10.1126/science.1098704
10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
10.1002/joc.3893
10.1175/BAMS-83-11-1631
10.1175/jcli-d-18-0218.1
10.1029/2002JD002193
10.1029/2008JD010929
10.1175/jcli-d-15-0105.1
10.1126/science.1201224
10.6038/cjg20130406
10.1175/JCLI-D-17-0657.1
10.1029/2006GL026894
10.1007/s00376-009-9029-z
10.1023/a:1005428602279
10.1080/16742834.2017.1335580
10.1080/16742834.2019.1605807
10.1007/3-540-28862-7_2
10.1029/2007jd008956
10.1002/joc.1989
10.1007/s11434-014-0425-0
10.1007/s00382-016-3283-4
10.1175/JCLI-D-19-0148.1
10.1029/2018GL079836
10.1175/JCLI-D-14-00647.1
10.1038/nclimate2617
10.1007/s00376-009-8148-x
10.1007/s003820000075
10.1007/s00376-016-5269-x
10.1080/16742834.2012.11446996
10.1175/JCLI3460.1
10.1002/jgrd.50779
10.1175/jcli-d-17-0340.1
10.1007/s00382-017-3694-x
10.1007/s00376-007-0126-6
10.1080/16742834.2019.1610326
10.1038/s41598-019-49974-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Climate Dynamics is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Climate Dynamics is a copyright of Springer, (2020). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7TG
7TN
7UA
7XB
88F
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7S9
L.6
DOI 10.1007/s00382-020-05155-z
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection (ProQuest)
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1432-0894
EndPage 3020
ExternalDocumentID A617190448
10_1007_s00382_020_05155_z
GeographicLocations Eastern Europe
East Asia
China
GeographicLocations_xml – name: Eastern Europe
– name: East Asia
– name: China
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 41575085; 41430528
– fundername: the Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: KYCX19_1026
– fundername: the National Key Research and Development Program of China
  grantid: 2017YFA0603804
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IFM
IHE
IHR
IHW
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c456t-9c7164449ea446a5af4b9b5ce17d8050d8b2866338986e1f55a8e42d82a675b03
IEDL.DBID RSV
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516093100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0930-7575
IngestDate Thu Oct 02 09:56:48 EDT 2025
Sat Nov 01 15:19:26 EDT 2025
Sat Nov 29 10:15:47 EST 2025
Wed Nov 26 10:09:25 EST 2025
Thu May 22 21:19:22 EDT 2025
Sat Nov 29 02:46:44 EST 2025
Tue Nov 18 20:57:54 EST 2025
Fri Feb 21 02:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords North China
Numerical simulation
PDO
Extreme high temperature
AMO
Interdecadal variation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-9c7164449ea446a5af4b9b5ce17d8050d8b2866338986e1f55a8e42d82a675b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8272-3007
PQID 2376094704
PQPubID 54165
PageCount 18
ParticipantIDs proquest_miscellaneous_2400519684
proquest_journals_2376094704
gale_infotracacademiconefile_A617190448
gale_incontextgauss_ISR_A617190448
gale_healthsolutions_A617190448
crossref_citationtrail_10_1007_s00382_020_05155_z
crossref_primary_10_1007_s00382_020_05155_z
springer_journals_10_1007_s00382_020_05155_z
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Observational, Theoretical and Computational Research on the Climate System
PublicationTitle Climate dynamics
PublicationTitleAbbrev Clim Dyn
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References HanTHeSXinHWangHRecent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian OceansClim Dyn2017503–41413142410.1007/s00382-017-3694-x
XiaoDLiJSpatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970sJ Geophys Res200710.1029/2007jd008956
WangYLiSLuoDSeasonal response of Asian monsoonal climate to the Atlantic Multidecadal OscillationJ Geophys Res2009114D0211210.1029/2008JD010929
McGregorGRFerroCATStephensonDBProjected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses2005BerlinSpringer10.1007/3-540-28862-7_2
DuchonCELanczos filtering in one and two dimensionsJ Appl Meteorol19791881016102210.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10(5):1004–1020. https://doi.org/10.1175/1520-0442
BarrioPThe hot summer of 2010: redrawing the temperature record map of EuropeScience2011332602622022410.1126/science.1201224
ZhangGWZengGNiDHZhouGBDecadal shift of autumn drought in Southwest China and its possible causesChin J Atmos Sci201640231132310.3878/j.issn.1006-9895.1503.14294(in Chinese)
DelworthTLMannMEObserved and simulated multi- decadal variability in the Northern hemisphereClim Dyn20001666167110.1007/s003820000075
KucharskiFBraccoAYooJHTompkinsAMFeudaleLRutiPDell’AquilaAA Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfallQ J R Meteorol Soc200913564056957910.1002/qj.406
Trednberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geol Res Lett 33(12):L12704. https://doi:10.1029/2006gl026894
DengKSongYTingMLinAWangZAn intensified mode of variability modulating the summer heat waves in eastern Europe and northern ChinaGeol Res Lett2018451136136910.1029/2018GL079836
MeehlGATebaldiCMore intense, more frequent, and longer lasting heat waves in the 21st centuryScience2004305568699499710.1126/science.1098704
XiePArkinPAGlobal precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputsBull Am Meteorol Soc199778112539255810.1175/1520-0477
NapoliACrespiARagoneFMaugeriMPasqueroCVariability of orographic enhancement of precipitation in the Alpine regionSci Rep201910.1038/s41598-019-49974-5
RaynerNAParkerDEHortonEBFollandCKAlexanderLVRowellDPKentECKaplanAGlobal analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth centuryJ Geophys Res2003108D1410.1029/2002jd002670
LiRXSunJQInterdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patternsAtmos Ocean Sci Lett2017111637010.1080/16742834.2017.1335580
DelworthTLZengFVecchiGAYangXZhangLZhangRThe North Atlantic Oscillation as a driver of rapid climate change in the Northern hemisphereNat Geosci2016950951210.1038/ngeo2738
SunJQPossible impact of the summer North Atlantic oscillation on extreme hot events in ChinaAtmos Ocean Sci Lett20125323123410.1080/16742834.2012.11446996
GhoshRMüllerWABaehrJBaderJImpact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heatingClim Dyn2017483547356310.1007/s00382-016-3283-4
ZhangRDelworthTLSimulated tropical response to a substantial weakening of the Atlantic thermohaline circulationJ Clim2005181853186010.1175/JCLI3460.1
SiDDingYOceanic forcings of the interdecadal variability in East Asian summer rainfallJ Clim201629217633764910.1175/jcli-d-15-0792.1
ZhaiPMChanges of climate extremes in ChinaClim Chang199942120321810.1023/a:1005428602279
SunJQWangHJYuanWDecadal variability of the extreme hot events in China and its associated with atmospheric circulationsClim Environ Res2011162199208(in Chinese)
LeiYNGongDYZhangZYGuoDHeXZSpatial-temporal characteristics of high-temperature events in summer in eastern China and the associated atmospheric circulationGeograph Res2009283654662(in Chinese)
SunJQWangHJYuanWDecadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperatureJ Geophys Res2008113D1510710.1029/2007JD009626
DingTQianWHYanZWChanges in hot days and heat waves in China during 1961–2007Int J Climatol2009301452146210.1002/joc.1989
WangLXuPChenWLiuYInterdecadal variations of the silk road patternJ Clim201730249915993210.1175/jcli-d-17-0340.1
FischerEMKnuttiRAnthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremesNat Clim Chang20155656056410.1038/nclimate2617
MiaoJPWangTWangHJInterdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulationsJ Clim201910.1175/JCLI-D-19-0148.1
SunJQRecord-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013Chin Sci Bull2014593465347010.1007/s11434-014-0425-0(in Chinese)
Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM5.0). NCAR Tech Note NCAR/TN-486 +STR, p 274
WangYJRenFMZhangXBSpatial and temporal variations of regional high temperature events in ChinaInt J Clim201334103054306510.1002/joc.3893
XuYGaoXJShenYXuCHShiYGiorgiFA daily temperature dataset over China and its application in validating a RCM simulationAdv Atmos Sci20092676377210.1007/s00376-009-9029-z
MantuaNJHareSRZhangYWallaceJMFrancisRCA Pacific Interdecadal Climate Oscillation with umpacts on Salmon productionBull Am Meteorol Soc19977861069107910.1175/1520-0477
KanamitsuMEbisuzakiWWoollenJYangSKHniloJJFiorinoMPotterGLNCEP-DOE AMIP-II reanalysis (R-2)Bull Am Meteorol Soc200210.1175/BAMS-83-11-1631
GongDYHoCHArctic Oscillation signals in the East Asian summer monsoonJ Geophys Res2003108406610.1029/2002JD002193
ZhuJHuangDQZhangYCHuangANKuangXYHuangYDecadal changes of meiyu rainfall around 1991 and its relationship with two types of ENSOJ Geophys Res Atmos20131189766977710.1002/jgrd.50779
WeiJYangHSunSQRelationship between the anomaly longitude position of subtropical high in the western Pacific and severe hot weather in North China in summerActa Meteorol Sin2004623308316(in Chinese)
ChengQZhouTJMultidecadal variability of north china aridity and its relationship to PDO during 1900–2010J Clim20142731210122210.1175/jcli-d-13-00235.1
DengKSongYLinALiCHuCUnprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST modeAtmos Ocean Sci Lett201912424625310.1080/16742834.2019.1605807
TaoPZhangYLarge-scale circulation features associated with the heat wave over Northeast China in summer 2018Atmos Ocean Sci Lett201912425426010.1080/16742834.2019.1610326
BrethertonCSWidmannMDymnikovVPWallaceJMBladéIThe effective number of spatial degrees of freedom of a time-varying fieldJ Clim1999121990200910.1175/1520-0442
GulevSKNorth Atlantic Ocean-control on surface heat flux on multidecadal timescalesNature2013499745946446710.1038/nature12268
ZhangLDelworthTLAnalysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics LaboratoryJ Clim2015287678770110.1175/JCLI-D-14-00647.1
WuBZhouTLiTImpacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoonJ Clim20162993253327110.1175/jcli-d-15-0105.1
HuangDQDaiAGYangBYanPZhuJZhangYCContributions of different combinations of the IPO and AMO to recent changes in winter East Asian JetsJ Clim201810.1175/jcli-d-18-0218.1
WuJGaoXJA gridded daily observation dataset over China region and comparison with the other datasetsChin J Geophys2013561102111110.6038/cjg20130406(in Chinese)
PlumbRAOn the three-dimensional propagation of stationary wavesJ Atmos Sci198542321722910.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
WuBLinJZhouTInterdecadal circumglobal teleconnection pattern during boreal summerAtmos Sci Lett20161744645210.1002/asl.677
ZhangZQSunXGYangXQUnderstanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signalsJ Clim201831145485556010.1175/JCLI-D-17-0657.1
LuRYOhJHKimBJBeakHJHuangRHAssociations with the interannual variations of onset and withdrawal of the ChangmaAdv Atmos Sci20011861066108010.1002/qj.49712455204
YangHLiCYDiagnostic study of serious high temperature over South China in 2003 summerClim Environ Res20051018085(in Chinese)
WangMGuQJiaXGeJAn assessment of the impact of PDO on autumn droughts in North China based on the PDSIInt J Clim2019395338535010.1002/joc.6158
LiangXZWangWCAssociation between China monsoon rainfall and tropospheric jetsQ J R Meteorol Soc19981242597262310.1002/qj.49712455204
AikenLSWestSGMultiple regression: testing and interpreting interactions1991Newbury ParkSage
LiSBatesGTInfluence of the Atlantic multidecadal oscillation on the winter climate of East ChinaAdv Atmos Sci200724112613510.1007/s00376-007-0126-6
ZhuYLWangTMaJHInfluence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4Adv Atmos Sci201633670671410.1007/s00376-016-5269-x
YuanWSunJQEnhancement of the summer North Atlantic Oscillation influence on Northern Hemisphere air temperatureAdv Atmos Sci20092661209121410.1007/s00376-009-8148-x
NJ Mantua (5155_CR25) 1997; 78
T Han (5155_CR15) 2017; 50
P Tao (5155_CR36) 2019; 12
RX Li (5155_CR21) 2017; 11
GW Zhang (5155_CR55) 2016; 40
TL Delworth (5155_CR6) 2016; 9
5155_CR37
S Li (5155_CR20) 2007; 24
ZQ Zhang (5155_CR56) 2018; 31
NA Rayner (5155_CR30) 2003; 108
YN Lei (5155_CR19) 2009; 28
K Deng (5155_CR8) 2019; 12
JQ Sun (5155_CR33) 2014; 59
YL Zhu (5155_CR58) 2016; 33
DQ Huang (5155_CR16) 2018
RY Lu (5155_CR23) 2001; 18
5155_CR28
P Barrio (5155_CR2) 2011; 332
B Wu (5155_CR45) 2016; 29
J Zhu (5155_CR57) 2013; 118
CE Duchon (5155_CR10) 1979; 18
CS Bretherton (5155_CR3) 1999; 12
M Kanamitsu (5155_CR17) 2002
JQ Sun (5155_CR32) 2012; 5
H Yang (5155_CR49) 2005; 10
D Xiao (5155_CR46) 2007
R Ghosh (5155_CR12) 2017; 48
EM Fischer (5155_CR11) 2015; 5
F Kucharski (5155_CR18) 2009; 135
JQ Sun (5155_CR35) 2011; 16
J Wu (5155_CR43) 2013; 56
SK Gulev (5155_CR14) 2013; 499
JQ Sun (5155_CR34) 2008; 113
5155_CR54
Q Cheng (5155_CR4) 2014; 27
GA Meehl (5155_CR27) 2004; 305
T Ding (5155_CR9) 2009; 30
A Napoli (5155_CR59) 2019
J Wei (5155_CR42) 2004; 62
DY Gong (5155_CR13) 2003; 108
W Yuan (5155_CR50) 2009; 26
RA Plumb (5155_CR29) 1985; 42
JP Miao (5155_CR60) 2019
M Wang (5155_CR41) 2019; 39
P Xie (5155_CR47) 1997; 78
YJ Wang (5155_CR39) 2013; 34
GR McGregor (5155_CR26) 2005
PM Zhai (5155_CR51) 1999; 42
B Wu (5155_CR44) 2016; 17
D Si (5155_CR31) 2016; 29
Y Wang (5155_CR38) 2009; 114
L Zhang (5155_CR53) 2015; 28
K Deng (5155_CR7) 2018; 45
XZ Liang (5155_CR22) 1998; 124
Y Xu (5155_CR48) 2009; 26
TL Delworth (5155_CR5) 2000; 16
LS Aiken (5155_CR1) 1991
L Wang (5155_CR40) 2017; 30
R Zhang (5155_CR52) 2005; 18
References_xml – reference: KanamitsuMEbisuzakiWWoollenJYangSKHniloJJFiorinoMPotterGLNCEP-DOE AMIP-II reanalysis (R-2)Bull Am Meteorol Soc200210.1175/BAMS-83-11-1631
– reference: ZhangLDelworthTLAnalysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics LaboratoryJ Clim2015287678770110.1175/JCLI-D-14-00647.1
– reference: ZhuJHuangDQZhangYCHuangANKuangXYHuangYDecadal changes of meiyu rainfall around 1991 and its relationship with two types of ENSOJ Geophys Res Atmos20131189766977710.1002/jgrd.50779
– reference: LuRYOhJHKimBJBeakHJHuangRHAssociations with the interannual variations of onset and withdrawal of the ChangmaAdv Atmos Sci20011861066108010.1002/qj.49712455204
– reference: WuBLinJZhouTInterdecadal circumglobal teleconnection pattern during boreal summerAtmos Sci Lett20161744645210.1002/asl.677
– reference: SiDDingYOceanic forcings of the interdecadal variability in East Asian summer rainfallJ Clim201629217633764910.1175/jcli-d-15-0792.1
– reference: DengKSongYTingMLinAWangZAn intensified mode of variability modulating the summer heat waves in eastern Europe and northern ChinaGeol Res Lett2018451136136910.1029/2018GL079836
– reference: WangYJRenFMZhangXBSpatial and temporal variations of regional high temperature events in ChinaInt J Clim201334103054306510.1002/joc.3893
– reference: XiePArkinPAGlobal precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputsBull Am Meteorol Soc199778112539255810.1175/1520-0477
– reference: BarrioPThe hot summer of 2010: redrawing the temperature record map of EuropeScience2011332602622022410.1126/science.1201224
– reference: RaynerNAParkerDEHortonEBFollandCKAlexanderLVRowellDPKentECKaplanAGlobal analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth centuryJ Geophys Res2003108D1410.1029/2002jd002670
– reference: DingTQianWHYanZWChanges in hot days and heat waves in China during 1961–2007Int J Climatol2009301452146210.1002/joc.1989
– reference: WeiJYangHSunSQRelationship between the anomaly longitude position of subtropical high in the western Pacific and severe hot weather in North China in summerActa Meteorol Sin2004623308316(in Chinese)
– reference: Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM5.0). NCAR Tech Note NCAR/TN-486 +STR, p 274
– reference: YangHLiCYDiagnostic study of serious high temperature over South China in 2003 summerClim Environ Res20051018085(in Chinese)
– reference: ZhaiPMChanges of climate extremes in ChinaClim Chang199942120321810.1023/a:1005428602279
– reference: GulevSKNorth Atlantic Ocean-control on surface heat flux on multidecadal timescalesNature2013499745946446710.1038/nature12268
– reference: DuchonCELanczos filtering in one and two dimensionsJ Appl Meteorol19791881016102210.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
– reference: XiaoDLiJSpatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970sJ Geophys Res200710.1029/2007jd008956
– reference: ZhangGWZengGNiDHZhouGBDecadal shift of autumn drought in Southwest China and its possible causesChin J Atmos Sci201640231132310.3878/j.issn.1006-9895.1503.14294(in Chinese)
– reference: ZhangZQSunXGYangXQUnderstanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signalsJ Clim201831145485556010.1175/JCLI-D-17-0657.1
– reference: BrethertonCSWidmannMDymnikovVPWallaceJMBladéIThe effective number of spatial degrees of freedom of a time-varying fieldJ Clim1999121990200910.1175/1520-0442
– reference: Trednberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geol Res Lett 33(12):L12704. https://doi:10.1029/2006gl026894
– reference: WangLXuPChenWLiuYInterdecadal variations of the silk road patternJ Clim201730249915993210.1175/jcli-d-17-0340.1
– reference: MiaoJPWangTWangHJInterdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulationsJ Clim201910.1175/JCLI-D-19-0148.1
– reference: LiRXSunJQInterdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patternsAtmos Ocean Sci Lett2017111637010.1080/16742834.2017.1335580
– reference: SunJQPossible impact of the summer North Atlantic oscillation on extreme hot events in ChinaAtmos Ocean Sci Lett20125323123410.1080/16742834.2012.11446996
– reference: ChengQZhouTJMultidecadal variability of north china aridity and its relationship to PDO during 1900–2010J Clim20142731210122210.1175/jcli-d-13-00235.1
– reference: PlumbRAOn the three-dimensional propagation of stationary wavesJ Atmos Sci198542321722910.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
– reference: GongDYHoCHArctic Oscillation signals in the East Asian summer monsoonJ Geophys Res2003108406610.1029/2002JD002193
– reference: SunJQWangHJYuanWDecadal variability of the extreme hot events in China and its associated with atmospheric circulationsClim Environ Res2011162199208(in Chinese)
– reference: WangYLiSLuoDSeasonal response of Asian monsoonal climate to the Atlantic Multidecadal OscillationJ Geophys Res2009114D0211210.1029/2008JD010929
– reference: MeehlGATebaldiCMore intense, more frequent, and longer lasting heat waves in the 21st centuryScience2004305568699499710.1126/science.1098704
– reference: DengKSongYLinALiCHuCUnprecedented East Asian warming in spring 2018 linked to the North Atlantic tripole SST modeAtmos Ocean Sci Lett201912424625310.1080/16742834.2019.1605807
– reference: WuJGaoXJA gridded daily observation dataset over China region and comparison with the other datasetsChin J Geophys2013561102111110.6038/cjg20130406(in Chinese)
– reference: HanTHeSXinHWangHRecent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian OceansClim Dyn2017503–41413142410.1007/s00382-017-3694-x
– reference: ZhuYLWangTMaJHInfluence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4Adv Atmos Sci201633670671410.1007/s00376-016-5269-x
– reference: LiangXZWangWCAssociation between China monsoon rainfall and tropospheric jetsQ J R Meteorol Soc19981242597262310.1002/qj.49712455204
– reference: ZhangRDelworthTLSimulated tropical response to a substantial weakening of the Atlantic thermohaline circulationJ Clim2005181853186010.1175/JCLI3460.1
– reference: XuYGaoXJShenYXuCHShiYGiorgiFA daily temperature dataset over China and its application in validating a RCM simulationAdv Atmos Sci20092676377210.1007/s00376-009-9029-z
– reference: MantuaNJHareSRZhangYWallaceJMFrancisRCA Pacific Interdecadal Climate Oscillation with umpacts on Salmon productionBull Am Meteorol Soc19977861069107910.1175/1520-0477
– reference: SunJQWangHJYuanWDecadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperatureJ Geophys Res2008113D1510710.1029/2007JD009626
– reference: TaoPZhangYLarge-scale circulation features associated with the heat wave over Northeast China in summer 2018Atmos Ocean Sci Lett201912425426010.1080/16742834.2019.1610326
– reference: WangMGuQJiaXGeJAn assessment of the impact of PDO on autumn droughts in North China based on the PDSIInt J Clim2019395338535010.1002/joc.6158
– reference: DelworthTLZengFVecchiGAYangXZhangLZhangRThe North Atlantic Oscillation as a driver of rapid climate change in the Northern hemisphereNat Geosci2016950951210.1038/ngeo2738
– reference: McGregorGRFerroCATStephensonDBProjected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses2005BerlinSpringer10.1007/3-540-28862-7_2
– reference: LeiYNGongDYZhangZYGuoDHeXZSpatial-temporal characteristics of high-temperature events in summer in eastern China and the associated atmospheric circulationGeograph Res2009283654662(in Chinese)
– reference: SunJQRecord-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013Chin Sci Bull2014593465347010.1007/s11434-014-0425-0(in Chinese)
– reference: AikenLSWestSGMultiple regression: testing and interpreting interactions1991Newbury ParkSage
– reference: GhoshRMüllerWABaehrJBaderJImpact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heatingClim Dyn2017483547356310.1007/s00382-016-3283-4
– reference: LiSBatesGTInfluence of the Atlantic multidecadal oscillation on the winter climate of East ChinaAdv Atmos Sci200724112613510.1007/s00376-007-0126-6
– reference: WuBZhouTLiTImpacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoonJ Clim20162993253327110.1175/jcli-d-15-0105.1
– reference: FischerEMKnuttiRAnthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremesNat Clim Chang20155656056410.1038/nclimate2617
– reference: DelworthTLMannMEObserved and simulated multi- decadal variability in the Northern hemisphereClim Dyn20001666167110.1007/s003820000075
– reference: NapoliACrespiARagoneFMaugeriMPasqueroCVariability of orographic enhancement of precipitation in the Alpine regionSci Rep201910.1038/s41598-019-49974-5
– reference: HuangDQDaiAGYangBYanPZhuJZhangYCContributions of different combinations of the IPO and AMO to recent changes in winter East Asian JetsJ Clim201810.1175/jcli-d-18-0218.1
– reference: KucharskiFBraccoAYooJHTompkinsAMFeudaleLRutiPDell’AquilaAA Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfallQ J R Meteorol Soc200913564056957910.1002/qj.406
– reference: Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10(5):1004–1020. https://doi.org/10.1175/1520-0442
– reference: YuanWSunJQEnhancement of the summer North Atlantic Oscillation influence on Northern Hemisphere air temperatureAdv Atmos Sci20092661209121410.1007/s00376-009-8148-x
– volume: 27
  start-page: 1210
  issue: 3
  year: 2014
  ident: 5155_CR4
  publication-title: J Clim
  doi: 10.1175/jcli-d-13-00235.1
– volume: 29
  start-page: 7633
  issue: 21
  year: 2016
  ident: 5155_CR31
  publication-title: J Clim
  doi: 10.1175/jcli-d-15-0792.1
– volume: 39
  start-page: 5338
  year: 2019
  ident: 5155_CR41
  publication-title: Int J Clim
  doi: 10.1002/joc.6158
– volume: 16
  start-page: 199
  issue: 2
  year: 2011
  ident: 5155_CR35
  publication-title: Clim Environ Res
– volume: 135
  start-page: 569
  issue: 640
  year: 2009
  ident: 5155_CR18
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.406
– volume: 40
  start-page: 311
  issue: 2
  year: 2016
  ident: 5155_CR55
  publication-title: Chin J Atmos Sci
  doi: 10.3878/j.issn.1006-9895.1503.14294
– volume: 17
  start-page: 446
  year: 2016
  ident: 5155_CR44
  publication-title: Atmos Sci Lett
  doi: 10.1002/asl.677
– volume: 78
  start-page: 1069
  issue: 6
  year: 1997
  ident: 5155_CR25
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477
– volume: 499
  start-page: 464
  issue: 7459
  year: 2013
  ident: 5155_CR14
  publication-title: Nature
  doi: 10.1038/nature12268
– volume: 42
  start-page: 217
  issue: 3
  year: 1985
  ident: 5155_CR29
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
– volume: 18
  start-page: 1066
  issue: 6
  year: 2001
  ident: 5155_CR23
  publication-title: Adv Atmos Sci
  doi: 10.1002/qj.49712455204
– volume: 108
  start-page: D14
  year: 2003
  ident: 5155_CR30
  publication-title: J Geophys Res
  doi: 10.1029/2002jd002670
– volume: 9
  start-page: 509
  year: 2016
  ident: 5155_CR6
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2738
– ident: 5155_CR54
  doi: 10.1175/1520-0442
– volume: 113
  start-page: D15107
  year: 2008
  ident: 5155_CR34
  publication-title: J Geophys Res
  doi: 10.1029/2007JD009626
– volume: 305
  start-page: 994
  issue: 5686
  year: 2004
  ident: 5155_CR27
  publication-title: Science
  doi: 10.1126/science.1098704
– volume: 18
  start-page: 1016
  issue: 8
  year: 1979
  ident: 5155_CR10
  publication-title: J Appl Meteorol
  doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
– volume: 34
  start-page: 3054
  issue: 10
  year: 2013
  ident: 5155_CR39
  publication-title: Int J Clim
  doi: 10.1002/joc.3893
– year: 2002
  ident: 5155_CR17
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-83-11-1631
– volume: 28
  start-page: 654
  issue: 3
  year: 2009
  ident: 5155_CR19
  publication-title: Geograph Res
– year: 2018
  ident: 5155_CR16
  publication-title: J Clim
  doi: 10.1175/jcli-d-18-0218.1
– volume: 10
  start-page: 80
  issue: 1
  year: 2005
  ident: 5155_CR49
  publication-title: Clim Environ Res
– volume: 108
  start-page: 4066
  year: 2003
  ident: 5155_CR13
  publication-title: J Geophys Res
  doi: 10.1029/2002JD002193
– volume: 78
  start-page: 2539
  issue: 11
  year: 1997
  ident: 5155_CR47
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477
– volume: 114
  start-page: D02112
  year: 2009
  ident: 5155_CR38
  publication-title: J Geophys Res
  doi: 10.1029/2008JD010929
– volume: 29
  start-page: 3253
  issue: 9
  year: 2016
  ident: 5155_CR45
  publication-title: J Clim
  doi: 10.1175/jcli-d-15-0105.1
– volume: 332
  start-page: 220
  issue: 6026
  year: 2011
  ident: 5155_CR2
  publication-title: Science
  doi: 10.1126/science.1201224
– volume: 56
  start-page: 1102
  year: 2013
  ident: 5155_CR43
  publication-title: Chin J Geophys
  doi: 10.6038/cjg20130406
– volume: 31
  start-page: 5485
  issue: 14
  year: 2018
  ident: 5155_CR56
  publication-title: J Clim
  doi: 10.1175/JCLI-D-17-0657.1
– ident: 5155_CR37
  doi: 10.1029/2006GL026894
– volume: 26
  start-page: 763
  year: 2009
  ident: 5155_CR48
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-009-9029-z
– volume: 42
  start-page: 203
  issue: 1
  year: 1999
  ident: 5155_CR51
  publication-title: Clim Chang
  doi: 10.1023/a:1005428602279
– volume: 11
  start-page: 63
  issue: 1
  year: 2017
  ident: 5155_CR21
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2017.1335580
– volume: 12
  start-page: 246
  issue: 4
  year: 2019
  ident: 5155_CR8
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2019.1605807
– volume-title: Projected changes in extreme weather and climate events in Europe. Extreme weather events and public health responses
  year: 2005
  ident: 5155_CR26
  doi: 10.1007/3-540-28862-7_2
– year: 2007
  ident: 5155_CR46
  publication-title: J Geophys Res
  doi: 10.1029/2007jd008956
– volume-title: Multiple regression: testing and interpreting interactions
  year: 1991
  ident: 5155_CR1
– volume: 30
  start-page: 1452
  year: 2009
  ident: 5155_CR9
  publication-title: Int J Climatol
  doi: 10.1002/joc.1989
– volume: 59
  start-page: 3465
  year: 2014
  ident: 5155_CR33
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-014-0425-0
– volume: 62
  start-page: 308
  issue: 3
  year: 2004
  ident: 5155_CR42
  publication-title: Acta Meteorol Sin
– volume: 48
  start-page: 3547
  year: 2017
  ident: 5155_CR12
  publication-title: Clim Dyn
  doi: 10.1007/s00382-016-3283-4
– year: 2019
  ident: 5155_CR60
  publication-title: J Clim
  doi: 10.1175/JCLI-D-19-0148.1
– ident: 5155_CR28
– volume: 45
  start-page: 361
  issue: 11
  year: 2018
  ident: 5155_CR7
  publication-title: Geol Res Lett
  doi: 10.1029/2018GL079836
– volume: 28
  start-page: 7678
  year: 2015
  ident: 5155_CR53
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00647.1
– volume: 5
  start-page: 560
  issue: 6
  year: 2015
  ident: 5155_CR11
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2617
– volume: 26
  start-page: 1209
  issue: 6
  year: 2009
  ident: 5155_CR50
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-009-8148-x
– volume: 16
  start-page: 661
  year: 2000
  ident: 5155_CR5
  publication-title: Clim Dyn
  doi: 10.1007/s003820000075
– volume: 33
  start-page: 706
  issue: 6
  year: 2016
  ident: 5155_CR58
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-016-5269-x
– volume: 12
  start-page: 1990
  year: 1999
  ident: 5155_CR3
  publication-title: J Clim
  doi: 10.1175/1520-0442
– volume: 5
  start-page: 231
  issue: 3
  year: 2012
  ident: 5155_CR32
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2012.11446996
– volume: 124
  start-page: 2597
  year: 1998
  ident: 5155_CR22
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49712455204
– volume: 18
  start-page: 1853
  year: 2005
  ident: 5155_CR52
  publication-title: J Clim
  doi: 10.1175/JCLI3460.1
– volume: 118
  start-page: 9766
  year: 2013
  ident: 5155_CR57
  publication-title: J Geophys Res Atmos
  doi: 10.1002/jgrd.50779
– volume: 30
  start-page: 9915
  issue: 24
  year: 2017
  ident: 5155_CR40
  publication-title: J Clim
  doi: 10.1175/jcli-d-17-0340.1
– volume: 50
  start-page: 1413
  issue: 3–4
  year: 2017
  ident: 5155_CR15
  publication-title: Clim Dyn
  doi: 10.1007/s00382-017-3694-x
– volume: 24
  start-page: 126
  issue: 1
  year: 2007
  ident: 5155_CR20
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-007-0126-6
– volume: 12
  start-page: 254
  issue: 4
  year: 2019
  ident: 5155_CR36
  publication-title: Atmos Ocean Sci Lett
  doi: 10.1080/16742834.2019.1610326
– year: 2019
  ident: 5155_CR59
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49974-5
SSID ssj0014672
Score 2.6123133
Snippet Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific...
Based on the 1979-2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3003
SubjectTerms Air temperature
Analysis
Anomalies
Anticyclones
Anticyclonic circulation
Atlantic Oscillation
Atmospheric models
Atmospheric research
Atmospheric waves
basins
China
Circulation anomalies
climate
Climate cycles
climate models
Climate prediction
Climatology
Cold
Computer simulation
data collection
Earth and Environmental Science
Earth Sciences
Easterlies
Extreme heat
Extreme high temperatures
Geophysics/Geodesy
High temperature
Interdecadal variability
latitude
Mathematical models
Northern Hemisphere
Numerical analysis
Numerical simulations
observational studies
Oceanography
Pacific Decadal Oscillation
Sea surface
Sea surface temperature
Sea surface temperature anomalies
Simulation
summer
Surface temperature
surface water temperature
Teleconnection patterns
Teleconnections
Temperature
Temperature anomalies
Variability
Wave packets
Wind
wind direction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4FLeYtACwNCcACLbOI09gktpRU9dLsqIPVmObZTVSpJ2exWam_88854vakWRC8cI09e8nj8jWfmG8bemKyopS1TXuTooojMe07RJV4rVUhFoSlbhWYT5Xgsj47UJB64dTGtcmkTg6F2raUz8o8he0OJMhWfzn5x6hpF0dXYQuM2WyOmMjFga593xpPDPo6AZiDEEVSe8hKRSSybCcVzFBTLOLlPoc8Jv1zZmv400H9FSsMGtHvvfz_9PluP0BNGC115wG755iFL9hE1t9NwuA5vYfv0BCFsuHrEfu-FEkpoa5h8OQDTOBjtH0DbAJFMTJ23xuEDz9HdXrB9X-AAoLWnM0cgImQg5qtI29zRYAgTQWjaDZQ8Cog_4WfbzQAtL-5_IFJ-gYsPiIC5dY_Zj92d79tfeWzZwC0isRlXlvwvIZQ36GeawtSiUlVh_bB0Mi1SJ6tMIshBmCS3_LAuCiO9yJzMDHouVZo_YYOmbfxTBgj1pC-9csO8FEVmpcp87nFr8U4IU9uEDZezpW3kM6e2Gqe6Z2IOM6xxhnWYYX2ZsPf9PWcLNo8bpV-SEuhFRWpvCvQIUR_iKHRsE_Y6SBCRRkOZOsdm3nV679vhitC7KFS3-IHWxMIH_E3i3lqR3FgqkI6mpNPX2pOwV_0wGgGK7JjGt3OUEQGKb0mU-bBU0-tH_PsXn938xufsbhYWCOXcbbDBbDr3m-yOPZ-ddNMXcbFdAQunLeQ
  priority: 102
  providerName: ProQuest
Title Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period
URI https://link.springer.com/article/10.1007/s00382-020-05155-z
https://www.proquest.com/docview/2376094704
https://www.proquest.com/docview/2400519684
Volume 54
WOSCitedRecordID wos000516093100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014672
  issn: 0930-7575
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoywEh8SggAmUxCMGBWkocp7GPS2lFD_tgC6g3y3EcVKlNqs1upfbGP2fG6wQtLwkukSLPWol3PP4mM_MNIa8Mzypp85hlKbgogjvHMLrEKqUyqTA0ZQvfbCIfj-XJiZqGorC2y3bvQpLeUvfFbhjE4gzdHd-XhF1vkC047iRux9nxlz52AFvfxw5UGrMc0Egolfn9HGvH0c9G-ZfoqD90Du_-3-PeI3cCyKTDlVbcJzdcvU2iEeDjZu4_o9PXdP_sFMCqv9smtyfWmTqwVz8g34587SRtKjp9P6GmLulwNKFNTZFdYl46a0qY_xL87BXN9xUMUDDz-LGRIgMyRcqrwNfc4qCPD1HfrZti1igF4EnPm3ZBweTCwUdFzK5g11FkXm7Kh-Tz4cGn_Q8s9GpgFiDYgimLjpcQyhlwME1mKlGoIrMuyUsZZ3EpCy4B3QA-knsuqbLMSCd4KbkBl6WI00dks25q95hQwHjS5U6VSZqLjFupuEsdnCmuFMJUNiJJ95dpG4jMsZ_Gme4pmP3aa1h77ddeX0fkbf-bixWNx1-ln6Mm6FUpam8D9BDgHgAo8Ggj8tJLIINGjSk6X82ybfXR8WxN6E0Qqhp4QGtCxQO8JpJurUnudDqngw1ptc9XUiKPRURe9MOw-zGkY2rXLEFGeAy-J0Fmt9PDH1P8-RWf_Jv4U3KLe1XG5LsdsrmYL90zctNeLk7b-YBsvTsYT2cDsjFKPuKVTwd-T34HHa0rwA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQX3ohAoQPicYAVznpd7x4QilqqRm3SAkXqbVmv16hSsUucFKU3_hC_kZmNnSogeuuBY7Tjdbyep2fmG8aeWZEUyqURT2IMUaTwnlN2iRdaJ0pTasplYdhEOhyqgwO9t8R-tb0wVFbZ6sSgqPPK0TfyN6F6Q8s0ku-Ov3OaGkXZ1XaExowttv30B4Zs9dv-Br7f50Jsvt9f3-LNVAHu0FkYc-0oRJBSe4uhkE1sITOdJc5301xFSZSrTCi0w2jJ1ZrvFklilZciV8Kic51FMe57iV2W6OmQRA26H-ZZC1Q6IWuh44in6Ac1TTqhVY9ScIJTsBamqvDTBUP4pzn4Ky8bzN3mjf_toG6y641jDb2ZJNxiS768zToDjAmqUUgdwAtYPzpEBz38usN-9kODKFQF7G3sgi1z6A12oSqBIDRGuXc2xw1PLIpoqCCe4gKgLaMvqkAwz0C4Xg0odU2LIQkGYSQ5UGksoHcN36p6DGhX0LqDjPgUjwYIXrrK77LPF3Ii99hyWZX-PgN0ZJVPvc67cSoT4ZQWPvZoOH0upS1ch3Vb7jCuQWunoSFHZo4zHTjKIEeZwFHmtMNeza85nmGVnEu9SkxnZv22c0VneujTopeIYXuHPQ0UBBNSUh3SVzupa9P_9HGB6GVDVFT4B51t2jrwMQlZbIFypWVY0yjK2pxxa4c9mS-jiqO8lS19NUEaGQKNNYU0r1uxONvi34_44Pw7rrKrW_uDHbPTH24_ZNdEEE6qLlxhy-PRxD9iV9zJ-LAePQ5iDuzLRYvLbzGmhzw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKihAX3ohAoQPicQCrG8ebtQ8IhYSKqDSNCki9GcfrRZXKbskmRemNv8WvY8bZTRUQvfXAMfKsEzvz3G8ejD21Is6USyIetzFEkcJ7TugSz7SOlSZoyo3DsIlkOFQHB3q0xn7VtTCUVlnrxKCo08LRO_KtkL2hZRLJraxKixj1t98cf-c0QYqQ1nqcxoJFdvz8B4Zv5etBH__rZ0Jsv_vUe8-rCQPcoeMw5dpRuCCl9hbDIhvbTI71OHa-laQqiqNUjYVCm4xWXXV8K4tjq7wUqRIWHe1x1MZ9L7F11Uki0WDro97b7v4Sw0AVFDAM3Y54gl5RVbITCvcIkBOcQrcwY4WfrpjFP43DXyhtMH7b1__na7vBrlUuN3QXMnKTrfn8FmvuYrRQTAKoAM-hd3SIrnv4dJv9HITSUSgyGPX3wOYpdHf3oMiBmmtMUu9sihueWBTekFs8xwXAM9O7VqAG0EAdv6p21SUtBngMwrByoKRZQL8bvhXlFNDioN0HGfE5Xg1Q4-kivcM-X8iN3GWNvMj9PQbo4iqfeJ222omMhVNa-LZHk-pTKW3mmqxVc4pxVR93GidyZJYdqAN3GeQuE7jLnDbZy-Uzx4suJudSbxIDmkUl7lIFmi56u-g_YkDfZE8CBTUQyYmnvtpZWZrBx_0VohcVUVbgD3S2KvjAY1LPsRXKjZp5TaVCS3PGuU32eLmMyo8QLZv7YoY0MoQgHYU0r2oROdvi30e8f_43brIrKCXmw2C484BdFUFOKe1wgzWmk5l_yC67k-lhOXlUyTywLxctL78BpgSRNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+PDO+and+AMO+on+interdecadal+variability+in+extreme+high+temperatures+in+North+China+over+the+most+recent+40-year+period&rft.jtitle=Climate+dynamics&rft.au=Zhang%2C+Guwei&rft.au=Zeng%2C+Gang&rft.au=Li%2C+Chun&rft.au=Yang%2C+Xiaoye&rft.date=2020-03-01&rft.issn=0930-7575&rft.eissn=1432-0894&rft.volume=54&rft.issue=5-6&rft.spage=3003&rft.epage=3020&rft_id=info:doi/10.1007%2Fs00382-020-05155-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00382_020_05155_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon