Interpretable machine learning for thyroid cancer recurrence predicton: Leveraging XGBoost and SHAP analysis

•Train and test an XGBoost model for recurrence prediction of patients suffering from thyroid cancer with high accuracy.•Use SHAP values to identify relevant biomarkers.•Use SHAP dependence plots to identify threshold values for patients at risk.•Our results could improve the identification of patie...

Full description

Saved in:
Bibliographic Details
Published in:European journal of radiology Vol. 186; p. 112049
Main Authors: Schindele, Andreas, Krebold, Anne, Heiß, Ursula, Nimptsch, Kerstin, Pfaehler, Elisabeth, Berr, Christina, Bundschuh, Ralph A., Wendler, Thomas, Kertels, Olivia, Tran-Gia, Johannes, Pfob, Christian H., Lapa, Constantin
Format: Journal Article
Language:English
Published: Ireland Elsevier B.V 01.05.2025
Subjects:
ISSN:0720-048X, 1872-7727, 1872-7727
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first