Data-driven design of metal–organic frameworks for wet flue gas CO2 capture
Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few viable technologies that can mitigate current CO 2 emissions 2 , much effort is focused on developing solid adsorbents that can efficiently capt...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 576; H. 7786; S. 253 - 256 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
12.12.2019
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Limiting the increase of CO
2
in the atmosphere is one of the largest challenges of our generation
1
. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO
2
emissions
2
, much effort is focused on developing solid adsorbents that can efficiently capture CO
2
from flue gases emitted from anthropogenic sources
3
. One class of materials that has attracted considerable interest in this context is metal–organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO
2
from nitrogen
4
–
7
do not perform well when using realistic flue gas that contains water, because water competes with CO
2
for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive
8
,
9
. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO
2
-binding sites—which we term ‘adsorbaphores’—that endow MOFs with CO
2
/N
2
selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process—including the targeted CO
2
sink, such as geological storage or serving as a carbon source for the chemical industry—will be necessary to identify the optimal separation material.
Data mining of a computational library of metal–organic frameworks identifies motifs that bind CO
2
sufficiently strongly and whose uptake is not affected by water, with application for the capture of CO
2
from flue gases. |
|---|---|
| AbstractList | Limiting the increase of CO2 in the atmosphere is one ofthe largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two waterstable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material. Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material. Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material. Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few viable technologies that can mitigate current CO 2 emissions 2 , much effort is focused on developing solid adsorbents that can efficiently capture CO 2 from flue gases emitted from anthropogenic sources 3 . One class of materials that has attracted considerable interest in this context is metal–organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO 2 from nitrogen 4 – 7 do not perform well when using realistic flue gas that contains water, because water competes with CO 2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive 8 , 9 . Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO 2 -binding sites—which we term ‘adsorbaphores’—that endow MOFs with CO 2 /N 2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process—including the targeted CO 2 sink, such as geological storage or serving as a carbon source for the chemical industry—will be necessary to identify the optimal separation material. Data mining of a computational library of metal–organic frameworks identifies motifs that bind CO 2 sufficiently strongly and whose uptake is not affected by water, with application for the capture of CO 2 from flue gases. |
| Author | Woo, Tom K. García-Díez, Enrique Boyd, Peter G. Stylianou, Kyriakos C. Daff, Thomas D. Schouwink, Pascal Maroto-Valer, M. Mercedes Reimer, Jeffrey A. Bounds, Richard Ireland, Christopher P. Moosavi, Seyed Mohamad Garcia, Susana Navarro, Jorge A. R. Chidambaram, Arunraj Gładysiak, Andrzej Smit, Berend |
| Author_xml | – sequence: 1 givenname: Peter G. surname: Boyd fullname: Boyd, Peter G. organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Arunraj surname: Chidambaram fullname: Chidambaram, Arunraj organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Enrique surname: García-Díez fullname: García-Díez, Enrique organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University – sequence: 4 givenname: Christopher P. surname: Ireland fullname: Ireland, Christopher P. organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Thomas D. surname: Daff fullname: Daff, Thomas D. organization: Department of Chemistry and Biomolecular Science, University of Ottawa, Department of Engineering, University of Cambridge – sequence: 6 givenname: Richard surname: Bounds fullname: Bounds, Richard organization: Department of Chemical and Biomolecular Engineering, University of California, Berkeley – sequence: 7 givenname: Andrzej surname: Gładysiak fullname: Gładysiak, Andrzej organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 8 givenname: Pascal surname: Schouwink fullname: Schouwink, Pascal organization: Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 9 givenname: Seyed Mohamad surname: Moosavi fullname: Moosavi, Seyed Mohamad organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 10 givenname: M. Mercedes surname: Maroto-Valer fullname: Maroto-Valer, M. Mercedes organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University – sequence: 11 givenname: Jeffrey A. surname: Reimer fullname: Reimer, Jeffrey A. organization: Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 12 givenname: Jorge A. R. surname: Navarro fullname: Navarro, Jorge A. R. organization: Departamento de Química Inorgánica, Universidad de Granada – sequence: 13 givenname: Tom K. surname: Woo fullname: Woo, Tom K. email: twoo@uottawa.ca organization: Department of Chemistry and Biomolecular Science, University of Ottawa – sequence: 14 givenname: Susana surname: Garcia fullname: Garcia, Susana email: S.Garcia@hw.ac.uk organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University – sequence: 15 givenname: Kyriakos C. surname: Stylianou fullname: Stylianou, Kyriakos C. email: kyriakos.stylianou@oregonstate.edu organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Department of Chemistry, Oregon State University – sequence: 16 givenname: Berend surname: Smit fullname: Smit, Berend email: berend.smit@epfl.ch organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) |
| BackLink | https://www.osti.gov/servlets/purl/1605262$$D View this record in Osti.gov |
| BookMark | eNp9kcuKFTEQhoOM4JnRB3AXdOMmmkp3Lr2U4xVGZqPrkElXjhn7JMck7eDOd_ANfRK7aUEY0FVB8X114T8nZyknJOQx8OfAO_Oi9iCNYhwGBnowTN8jO-i1Yr0y-ozsOBeGcdOpB-S81hvOuQTd78iHV645Npb4DRMdscZDojnQIzY3_frxM5eDS9HTUNwRb3P5UmnIhd5io2GakR5cpfsrQb07tbngQ3I_uKnioz_1gnx68_rj_h27vHr7fv_ykvleqsbk4Dk4DYAKhTM6-H7pcNDeBcBrAZ3SfsBhga5HKYTR4zhIowXXPgQjugvyZJuba4u2-tjQf_Y5JfTNguJSqBV6tkGnkr_OWJs9xupxmlzCPFcrOiE7DrJb0ad30Js8l7S8sFKDFiB6WCjYKF9yrQWDPZV4dOW7BW7XFOyWgl1SsGsKVi-OvuMsx7oWc2rFxem_ptjMumxJByx_b_q39BtQ-Zx4 |
| CitedBy_id | crossref_primary_10_1038_s41578_020_0225_x crossref_primary_10_1039_D4ME00127C crossref_primary_10_1002_chem_202500865 crossref_primary_10_1038_s41586_024_07683_8 crossref_primary_10_1126_science_abn8418 crossref_primary_10_1016_j_jclepro_2024_143033 crossref_primary_10_1016_j_cej_2024_150572 crossref_primary_10_1016_j_cherd_2022_01_030 crossref_primary_10_1016_j_ccst_2022_100061 crossref_primary_10_3389_frmst_2023_1177528 crossref_primary_10_1021_jacs_3c14610 crossref_primary_10_1016_j_jcis_2023_07_058 crossref_primary_10_1038_s41467_024_46276_x crossref_primary_10_1016_j_cej_2025_162720 crossref_primary_10_1016_j_seppur_2022_122608 crossref_primary_10_1038_s41598_023_44076_9 crossref_primary_10_1038_s41597_022_01181_0 crossref_primary_10_1039_D5SC01532D crossref_primary_10_1002_ange_202416884 crossref_primary_10_1002_adma_202410500 crossref_primary_10_1002_anie_202100707 crossref_primary_10_1016_j_jcou_2021_101811 crossref_primary_10_1021_acs_iecr_5c00726 crossref_primary_10_1016_j_fuel_2024_132269 crossref_primary_10_1021_jacs_4c14130 crossref_primary_10_1016_j_jece_2021_105090 crossref_primary_10_1016_j_seppur_2025_134423 crossref_primary_10_3390_molecules27196481 crossref_primary_10_1016_j_seppur_2023_125291 crossref_primary_10_1002_ange_202106773 crossref_primary_10_1039_D0SE01538E crossref_primary_10_1002_ange_202403345 crossref_primary_10_1016_j_matt_2022_07_029 crossref_primary_10_1021_acs_est_5c00768 crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1021_jacs_0c10421 crossref_primary_10_1016_j_ccst_2022_100087 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1039_D5CS00749F crossref_primary_10_1002_adma_202201547 crossref_primary_10_1002_ange_202207467 crossref_primary_10_1016_j_ccr_2025_216655 crossref_primary_10_3390_nano11123348 crossref_primary_10_1002_smll_202402783 crossref_primary_10_1016_j_ijhydene_2024_12_131 crossref_primary_10_1016_j_cej_2025_160766 crossref_primary_10_1038_s41467_020_18154_9 crossref_primary_10_1039_D0SC02394A crossref_primary_10_1007_s12274_023_5516_2 crossref_primary_10_1016_j_seppur_2024_128927 crossref_primary_10_1016_j_cjche_2021_03_002 crossref_primary_10_1016_j_commatsci_2021_110383 crossref_primary_10_1038_s41467_024_53367_2 crossref_primary_10_1038_s41467_025_60796_0 crossref_primary_10_1038_s41467_023_40418_3 crossref_primary_10_1021_acsami_5c05529 crossref_primary_10_1016_j_gee_2020_06_024 crossref_primary_10_1016_j_cej_2022_135650 crossref_primary_10_1021_jacs_4c06669 crossref_primary_10_3390_pr10020247 crossref_primary_10_1002_adfm_202309974 crossref_primary_10_1016_j_inoche_2024_112927 crossref_primary_10_1038_s41467_024_51950_1 crossref_primary_10_1016_j_cattod_2025_115207 crossref_primary_10_1016_j_jcou_2023_102493 crossref_primary_10_1039_D1ME00138H crossref_primary_10_1016_j_renene_2023_119660 crossref_primary_10_1016_j_seppur_2022_122738 crossref_primary_10_1021_jacs_2c04025 crossref_primary_10_1002_sstr_202100209 crossref_primary_10_1016_j_cis_2025_103671 crossref_primary_10_1038_s41557_025_01873_1 crossref_primary_10_1016_j_apcatb_2025_125297 crossref_primary_10_1016_j_ccr_2025_216832 crossref_primary_10_1016_j_apsusc_2021_151340 crossref_primary_10_1002_anie_202403345 crossref_primary_10_1038_s41467_024_48136_0 crossref_primary_10_1007_s00604_021_04966_z crossref_primary_10_1039_D1EN00037C crossref_primary_10_1038_s41467_024_47612_x crossref_primary_10_1016_j_cjsc_2023_100034 crossref_primary_10_1016_j_matt_2025_102203 crossref_primary_10_1007_s42864_023_00208_2 crossref_primary_10_1016_j_jssc_2022_123690 crossref_primary_10_1039_D4TA08472A crossref_primary_10_1016_j_ces_2024_120614 crossref_primary_10_1016_j_compchemeng_2022_108022 crossref_primary_10_1002_ange_202215296 crossref_primary_10_1039_D0ME00122H crossref_primary_10_1016_j_cej_2025_167021 crossref_primary_10_1038_s41598_024_76491_x crossref_primary_10_1016_j_micromeso_2022_112161 crossref_primary_10_1002_anie_202416884 crossref_primary_10_1002_ange_202100707 crossref_primary_10_1016_j_chemosphere_2021_129799 crossref_primary_10_1016_j_cej_2023_142731 crossref_primary_10_1021_acscentsci_2c01177 crossref_primary_10_1016_j_fuel_2022_126793 crossref_primary_10_1039_D3EE00858D crossref_primary_10_1146_annurev_chembioeng_092320_120230 crossref_primary_10_1016_j_commatsci_2022_111872 crossref_primary_10_1021_acscatal_4c07952 crossref_primary_10_1016_j_mcat_2023_113775 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1016_j_scib_2022_02_015 crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1016_j_cej_2021_134184 crossref_primary_10_1016_j_cej_2022_136783 crossref_primary_10_1039_D5DD00213C crossref_primary_10_1016_j_cej_2025_162906 crossref_primary_10_1021_jacs_5c02093 crossref_primary_10_1002_elan_202100224 crossref_primary_10_1038_s41467_024_55390_9 crossref_primary_10_1016_j_matt_2023_03_009 crossref_primary_10_1016_j_jssc_2022_123532 crossref_primary_10_1002_aic_18283 crossref_primary_10_1016_j_matt_2020_09_024 crossref_primary_10_1002_ange_202114573 crossref_primary_10_1021_acs_jchemed_3c00949 crossref_primary_10_1016_j_ccr_2022_214576 crossref_primary_10_1016_j_seppur_2023_123493 crossref_primary_10_1021_jacs_4c03086 crossref_primary_10_1038_s42004_022_00681_9 crossref_primary_10_1039_D5SC01100K crossref_primary_10_1016_j_seppur_2024_126489 crossref_primary_10_1007_s11771_024_5830_1 crossref_primary_10_1016_j_jssc_2020_121481 crossref_primary_10_1016_j_ccr_2020_213470 crossref_primary_10_3389_fnano_2025_1559053 crossref_primary_10_1002_smll_202500489 crossref_primary_10_1016_j_apcatb_2025_125260 crossref_primary_10_1016_j_jechem_2025_04_078 crossref_primary_10_1007_s41061_025_00494_z crossref_primary_10_1039_D1EE03523A crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1016_j_compchemeng_2024_108629 crossref_primary_10_1016_j_ccr_2022_214670 crossref_primary_10_1016_j_ccr_2020_213262 crossref_primary_10_1016_j_nantod_2023_101802 crossref_primary_10_1002_adma_202206842 crossref_primary_10_1016_j_ijbiomac_2024_132075 crossref_primary_10_1007_s11708_025_1009_1 crossref_primary_10_1002_smll_202302627 crossref_primary_10_1038_s44296_024_00007_x crossref_primary_10_1007_s11426_022_1497_6 crossref_primary_10_1002_anie_202101644 crossref_primary_10_1016_j_eng_2025_08_012 crossref_primary_10_1016_j_fuproc_2023_107700 crossref_primary_10_1016_j_susmat_2022_e00558 crossref_primary_10_1016_j_jcou_2024_102941 crossref_primary_10_1038_s41524_025_01590_w crossref_primary_10_1016_j_seppur_2025_133390 crossref_primary_10_1016_j_ijbiomac_2025_144583 crossref_primary_10_1021_cbe_4c00111 crossref_primary_10_1016_j_mtsust_2023_100356 crossref_primary_10_1016_j_ces_2025_121350 crossref_primary_10_1002_adma_202405532 crossref_primary_10_1002_ange_202500783 crossref_primary_10_1039_D5SC00677E crossref_primary_10_1002_adfm_202308130 crossref_primary_10_1002_anie_202418917 crossref_primary_10_1038_s41467_020_17755_8 crossref_primary_10_1016_j_apsusc_2020_148145 crossref_primary_10_1016_j_cej_2021_133571 crossref_primary_10_1002_adma_202507772 crossref_primary_10_1016_j_gee_2024_01_010 crossref_primary_10_1016_j_jcis_2022_03_062 crossref_primary_10_1002_adts_202100515 crossref_primary_10_1016_j_matt_2022_04_005 crossref_primary_10_1016_j_cej_2023_144533 crossref_primary_10_1016_j_scitotenv_2021_149710 crossref_primary_10_1038_s41557_025_01914_9 crossref_primary_10_1039_D4SC05616G crossref_primary_10_6023_A22110446 crossref_primary_10_1021_jacs_0c09105 crossref_primary_10_1016_j_apenergy_2024_124120 crossref_primary_10_1039_D3QM00801K crossref_primary_10_1016_j_rser_2025_116270 crossref_primary_10_1016_j_isci_2021_102263 crossref_primary_10_1039_D3QM00705G crossref_primary_10_1016_j_jclepro_2022_133420 crossref_primary_10_1002_cctc_202300722 crossref_primary_10_1002_aic_18351 crossref_primary_10_1016_j_cej_2020_127625 crossref_primary_10_1557_s43577_022_00317_2 crossref_primary_10_1002_ange_202311265 crossref_primary_10_1016_j_seppur_2024_130933 crossref_primary_10_1016_j_cej_2021_133594 crossref_primary_10_1515_ntrev_2025_0200 crossref_primary_10_1002_advs_202416302 crossref_primary_10_1021_jacs_4c05075 crossref_primary_10_1016_j_ces_2021_117399 crossref_primary_10_1002_ange_202104318 crossref_primary_10_1016_j_ijsolstr_2024_113092 crossref_primary_10_1016_j_jpcs_2022_110743 crossref_primary_10_1039_D5CS00406C crossref_primary_10_1038_s41563_021_01054_8 crossref_primary_10_1002_advs_202310025 crossref_primary_10_1002_advs_202401070 crossref_primary_10_1021_jacs_2c11420 crossref_primary_10_1088_2053_1591_ad48db crossref_primary_10_1016_j_jmr_2022_107343 crossref_primary_10_1016_j_jece_2025_115702 crossref_primary_10_1002_ange_202409977 crossref_primary_10_1021_jacs_5c08214 crossref_primary_10_1016_j_coche_2021_100778 crossref_primary_10_1016_j_seppur_2024_127752 crossref_primary_10_1002_adfm_202506327 crossref_primary_10_1002_ange_202212732 crossref_primary_10_1016_j_apmt_2025_102747 crossref_primary_10_1039_D3MH01396K crossref_primary_10_1002_sus2_154 crossref_primary_10_1038_s41563_023_01545_w crossref_primary_10_1039_D0SC06059C crossref_primary_10_1016_j_cjche_2020_11_005 crossref_primary_10_3390_ijms232213672 crossref_primary_10_1007_s10854_022_08378_4 crossref_primary_10_1016_j_jcou_2025_103183 crossref_primary_10_1016_j_eti_2022_102991 crossref_primary_10_1021_acsmaterialslett_4c02551 crossref_primary_10_1038_s41598_023_50309_8 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1007_s11783_024_1835_0 crossref_primary_10_1140_epjqt_s40507_022_00155_w crossref_primary_10_1002_cnma_202000069 crossref_primary_10_1088_1742_6596_2766_1_012219 crossref_primary_10_1016_j_cej_2024_153867 crossref_primary_10_1016_j_apcatb_2022_122315 crossref_primary_10_1002_adma_202301730 crossref_primary_10_1021_acscentsci_5c00777 crossref_primary_10_1002_ange_202421681 crossref_primary_10_1016_j_commatsci_2023_112439 crossref_primary_10_1002_cplu_202000072 crossref_primary_10_1038_s41578_022_00466_5 crossref_primary_10_1038_s43246_023_00409_9 crossref_primary_10_1002_adma_202204277 crossref_primary_10_1002_adma_202309572 crossref_primary_10_1002_ange_202513788 crossref_primary_10_1007_s10904_021_02118_7 crossref_primary_10_1039_D2CP01139E crossref_primary_10_1080_08927022_2021_1916014 crossref_primary_10_1021_jacs_1c07217 crossref_primary_10_1038_s41524_022_00961_x crossref_primary_10_1021_acsami_5c09320 crossref_primary_10_1002_ange_202505931 crossref_primary_10_1021_acssensors_4c03535 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1002_anie_202305390 crossref_primary_10_1016_j_memsci_2024_122759 crossref_primary_10_1021_jacs_0c01008 crossref_primary_10_1038_s41597_023_02116_z crossref_primary_10_1039_D3RA02933F crossref_primary_10_1021_jacs_5c08920 crossref_primary_10_1016_j_ccr_2021_213924 crossref_primary_10_1016_j_cej_2024_153049 crossref_primary_10_1021_acsaenm_5c00076 crossref_primary_10_1002_ange_202101644 crossref_primary_10_1021_acs_jcim_5c01625 crossref_primary_10_1002_aic_18426 crossref_primary_10_1016_j_ccst_2025_100445 crossref_primary_10_1039_D0SC03754K crossref_primary_10_1038_s41467_021_21401_2 crossref_primary_10_1002_anie_202503898 crossref_primary_10_1016_j_seppur_2024_130205 crossref_primary_10_1007_s10934_023_01504_5 crossref_primary_10_1016_j_fuel_2022_126913 crossref_primary_10_1126_science_ads7866 crossref_primary_10_1016_j_cej_2025_162029 crossref_primary_10_1021_jacs_1c08404 crossref_primary_10_1039_D1SC02150H crossref_primary_10_1016_j_seppur_2023_124647 crossref_primary_10_1016_j_scib_2022_05_003 crossref_primary_10_1002_adfm_202207197 crossref_primary_10_1002_ange_202503898 crossref_primary_10_1016_j_seppur_2022_122058 crossref_primary_10_1016_j_fuel_2024_132961 crossref_primary_10_1038_s41467_023_42863_6 crossref_primary_10_1021_acs_chemmater_5c00129 crossref_primary_10_1016_j_seppur_2022_122053 crossref_primary_10_3390_app10020569 crossref_primary_10_1016_j_cclet_2024_110709 crossref_primary_10_1038_s41560_023_01417_2 crossref_primary_10_1039_D4SC07438F crossref_primary_10_1039_D1ME00085C crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_1002_aic_17433 crossref_primary_10_1016_j_seppur_2024_128238 crossref_primary_10_1002_adma_202414736 crossref_primary_10_1016_j_cej_2023_146553 crossref_primary_10_1073_pnas_2312959121 crossref_primary_10_1016_j_jchromb_2022_123306 crossref_primary_10_1039_D2SC01254E crossref_primary_10_1021_acs_jcim_4c02044 crossref_primary_10_1039_D1EE02395K crossref_primary_10_1039_D2ME00130F crossref_primary_10_1021_jacs_4c12200 crossref_primary_10_1002_inf2_12259 crossref_primary_10_1002_aidi_202500079 crossref_primary_10_1002_chem_202401868 crossref_primary_10_1038_s41563_022_01374_3 crossref_primary_10_1016_j_inoche_2020_108261 crossref_primary_10_1002_adma_202411359 crossref_primary_10_3389_fenvs_2023_1204690 crossref_primary_10_1007_s12274_023_5961_y crossref_primary_10_1002_anie_202215296 crossref_primary_10_1016_j_envpol_2023_121972 crossref_primary_10_1126_science_aax5776 crossref_primary_10_1016_j_ccr_2021_213968 crossref_primary_10_1007_s42114_022_00481_8 crossref_primary_10_1016_j_seppur_2023_124558 crossref_primary_10_1016_j_cej_2020_127813 crossref_primary_10_1016_j_ccst_2025_100362 crossref_primary_10_1002_aic_17528 crossref_primary_10_1016_j_seppur_2023_125891 crossref_primary_10_6023_A20110526 crossref_primary_10_1016_j_compchemeng_2022_107705 crossref_primary_10_1021_acscentsci_3c01629 crossref_primary_10_1016_j_heliyon_2023_e21314 crossref_primary_10_1038_s41467_024_47695_6 crossref_primary_10_3390_molecules30030650 crossref_primary_10_1002_adfm_202107442 crossref_primary_10_1002_adfm_202414141 crossref_primary_10_1016_j_ccr_2025_217035 crossref_primary_10_1002_anie_202421681 crossref_primary_10_1021_jacs_0c03444 crossref_primary_10_1039_D0SC00049C crossref_primary_10_1016_j_mtener_2024_101771 crossref_primary_10_1021_acsami_3c13533 crossref_primary_10_1021_jacs_5c09712 crossref_primary_10_1039_D0SC00485E crossref_primary_10_1002_anie_202217565 crossref_primary_10_1002_adma_202105852 crossref_primary_10_1039_D2CY01170K crossref_primary_10_1039_D3SC06076D crossref_primary_10_1007_s10311_023_01589_z crossref_primary_10_1016_j_memsci_2021_119634 crossref_primary_10_1016_j_apmt_2020_100933 crossref_primary_10_1016_j_micromeso_2025_113796 crossref_primary_10_1002_adma_202412757 crossref_primary_10_1002_aenm_202300244 crossref_primary_10_1063_5_0201934 crossref_primary_10_1038_s41560_019_0514_z crossref_primary_10_1016_j_seppur_2022_121111 crossref_primary_10_1007_s11837_024_07065_5 crossref_primary_10_1039_D3EE01008B crossref_primary_10_3390_bios14090420 crossref_primary_10_1063_5_0147650 crossref_primary_10_1002_ange_202217565 crossref_primary_10_1039_D5ME00075K crossref_primary_10_1002_adma_202403920 crossref_primary_10_3390_pr11030758 crossref_primary_10_1016_j_ijbiomac_2023_125043 crossref_primary_10_1016_j_fuproc_2020_106675 crossref_primary_10_1016_j_cej_2025_167109 crossref_primary_10_1016_j_ccr_2023_215393 crossref_primary_10_1016_j_cej_2023_141612 crossref_primary_10_1038_s41598_025_86689_2 crossref_primary_10_1002_anie_202207467 crossref_primary_10_1002_advs_202203899 crossref_primary_10_1002_smll_202408466 crossref_primary_10_1038_s41467_025_58734_1 crossref_primary_10_1002_adma_202209327 crossref_primary_10_1021_jacs_9b12879 crossref_primary_10_1002_smll_202405087 crossref_primary_10_1002_chem_202402221 crossref_primary_10_1016_j_cej_2024_151828 crossref_primary_10_1016_j_ces_2022_117813 crossref_primary_10_1016_j_jece_2025_117128 crossref_primary_10_1002_anie_202500783 crossref_primary_10_1002_mame_202300225 crossref_primary_10_1063_5_0283254 crossref_primary_10_1016_j_matt_2025_102140 crossref_primary_10_1038_s42256_020_00271_1 crossref_primary_10_1016_j_surfin_2025_107381 crossref_primary_10_1039_D0RA06842J crossref_primary_10_1002_anie_202106773 crossref_primary_10_1016_S1872_5813_21_60095_6 crossref_primary_10_1016_j_cis_2025_103651 crossref_primary_10_1016_j_cej_2021_131604 crossref_primary_10_1016_j_eswa_2024_124799 crossref_primary_10_1063_5_0189493 crossref_primary_10_1016_j_cej_2024_156376 crossref_primary_10_1016_j_isci_2022_104237 crossref_primary_10_1038_s42004_022_00654_y crossref_primary_10_1002_batt_202300536 crossref_primary_10_1016_j_jece_2025_117789 crossref_primary_10_3390_membranes12070700 crossref_primary_10_1002_ange_202305390 crossref_primary_10_1557_s43578_025_01568_w crossref_primary_10_1002_ange_202418917 crossref_primary_10_1002_anie_202505931 crossref_primary_10_1038_s41524_024_01413_4 crossref_primary_10_1016_j_seppur_2025_132853 crossref_primary_10_1016_j_fuel_2023_128757 crossref_primary_10_1016_j_seppur_2024_128067 crossref_primary_10_1002_advs_202201559 crossref_primary_10_1016_j_seppur_2024_130025 crossref_primary_10_1016_j_seppur_2024_129033 crossref_primary_10_1021_acs_jctc_5c00641 crossref_primary_10_1039_D5NR02310F crossref_primary_10_1002_anie_202114573 crossref_primary_10_1038_s42004_022_00785_2 crossref_primary_10_1007_s40242_022_1452_z crossref_primary_10_1016_j_seppur_2022_122111 crossref_primary_10_1007_s10853_025_11319_1 crossref_primary_10_1016_j_cej_2025_167307 crossref_primary_10_1002_smtd_202401689 crossref_primary_10_1016_j_mtcomm_2024_110050 crossref_primary_10_1016_j_ccr_2023_215112 crossref_primary_10_1038_s42004_023_00938_x crossref_primary_10_1126_science_abi7281 crossref_primary_10_1016_j_seppur_2024_128056 crossref_primary_10_1002_anie_202513788 crossref_primary_10_1016_j_cej_2022_140746 crossref_primary_10_1016_j_seppur_2025_133939 crossref_primary_10_3390_inorganics12010021 crossref_primary_10_1038_s41563_024_02029_1 crossref_primary_10_1016_j_memsci_2021_119696 crossref_primary_10_1039_D3NR05664C crossref_primary_10_1002_aidi_202500109 crossref_primary_10_1039_D5ME00078E crossref_primary_10_1002_anie_202212732 crossref_primary_10_1002_ente_202400178 crossref_primary_10_1016_j_cej_2025_166422 crossref_primary_10_1016_j_greeac_2023_100069 crossref_primary_10_1038_s42256_023_00628_2 crossref_primary_10_1002_ece2_15 crossref_primary_10_1016_j_seppur_2023_125937 crossref_primary_10_1002_advs_202513146 crossref_primary_10_1002_anie_202311265 crossref_primary_10_1016_j_jcis_2024_02_098 crossref_primary_10_1007_s00723_023_01604_0 crossref_primary_10_1021_jacs_5c06861 crossref_primary_10_1016_j_jssc_2024_124964 crossref_primary_10_1002_adma_202401926 crossref_primary_10_1038_s41524_022_00806_7 crossref_primary_10_1021_acs_cgd_5c00317 crossref_primary_10_1063_5_0277611 crossref_primary_10_1002_anie_202104318 crossref_primary_10_1021_jacs_3c06754 crossref_primary_10_1039_D5NR02324F crossref_primary_10_1007_s10311_023_01695_y crossref_primary_10_1016_j_jece_2022_109053 crossref_primary_10_1016_j_seppur_2022_121281 crossref_primary_10_1039_D4SC03609C crossref_primary_10_1007_s12274_020_2813_x crossref_primary_10_1039_D2ME00237J crossref_primary_10_1039_D2NR04156A crossref_primary_10_1002_anie_202409977 crossref_primary_10_1016_j_jclepro_2023_137679 crossref_primary_10_1038_s41598_024_76319_8 crossref_primary_10_1016_j_seppur_2023_123762 crossref_primary_10_1002_adfm_202313596 |
| Cites_doi | 10.1002/anie.201202471 10.1007/s10450-007-9100-y 10.1039/C7EE02342A 10.1021/ja9057234 10.1038/natrevmats.2017.37 10.1021/ja906041f 10.1142/p911 10.1021/ie071012x 10.1038/nmat3336 10.1002/cssc.201601816 10.1002/chem.200305413 10.1021/ja900555r 10.1002/anie.201000431 10.1039/C6CE00407E 10.1016/j.micromeso.2012.12.024 10.1039/c1ee01720a 10.1021/ie070831e 10.1016/j.ijggc.2012.10.018 10.1038/nchem.1192 10.1039/C4EE02636E 10.1016/j.drudis.2007.09.007 10.1021/cr2003272 10.1021/jacs.7b06382 10.1126/science.1230444 10.1124/pr.112.007336 10.1016/j.cej.2011.04.027 10.1021/jacs.7b07612 10.1038/nature14327 10.1107/S2052520614009834 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Dec 12, 2019 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Dec 12, 2019 |
| CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) |
| CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI |
| DOI | 10.1038/s41586-019-1798-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Journals (ProQuest) Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (subscription) Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: PATMY name: Environmental Science Database (subscripiton) url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 256 |
| ExternalDocumentID | 1605262 10_1038_s41586_019_1798_7 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 PUEGO 69O 6XO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGFU ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADFPY ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV AMRJV B-7 EMB F20 I-U N95 OIOZB OTOTI P-O U1R XFK ZA5 |
| ID | FETCH-LOGICAL-c456t-59c01a711e6e2a87fc49c0017caf1eb21367c9e901abd52287dd9587207cff823 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 661 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502792400053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Fri May 19 01:01:51 EDT 2023 Wed Oct 01 12:12:31 EDT 2025 Tue Oct 07 06:47:23 EDT 2025 Tue Nov 18 21:49:24 EST 2025 Sat Nov 29 02:39:16 EST 2025 Fri Feb 21 02:37:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7786 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-59c01a711e6e2a87fc49c0017caf1eb21367c9e901abd52287dd9587207cff823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Spanish Ministry of Economy and Competitiveness (MINECO) USDOE Office of Science (SC) European Union (EU) European Research Council (ERC) AC02-05CH11231; SC0001015 Office Fédéral de l'Energie (Switzerland) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1605262 |
| PQID | 2329721241 |
| PQPubID | 40569 |
| PageCount | 4 |
| ParticipantIDs | osti_scitechconnect_1605262 proquest_miscellaneous_2325301532 proquest_journals_2329721241 crossref_primary_10_1038_s41586_019_1798_7 crossref_citationtrail_10_1038_s41586_019_1798_7 springer_journals_10_1038_s41586_019_1798_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-12 |
| PublicationDateYYYYMMDD | 2019-12-12 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | CouckSAn amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4J. Am. Chem. Soc.2009131632663271:CAS:528:DC%2BD1MXkslCru7c%3D10.1021/ja900555r GarcíaSBreakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 captureChem. Eng. J.201117154955610.1016/j.cej.2011.04.027 LiGCapture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13XAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y BuiMCarbon capture and storage (CCS): the way forwardEnergy Environ. Sci.201811106211761:CAS:528:DC%2BC1cXls12rurk%3D10.1039/C7EE02342A CarringtonEJVitórica-YrezábalIJBrammerLCrystallographic studies of gas sorption in metal–organic frameworksActa Crystallogr. B2014704044221:CAS:528:DC%2BC2cXpt1Squro%3D10.1107/S2052520614009834 MilnerPJA diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanismJ. Am. Chem. Soc.201713913541135531:CAS:528:DC%2BC2sXhsVyqtrfI10.1021/jacs.7b07612 D’AlessandroDMSmitBLongJRCarbon dioxide capture: prospects for new materialsAngew. Chem. Int. Ed.2010496058608210.1002/anie.201000431 ChanutNScreening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworksChemSusChem201710154315531:CAS:528:DC%2BC2sXjs12ktbo%3D10.1002/cssc.201601816 BoydPGWooTKA generalized method for constructing hypothetical nanoporous materials of any net topology from graph theoryCrystEngComm201618377737921:CAS:528:DC%2BC28XksVylsrY%3D10.1039/C6CE00407E McDonaldTMCooperative insertion of CO2 in diamine-appended metal–organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D10.1038/nature14327 SliwoskiGKothiwaleSMeilerJLoweEWJr.Computational methods in drug discoveryPharmacol. Rev.20136633439510.1124/pr.112.007336 FurukawaHCordovaKEO’KeeffeMYaghiOMThe chemistry and applications of metal–organic frameworksScience2013341123044410.1126/science.1230444 ReinschHStockNHigh-throughput studies of highly porous Al-based MOFsMicroporous Mesoporous Mater.20131711561651:CAS:528:DC%2BC3sXjtlOjsrw%3D10.1016/j.micromeso.2012.12.024 WolberGSeidelTBendixFLangerTMolecule-pharmacophore superpositioning and pattern matching in computational drug designDrug Discov. Today20081323291:CAS:528:DC%2BD1cXlsVWhtA%3D%3D10.1016/j.drudis.2007.09.007 SumidaKCarbon dioxide capture in metal–organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272 FlaigRWThe chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditionsJ. Am. Chem. Soc.201713912125121281:CAS:528:DC%2BC2sXhtlCnsrjI10.1021/jacs.7b06382 LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413 WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K10.1038/nchem.1192 BoydPGLeeYSmitBComputational development of the nanoporous materials genomeNat. Mater. Rev.20172170371:CAS:528:DC%2BC2sXhtFegt7bI10.1038/natrevmats.2017.37 MerelJClausseMMeunierFExperimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolitesInd. Eng. Chem. Res.2008472092151:CAS:528:DC%2BD2sXhsVSms7jN10.1021/ie071012x LinL-CIn silico screening of carbon-capture materialsNat. Mater.2012116336412012NatMa..11..633L1:CAS:528:DC%2BC38XnsFKgs7o%3D10.1038/nmat3336 StylianouKCA guest-responsive fluorescent 3D microporous metal–organic framework derived from a long-lifetime pyrene coreJ. Am. Chem. Soc.2010132411941301:CAS:528:DC%2BC3cXislKitbs%3D10.1021/ja906041f MasonJASumidaKHermZRKrishnaRLongJREvaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorptionEnergy Environ. Sci.20114303030401:CAS:528:DC%2BC3MXhtFSrs7bI10.1039/c1ee01720a GarcíaSGilMVPisJJRubieraFPevidaCCyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: experimental and statistical analysisInt. J. Greenhouse Gas Control201312354310.1016/j.ijggc.2012.10.018 Smit, B., Reimer, J. R., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014). FateevaAA water-stable porphyrin-based metal–organic framework active for visible-light photocatalysisAngew. Chem. Int. Ed.201251744074441:CAS:528:DC%2BC38Xos1eht78%3D10.1002/anie.201202471 HuckJMEvaluating different classes of porous materials for carbon captureEnergy Environ. Sci.20147413241461:CAS:528:DC%2BC2cXhslGgurbO10.1039/C4EE02636E HoMTAllinsonGWWileyDEReducing the cost of CO2 capture from flue gases using pressure swing adsorptionInd. Eng. Chem. Res.200847488348901:CAS:528:DC%2BD1cXntF2rs7w%3D10.1021/ie070831e YazaydinAOScreening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approachJ. Am. Chem. Soc.200913118198181991:CAS:528:DC%2BD1MXhsFShsr7L10.1021/ja9057234 S Couck (1798_CR13) 2009; 131 TM McDonald (1798_CR11) 2015; 519 N Chanut (1798_CR14) 2017; 10 K Sumida (1798_CR4) 2012; 112 T Loiseau (1798_CR20) 2004; 10 M Bui (1798_CR2) 2018; 11 G Sliwoski (1798_CR16) 2013; 66 A Fateeva (1798_CR19) 2012; 51 H Furukawa (1798_CR5) 2013; 341 S García (1798_CR24) 2011; 171 DM D’Alessandro (1798_CR3) 2010; 49 EJ Carrington (1798_CR23) 2014; 70 JM Huck (1798_CR6) 2014; 7 PG Boyd (1798_CR28) 2017; 2 L-C Lin (1798_CR26) 2012; 11 G Wolber (1798_CR15) 2008; 13 J Merel (1798_CR9) 2008; 47 PJ Milner (1798_CR10) 2017; 139 H Reinsch (1798_CR21) 2013; 171 PG Boyd (1798_CR22) 2016; 18 AO Yazaydin (1798_CR29) 2009; 131 G Li (1798_CR8) 2008; 14 S García (1798_CR25) 2013; 12 CE Wilmer (1798_CR27) 2012; 4 RW Flaig (1798_CR12) 2017; 139 JA Mason (1798_CR7) 2011; 4 KC Stylianou (1798_CR18) 2010; 132 1798_CR1 MT Ho (1798_CR17) 2008; 47 |
| References_xml | – reference: ReinschHStockNHigh-throughput studies of highly porous Al-based MOFsMicroporous Mesoporous Mater.20131711561651:CAS:528:DC%2BC3sXjtlOjsrw%3D10.1016/j.micromeso.2012.12.024 – reference: StylianouKCA guest-responsive fluorescent 3D microporous metal–organic framework derived from a long-lifetime pyrene coreJ. Am. Chem. Soc.2010132411941301:CAS:528:DC%2BC3cXislKitbs%3D10.1021/ja906041f – reference: WolberGSeidelTBendixFLangerTMolecule-pharmacophore superpositioning and pattern matching in computational drug designDrug Discov. Today20081323291:CAS:528:DC%2BD1cXlsVWhtA%3D%3D10.1016/j.drudis.2007.09.007 – reference: CouckSAn amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4J. Am. Chem. Soc.2009131632663271:CAS:528:DC%2BD1MXkslCru7c%3D10.1021/ja900555r – reference: LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413 – reference: BuiMCarbon capture and storage (CCS): the way forwardEnergy Environ. Sci.201811106211761:CAS:528:DC%2BC1cXls12rurk%3D10.1039/C7EE02342A – reference: FlaigRWThe chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditionsJ. Am. Chem. Soc.201713912125121281:CAS:528:DC%2BC2sXhtlCnsrjI10.1021/jacs.7b06382 – reference: CarringtonEJVitórica-YrezábalIJBrammerLCrystallographic studies of gas sorption in metal–organic frameworksActa Crystallogr. B2014704044221:CAS:528:DC%2BC2cXpt1Squro%3D10.1107/S2052520614009834 – reference: BoydPGLeeYSmitBComputational development of the nanoporous materials genomeNat. Mater. Rev.20172170371:CAS:528:DC%2BC2sXhtFegt7bI10.1038/natrevmats.2017.37 – reference: WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K10.1038/nchem.1192 – reference: MerelJClausseMMeunierFExperimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolitesInd. Eng. Chem. Res.2008472092151:CAS:528:DC%2BD2sXhsVSms7jN10.1021/ie071012x – reference: SliwoskiGKothiwaleSMeilerJLoweEWJr.Computational methods in drug discoveryPharmacol. Rev.20136633439510.1124/pr.112.007336 – reference: McDonaldTMCooperative insertion of CO2 in diamine-appended metal–organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D10.1038/nature14327 – reference: LiGCapture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13XAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y – reference: FateevaAA water-stable porphyrin-based metal–organic framework active for visible-light photocatalysisAngew. Chem. Int. Ed.201251744074441:CAS:528:DC%2BC38Xos1eht78%3D10.1002/anie.201202471 – reference: SumidaKCarbon dioxide capture in metal–organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272 – reference: HuckJMEvaluating different classes of porous materials for carbon captureEnergy Environ. Sci.20147413241461:CAS:528:DC%2BC2cXhslGgurbO10.1039/C4EE02636E – reference: D’AlessandroDMSmitBLongJRCarbon dioxide capture: prospects for new materialsAngew. Chem. Int. Ed.2010496058608210.1002/anie.201000431 – reference: GarcíaSBreakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 captureChem. Eng. J.201117154955610.1016/j.cej.2011.04.027 – reference: MasonJASumidaKHermZRKrishnaRLongJREvaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorptionEnergy Environ. Sci.20114303030401:CAS:528:DC%2BC3MXhtFSrs7bI10.1039/c1ee01720a – reference: MilnerPJA diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanismJ. Am. Chem. Soc.201713913541135531:CAS:528:DC%2BC2sXhsVyqtrfI10.1021/jacs.7b07612 – reference: BoydPGWooTKA generalized method for constructing hypothetical nanoporous materials of any net topology from graph theoryCrystEngComm201618377737921:CAS:528:DC%2BC28XksVylsrY%3D10.1039/C6CE00407E – reference: YazaydinAOScreening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approachJ. Am. Chem. Soc.200913118198181991:CAS:528:DC%2BD1MXhsFShsr7L10.1021/ja9057234 – reference: LinL-CIn silico screening of carbon-capture materialsNat. Mater.2012116336412012NatMa..11..633L1:CAS:528:DC%2BC38XnsFKgs7o%3D10.1038/nmat3336 – reference: Smit, B., Reimer, J. R., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014). – reference: ChanutNScreening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworksChemSusChem201710154315531:CAS:528:DC%2BC2sXjs12ktbo%3D10.1002/cssc.201601816 – reference: GarcíaSGilMVPisJJRubieraFPevidaCCyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: experimental and statistical analysisInt. J. Greenhouse Gas Control201312354310.1016/j.ijggc.2012.10.018 – reference: HoMTAllinsonGWWileyDEReducing the cost of CO2 capture from flue gases using pressure swing adsorptionInd. Eng. Chem. Res.200847488348901:CAS:528:DC%2BD1cXntF2rs7w%3D10.1021/ie070831e – reference: FurukawaHCordovaKEO’KeeffeMYaghiOMThe chemistry and applications of metal–organic frameworksScience2013341123044410.1126/science.1230444 – volume: 51 start-page: 7440 year: 2012 ident: 1798_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202471 – volume: 14 start-page: 415 year: 2008 ident: 1798_CR8 publication-title: Adsorption doi: 10.1007/s10450-007-9100-y – volume: 11 start-page: 1062 year: 2018 ident: 1798_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02342A – volume: 131 start-page: 18198 year: 2009 ident: 1798_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9057234 – volume: 2 start-page: 17037 year: 2017 ident: 1798_CR28 publication-title: Nat. Mater. Rev. doi: 10.1038/natrevmats.2017.37 – volume: 132 start-page: 4119 year: 2010 ident: 1798_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906041f – ident: 1798_CR1 doi: 10.1142/p911 – volume: 47 start-page: 209 year: 2008 ident: 1798_CR9 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071012x – volume: 11 start-page: 633 year: 2012 ident: 1798_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat3336 – volume: 10 start-page: 1543 year: 2017 ident: 1798_CR14 publication-title: ChemSusChem doi: 10.1002/cssc.201601816 – volume: 10 start-page: 1373 year: 2004 ident: 1798_CR20 publication-title: Chem. Eur. J. doi: 10.1002/chem.200305413 – volume: 131 start-page: 6326 year: 2009 ident: 1798_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900555r – volume: 49 start-page: 6058 year: 2010 ident: 1798_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000431 – volume: 18 start-page: 3777 year: 2016 ident: 1798_CR22 publication-title: CrystEngComm doi: 10.1039/C6CE00407E – volume: 171 start-page: 156 year: 2013 ident: 1798_CR21 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.12.024 – volume: 4 start-page: 3030 year: 2011 ident: 1798_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01720a – volume: 47 start-page: 4883 year: 2008 ident: 1798_CR17 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070831e – volume: 12 start-page: 35 year: 2013 ident: 1798_CR25 publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.10.018 – volume: 4 start-page: 83 year: 2012 ident: 1798_CR27 publication-title: Nat. Chem. doi: 10.1038/nchem.1192 – volume: 7 start-page: 4132 year: 2014 ident: 1798_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02636E – volume: 13 start-page: 23 year: 2008 ident: 1798_CR15 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2007.09.007 – volume: 112 start-page: 724 year: 2012 ident: 1798_CR4 publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 139 start-page: 12125 year: 2017 ident: 1798_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06382 – volume: 341 start-page: 1230444 year: 2013 ident: 1798_CR5 publication-title: Science doi: 10.1126/science.1230444 – volume: 66 start-page: 334 year: 2013 ident: 1798_CR16 publication-title: Pharmacol. Rev. doi: 10.1124/pr.112.007336 – volume: 171 start-page: 549 year: 2011 ident: 1798_CR24 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.04.027 – volume: 139 start-page: 13541 year: 2017 ident: 1798_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07612 – volume: 519 start-page: 303 year: 2015 ident: 1798_CR11 publication-title: Nature doi: 10.1038/nature14327 – volume: 70 start-page: 404 year: 2014 ident: 1798_CR23 publication-title: Acta Crystallogr. B doi: 10.1107/S2052520614009834 |
| SSID | ssj0005174 |
| Score | 2.7200797 |
| Snippet | Limiting the increase of CO
2
in the atmosphere is one of the largest challenges of our generation
1
. Because carbon capture and storage is one of the few... Limiting the increase of CO2 in the atmosphere is one ofthe largest challenges of our generation1. Because carbon capture and storage is one of the few viable... Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable... Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable... |
| SourceID | osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 253 |
| SubjectTerms | 119/118 639/301/1034/1035 639/301/299/921 639/638/630 Adsorption Anthropogenic factors Binding sites Carbon Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide emissions Carbon sequestration Carbon sources Chemical industry Computer applications Data mining Flue gas Gases Humanities and Social Sciences Humidity Hydrogen Hydrophobicity INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Libraries Ligands Materials selection Metal ions Metal-organic frameworks multidisciplinary NMR Nuclear magnetic resonance Organic chemistry Science Science (multidisciplinary) Selectivity Separation |
| Title | Data-driven design of metal–organic frameworks for wet flue gas CO2 capture |
| URI | https://link.springer.com/article/10.1038/s41586-019-1798-7 https://www.proquest.com/docview/2329721241 https://www.proquest.com/docview/2325301532 https://www.osti.gov/servlets/purl/1605262 |
| Volume | 576 |
| WOSCitedRecordID | wos000502792400053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Journals (ProQuest) customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BChIXoAVEaKkWiQMPufX6kV2fEA2tkKqkUXko4rJaj9cICeIQu3DlP_AP-SXMrO1GrUQvXD7JibO2PDO7n3cm3wA8TW2JyvG-W8J_yUnKLLBRXgZRZhNZoHYpat9sQk2nej7PZt2GW92VVfZzop-oiwp5j3yfVn4WmqEF59Xye8Bdozi72rXQuA4bkrkx-bM6_bgu8bikwtxnNWO9X9PCpfldOmOBTh2oC-vSoKL4usA5L6VJ_epzdOd_7_su3O54p3jdOsomXHOLLbjp6z-x3oLNLsZr8awTon5-DyZvbGODYsUToih8qYeoSvHNEWH_8-t32xAKRdnXd9WCGLD46RrBjU_EZ1uL8Ukk0C45TXEfPhwdvh-_Dbr2CwESq2qCNMNQWiWlG7nIalViQp9QBKMtJb2Qs9gbZo4Ihc0LonFaFUWWahWFCstSR_EDGCyqhXsIIgt1LnMaJY9Z7j3JR5nGUZEjkdOEKMsQwv7hG-y0yblFxlfjc-SxNq29DNnLsL2MGsKL858sW2GOq07eZosaYhUsjYtcQ4SNkSNWu4mGsNObznQRXJu13Ybw5Pxrij1OqNiFq878OSlNkGlMQ7zsHWQ9xD9v59HVF9yGW5F3TG47swODZnXmHsMN_NF8qVe73sUZ58qjJtRjuQsbB4fT2SkdHR_sEU7CY8Zo4vHE44xRtfiOcJZ--gs87Qr2 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VCwguQAuIpQWMBBIPRd04ycY-IIS2VK3aLhyK1JtxJjZCgs2ySam48R_4H_wofgkzTtLSSvTWA9c8nIe_eXnG3wA8zqzH3PG6W8pbclKvIysLH0lt07hE5TJUodlEPp2qgwP9bgl-9XthuKyy14lBUZcV8hr5Oll-Jpohg_Nq_jXirlGcXe1baLSw2HHfjyhkq19ub9D8PpFy883-ZCvqugpESM5CE2UaR7HN49iNnbQq95jSEQImWh9TnMkcZqgd2UlblOSdqLwsdaZyOcrRe8VEB6TyL6WJTFiK1OSvkpIzrM99FjVR6zUZSsWxu2ZCUBXlp-zgoCJ5PuXjnknLBmu3eeN_-0834XrnV4vXrSAsw5KbrcCVUN-K9QosdzqsFk87ou1nt2BvwzY2Khes8EUZSllE5cUXRwHJ7x8_24ZXKHxfv1YL8vDFkWsEN3YRH20tJm-lQDvnNMxteH8hH3gHBrNq5u6C0CNVxAWNUiRMZ58WY61wXBZIzndKLtkQRv1kG-y417kFyGcTagASZVp8GMKHYXyYfAjPj2-Zt8Qj5128yggy5DUx9S9yjRQ2Jh4zm48cwloPFdNpqNqc4GQIj45Pk27hhJGdueowXJORAcgSGuJFD8iTIf75OvfOf-BDuLq1v7drdrenO6twTQah4BY7azBoFofuPlzGb82nevEgiJeADxeN0z8HRFrt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vy0NcgBYQSwsYCSQeijbxJrF9QAh1WVEVlj2A1JtxHBshwWbZpFTc-A_8G34Ov4QZJ-mqleitB655OA9_nhl7Pn8D8DAz3gpH624pbclJvYoML3zElUmT0kqXWRmKTYjZTB4cqPkG_O73whCtsreJwVCXlaU18hF6fhKaQYcz8h0tYj6Zvlh-i6iCFGVa-3IaLUT23Y8jnL7Vz_cm2NePOJ--er_7OuoqDEQWA4cmypSNEyOSxOWOGym8TfEIgtQan-Cck_TMrHLoM01RYqQiRVmqTAoeC-u9JNEDNP8XRJrHPNAG52t6ySkF6D6jOpajGp2mpHm8InFQGYkTPnFQ4dg-Ee-eStEGzze99j__s-twtYu32ct2gGzChltswaXAe7X1Fmx2tq1mjzsB7ic34O3ENCYqV-QIWBkoLqzy7KvDicqfn7_aQliW-Z7XVjOM_NmRaxgVfGGfTM1233FmzZLSMzfhw7l84C0YLKqFuw1MxbJICmylGJPMfVrkStq8LCwG5SmGakOI-47XttNkp9IgX3TgBoylbrGiESuasKLFEJ4e37JsBUnOunib0KQxmiJJYEvcKdvoJCeVHz6EnR42urNctV5jZggPjk-jzaFEklm46jBck6FjyMbYxLMenOsm_vk6d85-4H24jPDUb_Zm-9twhYfxQZV3dmDQrA7dXbhovzef69W9MNIYfDxvmP4FHVpj-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+design+of+metal%E2%80%93organic+frameworks+for+wet+flue+gas+CO2+capture&rft.jtitle=Nature+%28London%29&rft.au=Boyd%2C+Peter+G.&rft.au=Chidambaram%2C+Arunraj&rft.au=Garc%C3%ADa-D%C3%ADez%2C+Enrique&rft.au=Ireland%2C+Christopher+P.&rft.date=2019-12-12&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=576&rft.issue=7786&rft.spage=253&rft.epage=256&rft_id=info:doi/10.1038%2Fs41586-019-1798-7&rft.externalDocID=10_1038_s41586_019_1798_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |