Data-driven design of metal–organic frameworks for wet flue gas CO2 capture

Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few viable technologies that can mitigate current CO 2 emissions 2 , much effort is focused on developing solid adsorbents that can efficiently capt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) Jg. 576; H. 7786; S. 253 - 256
Hauptverfasser: Boyd, Peter G., Chidambaram, Arunraj, García-Díez, Enrique, Ireland, Christopher P., Daff, Thomas D., Bounds, Richard, Gładysiak, Andrzej, Schouwink, Pascal, Moosavi, Seyed Mohamad, Maroto-Valer, M. Mercedes, Reimer, Jeffrey A., Navarro, Jorge A. R., Woo, Tom K., Garcia, Susana, Stylianou, Kyriakos C., Smit, Berend
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 12.12.2019
Nature Publishing Group
Schlagworte:
ISSN:0028-0836, 1476-4687, 1476-4687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few viable technologies that can mitigate current CO 2 emissions 2 , much effort is focused on developing solid adsorbents that can efficiently capture CO 2 from flue gases emitted from anthropogenic sources 3 . One class of materials that has attracted considerable interest in this context is metal–organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO 2 from nitrogen 4 – 7 do not perform well when using realistic flue gas that contains water, because water competes with CO 2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive 8 , 9 . Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO 2 -binding sites—which we term ‘adsorbaphores’—that endow MOFs with CO 2 /N 2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process—including the targeted CO 2 sink, such as geological storage or serving as a carbon source for the chemical industry—will be necessary to identify the optimal separation material. Data mining of a computational library of metal–organic frameworks identifies motifs that bind CO 2 sufficiently strongly and whose uptake is not affected by water, with application for the capture of CO 2 from flue gases.
AbstractList Limiting the increase of CO2 in the atmosphere is one ofthe largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two waterstable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.
Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.
Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.
Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few viable technologies that can mitigate current CO 2 emissions 2 , much effort is focused on developing solid adsorbents that can efficiently capture CO 2 from flue gases emitted from anthropogenic sources 3 . One class of materials that has attracted considerable interest in this context is metal–organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO 2 from nitrogen 4 – 7 do not perform well when using realistic flue gas that contains water, because water competes with CO 2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive 8 , 9 . Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO 2 -binding sites—which we term ‘adsorbaphores’—that endow MOFs with CO 2 /N 2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process—including the targeted CO 2 sink, such as geological storage or serving as a carbon source for the chemical industry—will be necessary to identify the optimal separation material. Data mining of a computational library of metal–organic frameworks identifies motifs that bind CO 2 sufficiently strongly and whose uptake is not affected by water, with application for the capture of CO 2 from flue gases.
Author Woo, Tom K.
García-Díez, Enrique
Boyd, Peter G.
Stylianou, Kyriakos C.
Daff, Thomas D.
Schouwink, Pascal
Maroto-Valer, M. Mercedes
Reimer, Jeffrey A.
Bounds, Richard
Ireland, Christopher P.
Moosavi, Seyed Mohamad
Garcia, Susana
Navarro, Jorge A. R.
Chidambaram, Arunraj
Gładysiak, Andrzej
Smit, Berend
Author_xml – sequence: 1
  givenname: Peter G.
  surname: Boyd
  fullname: Boyd, Peter G.
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Arunraj
  surname: Chidambaram
  fullname: Chidambaram, Arunraj
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Enrique
  surname: García-Díez
  fullname: García-Díez, Enrique
  organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University
– sequence: 4
  givenname: Christopher P.
  surname: Ireland
  fullname: Ireland, Christopher P.
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Thomas D.
  surname: Daff
  fullname: Daff, Thomas D.
  organization: Department of Chemistry and Biomolecular Science, University of Ottawa, Department of Engineering, University of Cambridge
– sequence: 6
  givenname: Richard
  surname: Bounds
  fullname: Bounds, Richard
  organization: Department of Chemical and Biomolecular Engineering, University of California, Berkeley
– sequence: 7
  givenname: Andrzej
  surname: Gładysiak
  fullname: Gładysiak, Andrzej
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 8
  givenname: Pascal
  surname: Schouwink
  fullname: Schouwink, Pascal
  organization: Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 9
  givenname: Seyed Mohamad
  surname: Moosavi
  fullname: Moosavi, Seyed Mohamad
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 10
  givenname: M. Mercedes
  surname: Maroto-Valer
  fullname: Maroto-Valer, M. Mercedes
  organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University
– sequence: 11
  givenname: Jeffrey A.
  surname: Reimer
  fullname: Reimer, Jeffrey A.
  organization: Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 12
  givenname: Jorge A. R.
  surname: Navarro
  fullname: Navarro, Jorge A. R.
  organization: Departamento de Química Inorgánica, Universidad de Granada
– sequence: 13
  givenname: Tom K.
  surname: Woo
  fullname: Woo, Tom K.
  email: twoo@uottawa.ca
  organization: Department of Chemistry and Biomolecular Science, University of Ottawa
– sequence: 14
  givenname: Susana
  surname: Garcia
  fullname: Garcia, Susana
  email: S.Garcia@hw.ac.uk
  organization: Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University
– sequence: 15
  givenname: Kyriakos C.
  surname: Stylianou
  fullname: Stylianou, Kyriakos C.
  email: kyriakos.stylianou@oregonstate.edu
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Department of Chemistry, Oregon State University
– sequence: 16
  givenname: Berend
  surname: Smit
  fullname: Smit, Berend
  email: berend.smit@epfl.ch
  organization: Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)
BackLink https://www.osti.gov/servlets/purl/1605262$$D View this record in Osti.gov
BookMark eNp9kcuKFTEQhoOM4JnRB3AXdOMmmkp3Lr2U4xVGZqPrkElXjhn7JMck7eDOd_ANfRK7aUEY0FVB8X114T8nZyknJOQx8OfAO_Oi9iCNYhwGBnowTN8jO-i1Yr0y-ozsOBeGcdOpB-S81hvOuQTd78iHV645Npb4DRMdscZDojnQIzY3_frxM5eDS9HTUNwRb3P5UmnIhd5io2GakR5cpfsrQb07tbngQ3I_uKnioz_1gnx68_rj_h27vHr7fv_ykvleqsbk4Dk4DYAKhTM6-H7pcNDeBcBrAZ3SfsBhga5HKYTR4zhIowXXPgQjugvyZJuba4u2-tjQf_Y5JfTNguJSqBV6tkGnkr_OWJs9xupxmlzCPFcrOiE7DrJb0ad30Js8l7S8sFKDFiB6WCjYKF9yrQWDPZV4dOW7BW7XFOyWgl1SsGsKVi-OvuMsx7oWc2rFxem_ptjMumxJByx_b_q39BtQ-Zx4
CitedBy_id crossref_primary_10_1038_s41578_020_0225_x
crossref_primary_10_1039_D4ME00127C
crossref_primary_10_1002_chem_202500865
crossref_primary_10_1038_s41586_024_07683_8
crossref_primary_10_1126_science_abn8418
crossref_primary_10_1016_j_jclepro_2024_143033
crossref_primary_10_1016_j_cej_2024_150572
crossref_primary_10_1016_j_cherd_2022_01_030
crossref_primary_10_1016_j_ccst_2022_100061
crossref_primary_10_3389_frmst_2023_1177528
crossref_primary_10_1021_jacs_3c14610
crossref_primary_10_1016_j_jcis_2023_07_058
crossref_primary_10_1038_s41467_024_46276_x
crossref_primary_10_1016_j_cej_2025_162720
crossref_primary_10_1016_j_seppur_2022_122608
crossref_primary_10_1038_s41598_023_44076_9
crossref_primary_10_1038_s41597_022_01181_0
crossref_primary_10_1039_D5SC01532D
crossref_primary_10_1002_ange_202416884
crossref_primary_10_1002_adma_202410500
crossref_primary_10_1002_anie_202100707
crossref_primary_10_1016_j_jcou_2021_101811
crossref_primary_10_1021_acs_iecr_5c00726
crossref_primary_10_1016_j_fuel_2024_132269
crossref_primary_10_1021_jacs_4c14130
crossref_primary_10_1016_j_jece_2021_105090
crossref_primary_10_1016_j_seppur_2025_134423
crossref_primary_10_3390_molecules27196481
crossref_primary_10_1016_j_seppur_2023_125291
crossref_primary_10_1002_ange_202106773
crossref_primary_10_1039_D0SE01538E
crossref_primary_10_1002_ange_202403345
crossref_primary_10_1016_j_matt_2022_07_029
crossref_primary_10_1021_acs_est_5c00768
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1021_jacs_0c10421
crossref_primary_10_1016_j_ccst_2022_100087
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1039_D5CS00749F
crossref_primary_10_1002_adma_202201547
crossref_primary_10_1002_ange_202207467
crossref_primary_10_1016_j_ccr_2025_216655
crossref_primary_10_3390_nano11123348
crossref_primary_10_1002_smll_202402783
crossref_primary_10_1016_j_ijhydene_2024_12_131
crossref_primary_10_1016_j_cej_2025_160766
crossref_primary_10_1038_s41467_020_18154_9
crossref_primary_10_1039_D0SC02394A
crossref_primary_10_1007_s12274_023_5516_2
crossref_primary_10_1016_j_seppur_2024_128927
crossref_primary_10_1016_j_cjche_2021_03_002
crossref_primary_10_1016_j_commatsci_2021_110383
crossref_primary_10_1038_s41467_024_53367_2
crossref_primary_10_1038_s41467_025_60796_0
crossref_primary_10_1038_s41467_023_40418_3
crossref_primary_10_1021_acsami_5c05529
crossref_primary_10_1016_j_gee_2020_06_024
crossref_primary_10_1016_j_cej_2022_135650
crossref_primary_10_1021_jacs_4c06669
crossref_primary_10_3390_pr10020247
crossref_primary_10_1002_adfm_202309974
crossref_primary_10_1016_j_inoche_2024_112927
crossref_primary_10_1038_s41467_024_51950_1
crossref_primary_10_1016_j_cattod_2025_115207
crossref_primary_10_1016_j_jcou_2023_102493
crossref_primary_10_1039_D1ME00138H
crossref_primary_10_1016_j_renene_2023_119660
crossref_primary_10_1016_j_seppur_2022_122738
crossref_primary_10_1021_jacs_2c04025
crossref_primary_10_1002_sstr_202100209
crossref_primary_10_1016_j_cis_2025_103671
crossref_primary_10_1038_s41557_025_01873_1
crossref_primary_10_1016_j_apcatb_2025_125297
crossref_primary_10_1016_j_ccr_2025_216832
crossref_primary_10_1016_j_apsusc_2021_151340
crossref_primary_10_1002_anie_202403345
crossref_primary_10_1038_s41467_024_48136_0
crossref_primary_10_1007_s00604_021_04966_z
crossref_primary_10_1039_D1EN00037C
crossref_primary_10_1038_s41467_024_47612_x
crossref_primary_10_1016_j_cjsc_2023_100034
crossref_primary_10_1016_j_matt_2025_102203
crossref_primary_10_1007_s42864_023_00208_2
crossref_primary_10_1016_j_jssc_2022_123690
crossref_primary_10_1039_D4TA08472A
crossref_primary_10_1016_j_ces_2024_120614
crossref_primary_10_1016_j_compchemeng_2022_108022
crossref_primary_10_1002_ange_202215296
crossref_primary_10_1039_D0ME00122H
crossref_primary_10_1016_j_cej_2025_167021
crossref_primary_10_1038_s41598_024_76491_x
crossref_primary_10_1016_j_micromeso_2022_112161
crossref_primary_10_1002_anie_202416884
crossref_primary_10_1002_ange_202100707
crossref_primary_10_1016_j_chemosphere_2021_129799
crossref_primary_10_1016_j_cej_2023_142731
crossref_primary_10_1021_acscentsci_2c01177
crossref_primary_10_1016_j_fuel_2022_126793
crossref_primary_10_1039_D3EE00858D
crossref_primary_10_1146_annurev_chembioeng_092320_120230
crossref_primary_10_1016_j_commatsci_2022_111872
crossref_primary_10_1021_acscatal_4c07952
crossref_primary_10_1016_j_mcat_2023_113775
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1016_j_scib_2022_02_015
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1016_j_cej_2021_134184
crossref_primary_10_1016_j_cej_2022_136783
crossref_primary_10_1039_D5DD00213C
crossref_primary_10_1016_j_cej_2025_162906
crossref_primary_10_1021_jacs_5c02093
crossref_primary_10_1002_elan_202100224
crossref_primary_10_1038_s41467_024_55390_9
crossref_primary_10_1016_j_matt_2023_03_009
crossref_primary_10_1016_j_jssc_2022_123532
crossref_primary_10_1002_aic_18283
crossref_primary_10_1016_j_matt_2020_09_024
crossref_primary_10_1002_ange_202114573
crossref_primary_10_1021_acs_jchemed_3c00949
crossref_primary_10_1016_j_ccr_2022_214576
crossref_primary_10_1016_j_seppur_2023_123493
crossref_primary_10_1021_jacs_4c03086
crossref_primary_10_1038_s42004_022_00681_9
crossref_primary_10_1039_D5SC01100K
crossref_primary_10_1016_j_seppur_2024_126489
crossref_primary_10_1007_s11771_024_5830_1
crossref_primary_10_1016_j_jssc_2020_121481
crossref_primary_10_1016_j_ccr_2020_213470
crossref_primary_10_3389_fnano_2025_1559053
crossref_primary_10_1002_smll_202500489
crossref_primary_10_1016_j_apcatb_2025_125260
crossref_primary_10_1016_j_jechem_2025_04_078
crossref_primary_10_1007_s41061_025_00494_z
crossref_primary_10_1039_D1EE03523A
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1016_j_compchemeng_2024_108629
crossref_primary_10_1016_j_ccr_2022_214670
crossref_primary_10_1016_j_ccr_2020_213262
crossref_primary_10_1016_j_nantod_2023_101802
crossref_primary_10_1002_adma_202206842
crossref_primary_10_1016_j_ijbiomac_2024_132075
crossref_primary_10_1007_s11708_025_1009_1
crossref_primary_10_1002_smll_202302627
crossref_primary_10_1038_s44296_024_00007_x
crossref_primary_10_1007_s11426_022_1497_6
crossref_primary_10_1002_anie_202101644
crossref_primary_10_1016_j_eng_2025_08_012
crossref_primary_10_1016_j_fuproc_2023_107700
crossref_primary_10_1016_j_susmat_2022_e00558
crossref_primary_10_1016_j_jcou_2024_102941
crossref_primary_10_1038_s41524_025_01590_w
crossref_primary_10_1016_j_seppur_2025_133390
crossref_primary_10_1016_j_ijbiomac_2025_144583
crossref_primary_10_1021_cbe_4c00111
crossref_primary_10_1016_j_mtsust_2023_100356
crossref_primary_10_1016_j_ces_2025_121350
crossref_primary_10_1002_adma_202405532
crossref_primary_10_1002_ange_202500783
crossref_primary_10_1039_D5SC00677E
crossref_primary_10_1002_adfm_202308130
crossref_primary_10_1002_anie_202418917
crossref_primary_10_1038_s41467_020_17755_8
crossref_primary_10_1016_j_apsusc_2020_148145
crossref_primary_10_1016_j_cej_2021_133571
crossref_primary_10_1002_adma_202507772
crossref_primary_10_1016_j_gee_2024_01_010
crossref_primary_10_1016_j_jcis_2022_03_062
crossref_primary_10_1002_adts_202100515
crossref_primary_10_1016_j_matt_2022_04_005
crossref_primary_10_1016_j_cej_2023_144533
crossref_primary_10_1016_j_scitotenv_2021_149710
crossref_primary_10_1038_s41557_025_01914_9
crossref_primary_10_1039_D4SC05616G
crossref_primary_10_6023_A22110446
crossref_primary_10_1021_jacs_0c09105
crossref_primary_10_1016_j_apenergy_2024_124120
crossref_primary_10_1039_D3QM00801K
crossref_primary_10_1016_j_rser_2025_116270
crossref_primary_10_1016_j_isci_2021_102263
crossref_primary_10_1039_D3QM00705G
crossref_primary_10_1016_j_jclepro_2022_133420
crossref_primary_10_1002_cctc_202300722
crossref_primary_10_1002_aic_18351
crossref_primary_10_1016_j_cej_2020_127625
crossref_primary_10_1557_s43577_022_00317_2
crossref_primary_10_1002_ange_202311265
crossref_primary_10_1016_j_seppur_2024_130933
crossref_primary_10_1016_j_cej_2021_133594
crossref_primary_10_1515_ntrev_2025_0200
crossref_primary_10_1002_advs_202416302
crossref_primary_10_1021_jacs_4c05075
crossref_primary_10_1016_j_ces_2021_117399
crossref_primary_10_1002_ange_202104318
crossref_primary_10_1016_j_ijsolstr_2024_113092
crossref_primary_10_1016_j_jpcs_2022_110743
crossref_primary_10_1039_D5CS00406C
crossref_primary_10_1038_s41563_021_01054_8
crossref_primary_10_1002_advs_202310025
crossref_primary_10_1002_advs_202401070
crossref_primary_10_1021_jacs_2c11420
crossref_primary_10_1088_2053_1591_ad48db
crossref_primary_10_1016_j_jmr_2022_107343
crossref_primary_10_1016_j_jece_2025_115702
crossref_primary_10_1002_ange_202409977
crossref_primary_10_1021_jacs_5c08214
crossref_primary_10_1016_j_coche_2021_100778
crossref_primary_10_1016_j_seppur_2024_127752
crossref_primary_10_1002_adfm_202506327
crossref_primary_10_1002_ange_202212732
crossref_primary_10_1016_j_apmt_2025_102747
crossref_primary_10_1039_D3MH01396K
crossref_primary_10_1002_sus2_154
crossref_primary_10_1038_s41563_023_01545_w
crossref_primary_10_1039_D0SC06059C
crossref_primary_10_1016_j_cjche_2020_11_005
crossref_primary_10_3390_ijms232213672
crossref_primary_10_1007_s10854_022_08378_4
crossref_primary_10_1016_j_jcou_2025_103183
crossref_primary_10_1016_j_eti_2022_102991
crossref_primary_10_1021_acsmaterialslett_4c02551
crossref_primary_10_1038_s41598_023_50309_8
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1007_s11783_024_1835_0
crossref_primary_10_1140_epjqt_s40507_022_00155_w
crossref_primary_10_1002_cnma_202000069
crossref_primary_10_1088_1742_6596_2766_1_012219
crossref_primary_10_1016_j_cej_2024_153867
crossref_primary_10_1016_j_apcatb_2022_122315
crossref_primary_10_1002_adma_202301730
crossref_primary_10_1021_acscentsci_5c00777
crossref_primary_10_1002_ange_202421681
crossref_primary_10_1016_j_commatsci_2023_112439
crossref_primary_10_1002_cplu_202000072
crossref_primary_10_1038_s41578_022_00466_5
crossref_primary_10_1038_s43246_023_00409_9
crossref_primary_10_1002_adma_202204277
crossref_primary_10_1002_adma_202309572
crossref_primary_10_1002_ange_202513788
crossref_primary_10_1007_s10904_021_02118_7
crossref_primary_10_1039_D2CP01139E
crossref_primary_10_1080_08927022_2021_1916014
crossref_primary_10_1021_jacs_1c07217
crossref_primary_10_1038_s41524_022_00961_x
crossref_primary_10_1021_acsami_5c09320
crossref_primary_10_1002_ange_202505931
crossref_primary_10_1021_acssensors_4c03535
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1002_anie_202305390
crossref_primary_10_1016_j_memsci_2024_122759
crossref_primary_10_1021_jacs_0c01008
crossref_primary_10_1038_s41597_023_02116_z
crossref_primary_10_1039_D3RA02933F
crossref_primary_10_1021_jacs_5c08920
crossref_primary_10_1016_j_ccr_2021_213924
crossref_primary_10_1016_j_cej_2024_153049
crossref_primary_10_1021_acsaenm_5c00076
crossref_primary_10_1002_ange_202101644
crossref_primary_10_1021_acs_jcim_5c01625
crossref_primary_10_1002_aic_18426
crossref_primary_10_1016_j_ccst_2025_100445
crossref_primary_10_1039_D0SC03754K
crossref_primary_10_1038_s41467_021_21401_2
crossref_primary_10_1002_anie_202503898
crossref_primary_10_1016_j_seppur_2024_130205
crossref_primary_10_1007_s10934_023_01504_5
crossref_primary_10_1016_j_fuel_2022_126913
crossref_primary_10_1126_science_ads7866
crossref_primary_10_1016_j_cej_2025_162029
crossref_primary_10_1021_jacs_1c08404
crossref_primary_10_1039_D1SC02150H
crossref_primary_10_1016_j_seppur_2023_124647
crossref_primary_10_1016_j_scib_2022_05_003
crossref_primary_10_1002_adfm_202207197
crossref_primary_10_1002_ange_202503898
crossref_primary_10_1016_j_seppur_2022_122058
crossref_primary_10_1016_j_fuel_2024_132961
crossref_primary_10_1038_s41467_023_42863_6
crossref_primary_10_1021_acs_chemmater_5c00129
crossref_primary_10_1016_j_seppur_2022_122053
crossref_primary_10_3390_app10020569
crossref_primary_10_1016_j_cclet_2024_110709
crossref_primary_10_1038_s41560_023_01417_2
crossref_primary_10_1039_D4SC07438F
crossref_primary_10_1039_D1ME00085C
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_1002_aic_17433
crossref_primary_10_1016_j_seppur_2024_128238
crossref_primary_10_1002_adma_202414736
crossref_primary_10_1016_j_cej_2023_146553
crossref_primary_10_1073_pnas_2312959121
crossref_primary_10_1016_j_jchromb_2022_123306
crossref_primary_10_1039_D2SC01254E
crossref_primary_10_1021_acs_jcim_4c02044
crossref_primary_10_1039_D1EE02395K
crossref_primary_10_1039_D2ME00130F
crossref_primary_10_1021_jacs_4c12200
crossref_primary_10_1002_inf2_12259
crossref_primary_10_1002_aidi_202500079
crossref_primary_10_1002_chem_202401868
crossref_primary_10_1038_s41563_022_01374_3
crossref_primary_10_1016_j_inoche_2020_108261
crossref_primary_10_1002_adma_202411359
crossref_primary_10_3389_fenvs_2023_1204690
crossref_primary_10_1007_s12274_023_5961_y
crossref_primary_10_1002_anie_202215296
crossref_primary_10_1016_j_envpol_2023_121972
crossref_primary_10_1126_science_aax5776
crossref_primary_10_1016_j_ccr_2021_213968
crossref_primary_10_1007_s42114_022_00481_8
crossref_primary_10_1016_j_seppur_2023_124558
crossref_primary_10_1016_j_cej_2020_127813
crossref_primary_10_1016_j_ccst_2025_100362
crossref_primary_10_1002_aic_17528
crossref_primary_10_1016_j_seppur_2023_125891
crossref_primary_10_6023_A20110526
crossref_primary_10_1016_j_compchemeng_2022_107705
crossref_primary_10_1021_acscentsci_3c01629
crossref_primary_10_1016_j_heliyon_2023_e21314
crossref_primary_10_1038_s41467_024_47695_6
crossref_primary_10_3390_molecules30030650
crossref_primary_10_1002_adfm_202107442
crossref_primary_10_1002_adfm_202414141
crossref_primary_10_1016_j_ccr_2025_217035
crossref_primary_10_1002_anie_202421681
crossref_primary_10_1021_jacs_0c03444
crossref_primary_10_1039_D0SC00049C
crossref_primary_10_1016_j_mtener_2024_101771
crossref_primary_10_1021_acsami_3c13533
crossref_primary_10_1021_jacs_5c09712
crossref_primary_10_1039_D0SC00485E
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1002_adma_202105852
crossref_primary_10_1039_D2CY01170K
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1007_s10311_023_01589_z
crossref_primary_10_1016_j_memsci_2021_119634
crossref_primary_10_1016_j_apmt_2020_100933
crossref_primary_10_1016_j_micromeso_2025_113796
crossref_primary_10_1002_adma_202412757
crossref_primary_10_1002_aenm_202300244
crossref_primary_10_1063_5_0201934
crossref_primary_10_1038_s41560_019_0514_z
crossref_primary_10_1016_j_seppur_2022_121111
crossref_primary_10_1007_s11837_024_07065_5
crossref_primary_10_1039_D3EE01008B
crossref_primary_10_3390_bios14090420
crossref_primary_10_1063_5_0147650
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1039_D5ME00075K
crossref_primary_10_1002_adma_202403920
crossref_primary_10_3390_pr11030758
crossref_primary_10_1016_j_ijbiomac_2023_125043
crossref_primary_10_1016_j_fuproc_2020_106675
crossref_primary_10_1016_j_cej_2025_167109
crossref_primary_10_1016_j_ccr_2023_215393
crossref_primary_10_1016_j_cej_2023_141612
crossref_primary_10_1038_s41598_025_86689_2
crossref_primary_10_1002_anie_202207467
crossref_primary_10_1002_advs_202203899
crossref_primary_10_1002_smll_202408466
crossref_primary_10_1038_s41467_025_58734_1
crossref_primary_10_1002_adma_202209327
crossref_primary_10_1021_jacs_9b12879
crossref_primary_10_1002_smll_202405087
crossref_primary_10_1002_chem_202402221
crossref_primary_10_1016_j_cej_2024_151828
crossref_primary_10_1016_j_ces_2022_117813
crossref_primary_10_1016_j_jece_2025_117128
crossref_primary_10_1002_anie_202500783
crossref_primary_10_1002_mame_202300225
crossref_primary_10_1063_5_0283254
crossref_primary_10_1016_j_matt_2025_102140
crossref_primary_10_1038_s42256_020_00271_1
crossref_primary_10_1016_j_surfin_2025_107381
crossref_primary_10_1039_D0RA06842J
crossref_primary_10_1002_anie_202106773
crossref_primary_10_1016_S1872_5813_21_60095_6
crossref_primary_10_1016_j_cis_2025_103651
crossref_primary_10_1016_j_cej_2021_131604
crossref_primary_10_1016_j_eswa_2024_124799
crossref_primary_10_1063_5_0189493
crossref_primary_10_1016_j_cej_2024_156376
crossref_primary_10_1016_j_isci_2022_104237
crossref_primary_10_1038_s42004_022_00654_y
crossref_primary_10_1002_batt_202300536
crossref_primary_10_1016_j_jece_2025_117789
crossref_primary_10_3390_membranes12070700
crossref_primary_10_1002_ange_202305390
crossref_primary_10_1557_s43578_025_01568_w
crossref_primary_10_1002_ange_202418917
crossref_primary_10_1002_anie_202505931
crossref_primary_10_1038_s41524_024_01413_4
crossref_primary_10_1016_j_seppur_2025_132853
crossref_primary_10_1016_j_fuel_2023_128757
crossref_primary_10_1016_j_seppur_2024_128067
crossref_primary_10_1002_advs_202201559
crossref_primary_10_1016_j_seppur_2024_130025
crossref_primary_10_1016_j_seppur_2024_129033
crossref_primary_10_1021_acs_jctc_5c00641
crossref_primary_10_1039_D5NR02310F
crossref_primary_10_1002_anie_202114573
crossref_primary_10_1038_s42004_022_00785_2
crossref_primary_10_1007_s40242_022_1452_z
crossref_primary_10_1016_j_seppur_2022_122111
crossref_primary_10_1007_s10853_025_11319_1
crossref_primary_10_1016_j_cej_2025_167307
crossref_primary_10_1002_smtd_202401689
crossref_primary_10_1016_j_mtcomm_2024_110050
crossref_primary_10_1016_j_ccr_2023_215112
crossref_primary_10_1038_s42004_023_00938_x
crossref_primary_10_1126_science_abi7281
crossref_primary_10_1016_j_seppur_2024_128056
crossref_primary_10_1002_anie_202513788
crossref_primary_10_1016_j_cej_2022_140746
crossref_primary_10_1016_j_seppur_2025_133939
crossref_primary_10_3390_inorganics12010021
crossref_primary_10_1038_s41563_024_02029_1
crossref_primary_10_1016_j_memsci_2021_119696
crossref_primary_10_1039_D3NR05664C
crossref_primary_10_1002_aidi_202500109
crossref_primary_10_1039_D5ME00078E
crossref_primary_10_1002_anie_202212732
crossref_primary_10_1002_ente_202400178
crossref_primary_10_1016_j_cej_2025_166422
crossref_primary_10_1016_j_greeac_2023_100069
crossref_primary_10_1038_s42256_023_00628_2
crossref_primary_10_1002_ece2_15
crossref_primary_10_1016_j_seppur_2023_125937
crossref_primary_10_1002_advs_202513146
crossref_primary_10_1002_anie_202311265
crossref_primary_10_1016_j_jcis_2024_02_098
crossref_primary_10_1007_s00723_023_01604_0
crossref_primary_10_1021_jacs_5c06861
crossref_primary_10_1016_j_jssc_2024_124964
crossref_primary_10_1002_adma_202401926
crossref_primary_10_1038_s41524_022_00806_7
crossref_primary_10_1021_acs_cgd_5c00317
crossref_primary_10_1063_5_0277611
crossref_primary_10_1002_anie_202104318
crossref_primary_10_1021_jacs_3c06754
crossref_primary_10_1039_D5NR02324F
crossref_primary_10_1007_s10311_023_01695_y
crossref_primary_10_1016_j_jece_2022_109053
crossref_primary_10_1016_j_seppur_2022_121281
crossref_primary_10_1039_D4SC03609C
crossref_primary_10_1007_s12274_020_2813_x
crossref_primary_10_1039_D2ME00237J
crossref_primary_10_1039_D2NR04156A
crossref_primary_10_1002_anie_202409977
crossref_primary_10_1016_j_jclepro_2023_137679
crossref_primary_10_1038_s41598_024_76319_8
crossref_primary_10_1016_j_seppur_2023_123762
crossref_primary_10_1002_adfm_202313596
Cites_doi 10.1002/anie.201202471
10.1007/s10450-007-9100-y
10.1039/C7EE02342A
10.1021/ja9057234
10.1038/natrevmats.2017.37
10.1021/ja906041f
10.1142/p911
10.1021/ie071012x
10.1038/nmat3336
10.1002/cssc.201601816
10.1002/chem.200305413
10.1021/ja900555r
10.1002/anie.201000431
10.1039/C6CE00407E
10.1016/j.micromeso.2012.12.024
10.1039/c1ee01720a
10.1021/ie070831e
10.1016/j.ijggc.2012.10.018
10.1038/nchem.1192
10.1039/C4EE02636E
10.1016/j.drudis.2007.09.007
10.1021/cr2003272
10.1021/jacs.7b06382
10.1126/science.1230444
10.1124/pr.112.007336
10.1016/j.cej.2011.04.027
10.1021/jacs.7b07612
10.1038/nature14327
10.1107/S2052520614009834
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Dec 12, 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Dec 12, 2019
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)
– name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
DOI 10.1038/s41586-019-1798-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Journals (ProQuest)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: PATMY
  name: Environmental Science Database (subscripiton)
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 256
ExternalDocumentID 1605262
10_1038_s41586_019_1798_7
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7X8
PUEGO
69O
6XO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
AMRJV
B-7
EMB
F20
I-U
N95
OIOZB
OTOTI
P-O
U1R
XFK
ZA5
ID FETCH-LOGICAL-c456t-59c01a711e6e2a87fc49c0017caf1eb21367c9e901abd52287dd9587207cff823
IEDL.DBID 7RV
ISICitedReferencesCount 661
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502792400053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Fri May 19 01:01:51 EDT 2023
Wed Oct 01 12:12:31 EDT 2025
Tue Oct 07 06:47:23 EDT 2025
Tue Nov 18 21:49:24 EST 2025
Sat Nov 29 02:39:16 EST 2025
Fri Feb 21 02:37:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7786
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-59c01a711e6e2a87fc49c0017caf1eb21367c9e901abd52287dd9587207cff823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Spanish Ministry of Economy and Competitiveness (MINECO)
USDOE Office of Science (SC)
European Union (EU)
European Research Council (ERC)
AC02-05CH11231; SC0001015
Office Fédéral de l'Energie (Switzerland)
OpenAccessLink https://www.osti.gov/servlets/purl/1605262
PQID 2329721241
PQPubID 40569
PageCount 4
ParticipantIDs osti_scitechconnect_1605262
proquest_miscellaneous_2325301532
proquest_journals_2329721241
crossref_primary_10_1038_s41586_019_1798_7
crossref_citationtrail_10_1038_s41586_019_1798_7
springer_journals_10_1038_s41586_019_1798_7
PublicationCentury 2000
PublicationDate 2019-12-12
PublicationDateYYYYMMDD 2019-12-12
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CouckSAn amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4J. Am. Chem. Soc.2009131632663271:CAS:528:DC%2BD1MXkslCru7c%3D10.1021/ja900555r
GarcíaSBreakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 captureChem. Eng. J.201117154955610.1016/j.cej.2011.04.027
LiGCapture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13XAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y
BuiMCarbon capture and storage (CCS): the way forwardEnergy Environ. Sci.201811106211761:CAS:528:DC%2BC1cXls12rurk%3D10.1039/C7EE02342A
CarringtonEJVitórica-YrezábalIJBrammerLCrystallographic studies of gas sorption in metal–organic frameworksActa Crystallogr. B2014704044221:CAS:528:DC%2BC2cXpt1Squro%3D10.1107/S2052520614009834
MilnerPJA diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanismJ. Am. Chem. Soc.201713913541135531:CAS:528:DC%2BC2sXhsVyqtrfI10.1021/jacs.7b07612
D’AlessandroDMSmitBLongJRCarbon dioxide capture: prospects for new materialsAngew. Chem. Int. Ed.2010496058608210.1002/anie.201000431
ChanutNScreening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworksChemSusChem201710154315531:CAS:528:DC%2BC2sXjs12ktbo%3D10.1002/cssc.201601816
BoydPGWooTKA generalized method for constructing hypothetical nanoporous materials of any net topology from graph theoryCrystEngComm201618377737921:CAS:528:DC%2BC28XksVylsrY%3D10.1039/C6CE00407E
McDonaldTMCooperative insertion of CO2 in diamine-appended metal–organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D10.1038/nature14327
SliwoskiGKothiwaleSMeilerJLoweEWJr.Computational methods in drug discoveryPharmacol. Rev.20136633439510.1124/pr.112.007336
FurukawaHCordovaKEO’KeeffeMYaghiOMThe chemistry and applications of metal–organic frameworksScience2013341123044410.1126/science.1230444
ReinschHStockNHigh-throughput studies of highly porous Al-based MOFsMicroporous Mesoporous Mater.20131711561651:CAS:528:DC%2BC3sXjtlOjsrw%3D10.1016/j.micromeso.2012.12.024
WolberGSeidelTBendixFLangerTMolecule-pharmacophore superpositioning and pattern matching in computational drug designDrug Discov. Today20081323291:CAS:528:DC%2BD1cXlsVWhtA%3D%3D10.1016/j.drudis.2007.09.007
SumidaKCarbon dioxide capture in metal–organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272
FlaigRWThe chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditionsJ. Am. Chem. Soc.201713912125121281:CAS:528:DC%2BC2sXhtlCnsrjI10.1021/jacs.7b06382
LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413
WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K10.1038/nchem.1192
BoydPGLeeYSmitBComputational development of the nanoporous materials genomeNat. Mater. Rev.20172170371:CAS:528:DC%2BC2sXhtFegt7bI10.1038/natrevmats.2017.37
MerelJClausseMMeunierFExperimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolitesInd. Eng. Chem. Res.2008472092151:CAS:528:DC%2BD2sXhsVSms7jN10.1021/ie071012x
LinL-CIn silico screening of carbon-capture materialsNat. Mater.2012116336412012NatMa..11..633L1:CAS:528:DC%2BC38XnsFKgs7o%3D10.1038/nmat3336
StylianouKCA guest-responsive fluorescent 3D microporous metal–organic framework derived from a long-lifetime pyrene coreJ. Am. Chem. Soc.2010132411941301:CAS:528:DC%2BC3cXislKitbs%3D10.1021/ja906041f
MasonJASumidaKHermZRKrishnaRLongJREvaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorptionEnergy Environ. Sci.20114303030401:CAS:528:DC%2BC3MXhtFSrs7bI10.1039/c1ee01720a
GarcíaSGilMVPisJJRubieraFPevidaCCyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: experimental and statistical analysisInt. J. Greenhouse Gas Control201312354310.1016/j.ijggc.2012.10.018
Smit, B., Reimer, J. R., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014).
FateevaAA water-stable porphyrin-based metal–organic framework active for visible-light photocatalysisAngew. Chem. Int. Ed.201251744074441:CAS:528:DC%2BC38Xos1eht78%3D10.1002/anie.201202471
HuckJMEvaluating different classes of porous materials for carbon captureEnergy Environ. Sci.20147413241461:CAS:528:DC%2BC2cXhslGgurbO10.1039/C4EE02636E
HoMTAllinsonGWWileyDEReducing the cost of CO2 capture from flue gases using pressure swing adsorptionInd. Eng. Chem. Res.200847488348901:CAS:528:DC%2BD1cXntF2rs7w%3D10.1021/ie070831e
YazaydinAOScreening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approachJ. Am. Chem. Soc.200913118198181991:CAS:528:DC%2BD1MXhsFShsr7L10.1021/ja9057234
S Couck (1798_CR13) 2009; 131
TM McDonald (1798_CR11) 2015; 519
N Chanut (1798_CR14) 2017; 10
K Sumida (1798_CR4) 2012; 112
T Loiseau (1798_CR20) 2004; 10
M Bui (1798_CR2) 2018; 11
G Sliwoski (1798_CR16) 2013; 66
A Fateeva (1798_CR19) 2012; 51
H Furukawa (1798_CR5) 2013; 341
S García (1798_CR24) 2011; 171
DM D’Alessandro (1798_CR3) 2010; 49
EJ Carrington (1798_CR23) 2014; 70
JM Huck (1798_CR6) 2014; 7
PG Boyd (1798_CR28) 2017; 2
L-C Lin (1798_CR26) 2012; 11
G Wolber (1798_CR15) 2008; 13
J Merel (1798_CR9) 2008; 47
PJ Milner (1798_CR10) 2017; 139
H Reinsch (1798_CR21) 2013; 171
PG Boyd (1798_CR22) 2016; 18
AO Yazaydin (1798_CR29) 2009; 131
G Li (1798_CR8) 2008; 14
S García (1798_CR25) 2013; 12
CE Wilmer (1798_CR27) 2012; 4
RW Flaig (1798_CR12) 2017; 139
JA Mason (1798_CR7) 2011; 4
KC Stylianou (1798_CR18) 2010; 132
1798_CR1
MT Ho (1798_CR17) 2008; 47
References_xml – reference: ReinschHStockNHigh-throughput studies of highly porous Al-based MOFsMicroporous Mesoporous Mater.20131711561651:CAS:528:DC%2BC3sXjtlOjsrw%3D10.1016/j.micromeso.2012.12.024
– reference: StylianouKCA guest-responsive fluorescent 3D microporous metal–organic framework derived from a long-lifetime pyrene coreJ. Am. Chem. Soc.2010132411941301:CAS:528:DC%2BC3cXislKitbs%3D10.1021/ja906041f
– reference: WolberGSeidelTBendixFLangerTMolecule-pharmacophore superpositioning and pattern matching in computational drug designDrug Discov. Today20081323291:CAS:528:DC%2BD1cXlsVWhtA%3D%3D10.1016/j.drudis.2007.09.007
– reference: CouckSAn amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4J. Am. Chem. Soc.2009131632663271:CAS:528:DC%2BD1MXkslCru7c%3D10.1021/ja900555r
– reference: LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413
– reference: BuiMCarbon capture and storage (CCS): the way forwardEnergy Environ. Sci.201811106211761:CAS:528:DC%2BC1cXls12rurk%3D10.1039/C7EE02342A
– reference: FlaigRWThe chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditionsJ. Am. Chem. Soc.201713912125121281:CAS:528:DC%2BC2sXhtlCnsrjI10.1021/jacs.7b06382
– reference: CarringtonEJVitórica-YrezábalIJBrammerLCrystallographic studies of gas sorption in metal–organic frameworksActa Crystallogr. B2014704044221:CAS:528:DC%2BC2cXpt1Squro%3D10.1107/S2052520614009834
– reference: BoydPGLeeYSmitBComputational development of the nanoporous materials genomeNat. Mater. Rev.20172170371:CAS:528:DC%2BC2sXhtFegt7bI10.1038/natrevmats.2017.37
– reference: WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K10.1038/nchem.1192
– reference: MerelJClausseMMeunierFExperimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolitesInd. Eng. Chem. Res.2008472092151:CAS:528:DC%2BD2sXhsVSms7jN10.1021/ie071012x
– reference: SliwoskiGKothiwaleSMeilerJLoweEWJr.Computational methods in drug discoveryPharmacol. Rev.20136633439510.1124/pr.112.007336
– reference: McDonaldTMCooperative insertion of CO2 in diamine-appended metal–organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D10.1038/nature14327
– reference: LiGCapture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13XAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y
– reference: FateevaAA water-stable porphyrin-based metal–organic framework active for visible-light photocatalysisAngew. Chem. Int. Ed.201251744074441:CAS:528:DC%2BC38Xos1eht78%3D10.1002/anie.201202471
– reference: SumidaKCarbon dioxide capture in metal–organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272
– reference: HuckJMEvaluating different classes of porous materials for carbon captureEnergy Environ. Sci.20147413241461:CAS:528:DC%2BC2cXhslGgurbO10.1039/C4EE02636E
– reference: D’AlessandroDMSmitBLongJRCarbon dioxide capture: prospects for new materialsAngew. Chem. Int. Ed.2010496058608210.1002/anie.201000431
– reference: GarcíaSBreakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 captureChem. Eng. J.201117154955610.1016/j.cej.2011.04.027
– reference: MasonJASumidaKHermZRKrishnaRLongJREvaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorptionEnergy Environ. Sci.20114303030401:CAS:528:DC%2BC3MXhtFSrs7bI10.1039/c1ee01720a
– reference: MilnerPJA diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanismJ. Am. Chem. Soc.201713913541135531:CAS:528:DC%2BC2sXhsVyqtrfI10.1021/jacs.7b07612
– reference: BoydPGWooTKA generalized method for constructing hypothetical nanoporous materials of any net topology from graph theoryCrystEngComm201618377737921:CAS:528:DC%2BC28XksVylsrY%3D10.1039/C6CE00407E
– reference: YazaydinAOScreening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approachJ. Am. Chem. Soc.200913118198181991:CAS:528:DC%2BD1MXhsFShsr7L10.1021/ja9057234
– reference: LinL-CIn silico screening of carbon-capture materialsNat. Mater.2012116336412012NatMa..11..633L1:CAS:528:DC%2BC38XnsFKgs7o%3D10.1038/nmat3336
– reference: Smit, B., Reimer, J. R., Oldenburg, C. M. & Bourg, I. C. Introduction to Carbon Capture and Sequestration (Imperial College Press, 2014).
– reference: ChanutNScreening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworksChemSusChem201710154315531:CAS:528:DC%2BC2sXjs12ktbo%3D10.1002/cssc.201601816
– reference: GarcíaSGilMVPisJJRubieraFPevidaCCyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: experimental and statistical analysisInt. J. Greenhouse Gas Control201312354310.1016/j.ijggc.2012.10.018
– reference: HoMTAllinsonGWWileyDEReducing the cost of CO2 capture from flue gases using pressure swing adsorptionInd. Eng. Chem. Res.200847488348901:CAS:528:DC%2BD1cXntF2rs7w%3D10.1021/ie070831e
– reference: FurukawaHCordovaKEO’KeeffeMYaghiOMThe chemistry and applications of metal–organic frameworksScience2013341123044410.1126/science.1230444
– volume: 51
  start-page: 7440
  year: 2012
  ident: 1798_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201202471
– volume: 14
  start-page: 415
  year: 2008
  ident: 1798_CR8
  publication-title: Adsorption
  doi: 10.1007/s10450-007-9100-y
– volume: 11
  start-page: 1062
  year: 2018
  ident: 1798_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02342A
– volume: 131
  start-page: 18198
  year: 2009
  ident: 1798_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9057234
– volume: 2
  start-page: 17037
  year: 2017
  ident: 1798_CR28
  publication-title: Nat. Mater. Rev.
  doi: 10.1038/natrevmats.2017.37
– volume: 132
  start-page: 4119
  year: 2010
  ident: 1798_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906041f
– ident: 1798_CR1
  doi: 10.1142/p911
– volume: 47
  start-page: 209
  year: 2008
  ident: 1798_CR9
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071012x
– volume: 11
  start-page: 633
  year: 2012
  ident: 1798_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3336
– volume: 10
  start-page: 1543
  year: 2017
  ident: 1798_CR14
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601816
– volume: 10
  start-page: 1373
  year: 2004
  ident: 1798_CR20
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200305413
– volume: 131
  start-page: 6326
  year: 2009
  ident: 1798_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900555r
– volume: 49
  start-page: 6058
  year: 2010
  ident: 1798_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000431
– volume: 18
  start-page: 3777
  year: 2016
  ident: 1798_CR22
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00407E
– volume: 171
  start-page: 156
  year: 2013
  ident: 1798_CR21
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.12.024
– volume: 4
  start-page: 3030
  year: 2011
  ident: 1798_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01720a
– volume: 47
  start-page: 4883
  year: 2008
  ident: 1798_CR17
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie070831e
– volume: 12
  start-page: 35
  year: 2013
  ident: 1798_CR25
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.10.018
– volume: 4
  start-page: 83
  year: 2012
  ident: 1798_CR27
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1192
– volume: 7
  start-page: 4132
  year: 2014
  ident: 1798_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02636E
– volume: 13
  start-page: 23
  year: 2008
  ident: 1798_CR15
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2007.09.007
– volume: 112
  start-page: 724
  year: 2012
  ident: 1798_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 139
  start-page: 12125
  year: 2017
  ident: 1798_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06382
– volume: 341
  start-page: 1230444
  year: 2013
  ident: 1798_CR5
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 66
  start-page: 334
  year: 2013
  ident: 1798_CR16
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.112.007336
– volume: 171
  start-page: 549
  year: 2011
  ident: 1798_CR24
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.04.027
– volume: 139
  start-page: 13541
  year: 2017
  ident: 1798_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07612
– volume: 519
  start-page: 303
  year: 2015
  ident: 1798_CR11
  publication-title: Nature
  doi: 10.1038/nature14327
– volume: 70
  start-page: 404
  year: 2014
  ident: 1798_CR23
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S2052520614009834
SSID ssj0005174
Score 2.7200797
Snippet Limiting the increase of CO 2 in the atmosphere is one of the largest challenges of our generation 1 . Because carbon capture and storage is one of the few...
Limiting the increase of CO2 in the atmosphere is one ofthe largest challenges of our generation1. Because carbon capture and storage is one of the few viable...
Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable...
Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms 119/118
639/301/1034/1035
639/301/299/921
639/638/630
Adsorption
Anthropogenic factors
Binding sites
Carbon
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon dioxide emissions
Carbon sequestration
Carbon sources
Chemical industry
Computer applications
Data mining
Flue gas
Gases
Humanities and Social Sciences
Humidity
Hydrogen
Hydrophobicity
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Libraries
Ligands
Materials selection
Metal ions
Metal-organic frameworks
multidisciplinary
NMR
Nuclear magnetic resonance
Organic chemistry
Science
Science (multidisciplinary)
Selectivity
Separation
Title Data-driven design of metal–organic frameworks for wet flue gas CO2 capture
URI https://link.springer.com/article/10.1038/s41586-019-1798-7
https://www.proquest.com/docview/2329721241
https://www.proquest.com/docview/2325301532
https://www.osti.gov/servlets/purl/1605262
Volume 576
WOSCitedRecordID wos000502792400053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Journals (ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BChIXoAVEaKkWiQMPufX6kV2fEA2tkKqkUXko4rJaj9cICeIQu3DlP_AP-SXMrO1GrUQvXD7JibO2PDO7n3cm3wA8TW2JyvG-W8J_yUnKLLBRXgZRZhNZoHYpat9sQk2nej7PZt2GW92VVfZzop-oiwp5j3yfVn4WmqEF59Xye8Bdozi72rXQuA4bkrkx-bM6_bgu8bikwtxnNWO9X9PCpfldOmOBTh2oC-vSoKL4usA5L6VJ_epzdOd_7_su3O54p3jdOsomXHOLLbjp6z-x3oLNLsZr8awTon5-DyZvbGODYsUToih8qYeoSvHNEWH_8-t32xAKRdnXd9WCGLD46RrBjU_EZ1uL8Ukk0C45TXEfPhwdvh-_Dbr2CwESq2qCNMNQWiWlG7nIalViQp9QBKMtJb2Qs9gbZo4Ihc0LonFaFUWWahWFCstSR_EDGCyqhXsIIgt1LnMaJY9Z7j3JR5nGUZEjkdOEKMsQwv7hG-y0yblFxlfjc-SxNq29DNnLsL2MGsKL858sW2GOq07eZosaYhUsjYtcQ4SNkSNWu4mGsNObznQRXJu13Ybw5Pxrij1OqNiFq878OSlNkGlMQ7zsHWQ9xD9v59HVF9yGW5F3TG47swODZnXmHsMN_NF8qVe73sUZ58qjJtRjuQsbB4fT2SkdHR_sEU7CY8Zo4vHE44xRtfiOcJZ--gs87Qr2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VCwguQAuIpQWMBBIPRd04ycY-IIS2VK3aLhyK1JtxJjZCgs2ySam48R_4H_wofgkzTtLSSvTWA9c8nIe_eXnG3wA8zqzH3PG6W8pbclKvIysLH0lt07hE5TJUodlEPp2qgwP9bgl-9XthuKyy14lBUZcV8hr5Oll-Jpohg_Nq_jXirlGcXe1baLSw2HHfjyhkq19ub9D8PpFy883-ZCvqugpESM5CE2UaR7HN49iNnbQq95jSEQImWh9TnMkcZqgd2UlblOSdqLwsdaZyOcrRe8VEB6TyL6WJTFiK1OSvkpIzrM99FjVR6zUZSsWxu2ZCUBXlp-zgoCJ5PuXjnknLBmu3eeN_-0834XrnV4vXrSAsw5KbrcCVUN-K9QosdzqsFk87ou1nt2BvwzY2Khes8EUZSllE5cUXRwHJ7x8_24ZXKHxfv1YL8vDFkWsEN3YRH20tJm-lQDvnNMxteH8hH3gHBrNq5u6C0CNVxAWNUiRMZ58WY61wXBZIzndKLtkQRv1kG-y417kFyGcTagASZVp8GMKHYXyYfAjPj2-Zt8Qj5128yggy5DUx9S9yjRQ2Jh4zm48cwloPFdNpqNqc4GQIj45Pk27hhJGdueowXJORAcgSGuJFD8iTIf75OvfOf-BDuLq1v7drdrenO6twTQah4BY7azBoFofuPlzGb82nevEgiJeADxeN0z8HRFrt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vy0NcgBYQSwsYCSQeijbxJrF9QAh1WVEVlj2A1JtxHBshwWbZpFTc-A_8G34Ov4QZJ-mqleitB655OA9_nhl7Pn8D8DAz3gpH624pbclJvYoML3zElUmT0kqXWRmKTYjZTB4cqPkG_O73whCtsreJwVCXlaU18hF6fhKaQYcz8h0tYj6Zvlh-i6iCFGVa-3IaLUT23Y8jnL7Vz_cm2NePOJ--er_7OuoqDEQWA4cmypSNEyOSxOWOGym8TfEIgtQan-Cck_TMrHLoM01RYqQiRVmqTAoeC-u9JNEDNP8XRJrHPNAG52t6ySkF6D6jOpajGp2mpHm8InFQGYkTPnFQ4dg-Ee-eStEGzze99j__s-twtYu32ct2gGzChltswaXAe7X1Fmx2tq1mjzsB7ic34O3ENCYqV-QIWBkoLqzy7KvDicqfn7_aQliW-Z7XVjOM_NmRaxgVfGGfTM1233FmzZLSMzfhw7l84C0YLKqFuw1MxbJICmylGJPMfVrkStq8LCwG5SmGakOI-47XttNkp9IgX3TgBoylbrGiESuasKLFEJ4e37JsBUnOunib0KQxmiJJYEvcKdvoJCeVHz6EnR42urNctV5jZggPjk-jzaFEklm46jBck6FjyMbYxLMenOsm_vk6d85-4H24jPDUb_Zm-9twhYfxQZV3dmDQrA7dXbhovzef69W9MNIYfDxvmP4FHVpj-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+design+of+metal%E2%80%93organic+frameworks+for+wet+flue+gas+CO2+capture&rft.jtitle=Nature+%28London%29&rft.au=Boyd%2C+Peter+G.&rft.au=Chidambaram%2C+Arunraj&rft.au=Garc%C3%ADa-D%C3%ADez%2C+Enrique&rft.au=Ireland%2C+Christopher+P.&rft.date=2019-12-12&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=576&rft.issue=7786&rft.spage=253&rft.epage=256&rft_id=info:doi/10.1038%2Fs41586-019-1798-7&rft.externalDocID=10_1038_s41586_019_1798_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon