Structural bioinformatics enhances mechanistic interpretation of genomic variation, demonstrated through the analyses of 935 distinct RAS family mutations

Abstract Motivation Protein-coding genetic alterations are frequently observed in Clinical Genetics, but the high yield of variants of uncertain significance remains a limitation in decision making. RAS-family GTPases are cancer drivers, but only 54 variants, across all family members, fall within w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics Jg. 37; H. 10; S. 1367 - 1375
Hauptverfasser: Tripathi, Swarnendu, Dsouza, Nikita R, Urrutia, Raul, Zimmermann, Michael T
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 16.06.2021
Schlagworte:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation Protein-coding genetic alterations are frequently observed in Clinical Genetics, but the high yield of variants of uncertain significance remains a limitation in decision making. RAS-family GTPases are cancer drivers, but only 54 variants, across all family members, fall within well-known hotspots. However, extensive sequencing has identified 881 non-hotspot variants for which significance remains to be investigated. Results Here, we evaluate 935 missense variants from seven RAS genes, observed in cancer, RASopathies and the healthy adult population. We characterized hotspot variants, previously studied experimentally, using 63 sequence- and 3D structure-based scores, chosen by their breadth of biophysical properties. Applying scores that display best correlation with experimental measures, we report new valuable mechanistic inferences for both hot-spot and non-hotspot variants. Moreover, we demonstrate that 3D scores have little-to-no correlation with those based on DNA sequence, which are commonly used in Clinical Genetics. Thus, combined, these new knowledge bear significant relevance. Availability and implementation All genomic and 3D scores, and markdown for generating figures, are provided in our supplemental data. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa972