LanceOtron: a deep learning peak caller for genome sequencing experiments
Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with...
Uloženo v:
| Vydáno v: | Bioinformatics Ročník 38; číslo 18; s. 4255 - 4263 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
15.09.2022
|
| Témata: | |
| ISSN: | 1367-4803, 1367-4811, 1460-2059, 1367-4811 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
Motivation
Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling.
Results
We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity.
Availability and implementation
A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling.MOTIVATIONGenome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling.We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity.RESULTSWe present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity.A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.AVAILABILITY AND IMPLEMENTATIONA fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling. Results We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity. Availability and implementation A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron. Supplementary information Supplementary data are available at Bioinformatics online. Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling. We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity. A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron. Supplementary data are available at Bioinformatics online. |
| Author | Hentges, Lance D Sergeant, Martin J Downes, Damien J Cole, Christopher B Hughes, Jim R Taylor, Stephen |
| Author_xml | – sequence: 1 givenname: Lance D orcidid: 0000-0001-6327-6774 surname: Hentges fullname: Hentges, Lance D – sequence: 2 givenname: Martin J orcidid: 0000-0001-7264-2668 surname: Sergeant fullname: Sergeant, Martin J – sequence: 3 givenname: Christopher B orcidid: 0000-0002-6733-633X surname: Cole fullname: Cole, Christopher B – sequence: 4 givenname: Damien J orcidid: 0000-0002-5034-0869 surname: Downes fullname: Downes, Damien J – sequence: 5 givenname: Jim R orcidid: 0000-0002-8955-7256 surname: Hughes fullname: Hughes, Jim R – sequence: 6 givenname: Stephen orcidid: 0000-0002-3559-4334 surname: Taylor fullname: Taylor, Stephen email: stephen.taylor@imm.ox.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35866989$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctqGzEUFSEhDze_EGbZzTSa0WtUSqGYPgyGbJK1kOQrR-2MNJXGIfn7yNg1TTbJ6grueV2dC3QcYgCErhr8qcGSXBsffXAxDXryNl-bSVvWsiN03lCO6xYzeVzehIuadpicoYucf2PMGkrpKTojrONcdvIcLZY6WLiZUgyfK12tAMaqB52CD-tqBP2nsrrvIVXFq1pDiANUGf5uINgtAh5HSH6AMOUP6MTpPsPlfs7Q3Y_vt_Nf9fLm52L-bVlbyvhUE2owX1EpBXAjWiLB6UYYY6QBK5zDlmMGtuEaO2G4ka4rl5l2xQTtHHVkhr7udMeNGWBli3fSvRpLDJ2eVNRevdwEf6_W8UFJKgQjogh83AukWA7Jkxp8ttD3OkDcZNVySUSHaQk3Q1f_ex1M_v1fAfAdwKaYcwJ3gDRYbYtSL4tS-6IK8csrovVTgcRtZt-_TW929LgZ32v5DH8Lth4 |
| CitedBy_id | crossref_primary_10_1038_s41588_024_01897_2 crossref_primary_10_1038_s41598_025_96248_4 crossref_primary_10_1038_s41467_024_49370_2 crossref_primary_10_1016_j_heliyon_2024_e39140 crossref_primary_10_1186_s13059_025_03590_x crossref_primary_10_1038_s41596_023_00817_8 crossref_primary_10_1038_s41598_025_87351_7 crossref_primary_10_1038_s41467_022_35438_4 crossref_primary_10_1038_s41467_025_56380_1 crossref_primary_10_1016_j_bcmd_2023_102745 crossref_primary_10_1038_s44341_025_00010_w crossref_primary_10_1002_jez_b_23305 crossref_primary_10_1016_j_stem_2023_04_012 crossref_primary_10_1093_bioinformatics_btaf375 crossref_primary_10_1093_bib_bbae459 crossref_primary_10_1093_nar_gkae666 crossref_primary_10_1101_gr_278638_123 crossref_primary_10_1038_s41467_023_40981_9 crossref_primary_10_1093_bioadv_vbae074 |
| Cites_doi | 10.1093/nar/gkx1081 10.1038/nature11247 10.1093/nar/gku365 10.1038/nbt.1754 10.1007/s10577-019-09619-9 10.1101/gr.136184.111 10.1371/journal.pone.0011471 10.1093/bioinformatics/btr064 10.1093/nar/gkq1187 10.1016/j.molcel.2010.05.004 10.1038/nature14539 10.1101/gr.229102 10.1073/pnas.0905443106 10.1101/gr.200535.115 10.1038/s42003-021-02097-y 10.1186/s12859-021-04097-5 10.1093/bioinformatics/btq033 10.1016/j.jmb.2019.04.045 10.1098/rstb.2012.0369 10.1214/11-AOAS466 10.1038/nmeth.3547 10.1093/bioinformatics/btw672 10.1145/2988450.2988454 10.1038/nmeth.1923 10.1111/febs.15544 10.1038/s41598-020-64655-4 10.1371/journal.pone.0169249 10.1093/nar/gkz533 10.1093/bioinformatics/btp340 10.1038/s41586-021-03639-4 10.1093/nar/gkx799 10.1093/nar/gkv416 10.1038/nrg2641 10.1371/journal.pone.0005241 10.1038/s41598-019-45839-z 10.1038/nbt.4233 10.1186/gb-2008-9-9-r137 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/bioinformatics/btac525 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1460-2059 1367-4811 |
| EndPage | 4263 |
| ExternalDocumentID | PMC9477537 35866989 10_1093_bioinformatics_btac525 10.1093/bioinformatics/btac525 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_EX_MR/R023301/1 – fundername: Medical Research Council grantid: MC_PC_15069 – fundername: Medical Research Council grantid: MC_UU_12025 – fundername: Medical Research Council grantid: MC_UU_00016/12 – fundername: Medical Research Council grantid: MC_U137961147 – fundername: Medical Research Council grantid: MC_U137961145 – fundername: NIH HHS grantid: R24DK106766 – fundername: Medical Research Council grantid: MC_PC_14131 – fundername: Medical Research Council grantid: MR/M00919X/1 – fundername: Medical Research Council grantid: MC_UU_00016/14 – fundername: ; grantid: 106130/Z/14/Z – fundername: ; grantid: R24DK106766 – fundername: ; grantid: MC_UU_12025; MC_UU_00016/14 |
| GroupedDBID | -~X .2P .I3 482 48X 53G 5GY 6.Y AAIMJ AAJKP AAKPC AAMVS AAPQZ AAPXW AARHZ AAVAP ABEFU ABNKS ABPTD ABSAR ABSMQ ABWST ABXVV ABZBJ ACGFS ACMRT ACPQN ACUFI ACYTK ADEYI ADFTL ADGZP ADHKW ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKPW AEKSI AELWJ AEPUE AETBJ AFFNX AFFZL AFOFC AFSHK AFXEN AGINJ AGKRT AGQXC AI. ALMA_UNASSIGNED_HOLDINGS ALTZX AQDSO ARIXL ASAOO ATDFG ATTQO AXUDD AYOIW AZFZN AZVOD BCRHZ BHONS CXTWN CZ4 DFGAJ EE~ ELUNK F5P F9B FEDTE H5~ HAR HVGLF HW0 IOX KOP KSI KSN MBTAY MVM NGC PB- Q1. Q5Y QBD RD5 RIG ROL ROX ROZ RXO TCN TLC TN5 TOX TR2 VH1 WH7 XJT ZGI ~91 --- -E4 .DC 0R~ 23N 2WC 4.4 5WA 70D AAIJN AAMDB AAOGV AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABPQP ABQLI ACIWK ACPRK ACUXJ ADBBV ADEZT ADGKP ADHZD ADMLS ADPDF ADRDM ADVEK AEMDU AENEX AENZO AEWNT AFGWE AFIYH AFRAH AGKEF AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALUQC AMNDL APIBT APWMN ASPBG AVWKF BAWUL BAYMD BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EMOBN FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ R44 RNS RPM RUSNO RW1 SV3 TEORI TJP W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c456t-34b06d4997e6b7239efa17bbb9bec7ff0c605ec16a0f7b6b9f8c52b2d5748f4f3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842621200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Thu Aug 21 18:39:38 EDT 2025 Thu Jul 10 17:59:48 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Tue Nov 18 22:15:51 EST 2025 Sat Nov 29 03:49:25 EST 2025 Wed Aug 28 03:19:22 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-34b06d4997e6b7239efa17bbb9bec7ff0c605ec16a0f7b6b9f8c52b2d5748f4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5034-0869 0000-0002-3559-4334 0000-0002-6733-633X 0000-0002-8955-7256 0000-0001-6327-6774 0000-0001-7264-2668 |
| OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btac525 |
| PMID | 35866989 |
| PQID | 2693780472 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9477537 proquest_miscellaneous_2693780472 pubmed_primary_35866989 crossref_primary_10_1093_bioinformatics_btac525 crossref_citationtrail_10_1093_bioinformatics_btac525 oup_primary_10_1093_bioinformatics_btac525 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-15 |
| PublicationDateYYYYMMDD | 2022-09-15 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Bailey (2023110303230463900_btac525-B4) 2015; 43 Cheng (2023110303230463900_btac525-B5) 2016 Zhang (2023110303230463900_btac525-B39) 2008; 9 Robinson (2023110303230463900_btac525-B28) 2011; 29 Zang (2023110303230463900_btac525-B38) 2009; 25 Langmead (2023110303230463900_btac525-B18) 2012; 9 van der Maaten (2023110303230463900_btac525-B21) 2008; 9 Thomas (2023110303230463900_btac525-B33) 2017; 18 Wilbanks (2023110303230463900_btac525-B36) 2010; 5 Tarbell (2023110303230463900_btac525-B32) 2019; 47 Rye (2023110303230463900_btac525-B29) 2011; 39 Klein (2023110303230463900_btac525-B16) 2020; 28 McInnes (2023110303230463900_btac525-B22) 2018 Hua (2023110303230463900_btac525-B12) 2021; 595 Abugessaisa (2023110303230463900_btac525-B1) 2019; 431 Auerbach (2023110303230463900_btac525-B3) 2009; 106 Zheng (2023110303230463900_btac525-B40) 2021; 22 Hocking (2023110303230463900_btac525-B10) 2017; 33 Quinlan (2023110303230463900_btac525-B26) 2010; 26 Oh (2023110303230463900_btac525-B23) 2020; 10 Grant (2023110303230463900_btac525-B8) 2011; 27 Stanton (2023110303230463900_btac525-B31) 2017; 45 Onuh (2023110303230463900_btac525-B24) 2021; 288 Holwerda (2023110303230463900_btac525-B11) 2013; 368 Wainberg (2023110303230463900_btac525-B35) 2018; 36 Zacher (2023110303230463900_btac525-B37) 2017; 12 Davis (2023110303230463900_btac525-B6) 2018; 46 Landt (2023110303230463900_btac525-B17) 2012; 22 LeCun (2023110303230463900_btac525-B19) 2015; 521 Li (2023110303230463900_btac525-B20) 2011; 5 Zhou (2023110303230463900_btac525-B41) 2015; 12 ENCODE Project Consortium (2023110303230463900_btac525-B7) 2012; 489 Park (2023110303230463900_btac525-B25) 2009; 10 Sergeant (2023110303230463900_btac525-B30) 2021; 4 Vega (2023110303230463900_btac525-B34) 2009; 4 Kent (2023110303230463900_btac525-B15) 2002; 12 Kelley (2023110303230463900_btac525-B14) 2016; 26 Jolliffe (2023110303230463900_btac525-B13) 2016; 374 Ramírez (2023110303230463900_btac525-B27) 2014; 42 Amemiya (2023110303230463900_btac525-B2) 2019; 9 Heinz (2023110303230463900_btac525-B9) 2010; 38 |
| References_xml | – volume: 46 start-page: D794 year: 2018 ident: 2023110303230463900_btac525-B6 article-title: The Encyclopedia of DNA Elements (ENCODE): data portal update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1081 – volume: 489 start-page: 57 year: 2012 ident: 2023110303230463900_btac525-B7 article-title: An integrated Encyclopedia of DNA Elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 42 start-page: W187 year: 2014 ident: 2023110303230463900_btac525-B27 article-title: deepTools: a flexible platform for exploring deep-sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gku365 – volume: 29 start-page: 24 year: 2011 ident: 2023110303230463900_btac525-B28 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol doi: 10.1038/nbt.1754 – year: 2018 ident: 2023110303230463900_btac525-B22 – volume: 28 start-page: 69 year: 2020 ident: 2023110303230463900_btac525-B16 article-title: Genomic methods in profiling DNA accessibility and factor localization publication-title: Chromosome Res doi: 10.1007/s10577-019-09619-9 – volume: 22 start-page: 1813 year: 2012 ident: 2023110303230463900_btac525-B17 article-title: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia publication-title: Genome Res doi: 10.1101/gr.136184.111 – volume: 5 start-page: e11471 year: 2010 ident: 2023110303230463900_btac525-B36 article-title: Evaluation of algorithm performance in ChIP-seq peak detection publication-title: PLoS One doi: 10.1371/journal.pone.0011471 – volume: 27 start-page: 1017 year: 2011 ident: 2023110303230463900_btac525-B8 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – volume: 39 start-page: e25 year: 2011 ident: 2023110303230463900_btac525-B29 article-title: A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1187 – volume: 38 start-page: 576 year: 2010 ident: 2023110303230463900_btac525-B9 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 521 start-page: 436 year: 2015 ident: 2023110303230463900_btac525-B19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 996 year: 2002 ident: 2023110303230463900_btac525-B15 article-title: The human genome browser at UCSC publication-title: Genome Res doi: 10.1101/gr.229102 – volume: 106 start-page: 14926 year: 2009 ident: 2023110303230463900_btac525-B3 article-title: Mapping accessible chromatin regions using Sono-Seq publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0905443106 – volume: 26 start-page: 990 year: 2016 ident: 2023110303230463900_btac525-B14 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res doi: 10.1101/gr.200535.115 – volume: 4 start-page: 623 year: 2021 ident: 2023110303230463900_btac525-B30 article-title: Multi locus view: an extensible web-based tool for the analysis of genomic data publication-title: Commun. Biol doi: 10.1038/s42003-021-02097-y – volume: 18 start-page: 441 year: 2017 ident: 2023110303230463900_btac525-B33 article-title: Features that define the best ChIP-seq peak calling algorithms publication-title: Brief. Bioinform – volume: 22 start-page: 201 year: 2021 ident: 2023110303230463900_btac525-B40 article-title: A flexible ChIP-sequencing simulation toolkit publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04097-5 – volume: 26 start-page: 841 year: 2010 ident: 2023110303230463900_btac525-B26 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 431 start-page: 2407 year: 2019 ident: 2023110303230463900_btac525-B1 article-title: refTSS: a reference data set for human and mouse transcription start sites publication-title: J. Mol. Biol doi: 10.1016/j.jmb.2019.04.045 – volume: 368 start-page: 20120369 year: 2013 ident: 2023110303230463900_btac525-B11 article-title: CTCF: the protein, the binding partners, the binding sites and their chromatin loops publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci doi: 10.1098/rstb.2012.0369 – volume: 5 start-page: 1752 year: 2011 ident: 2023110303230463900_btac525-B20 article-title: Measuring reproducibility of high-throughput experiments publication-title: Ann. Appl. Stat doi: 10.1214/11-AOAS466 – volume: 12 start-page: 931 year: 2015 ident: 2023110303230463900_btac525-B41 article-title: Predicting effects of noncoding variants with deep learning–based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – volume: 374 start-page: 20150202 year: 2016 ident: 2023110303230463900_btac525-B13 article-title: Principal component analysis: a review and recent developments publication-title: Philos. Trans. A Math. Phys. Eng. Sci – volume: 33 start-page: 491 year: 2017 ident: 2023110303230463900_btac525-B10 article-title: Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw672 – start-page: 7 volume-title: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016 year: 2016 ident: 2023110303230463900_btac525-B5 doi: 10.1145/2988450.2988454 – volume: 9 start-page: 357 year: 2012 ident: 2023110303230463900_btac525-B18 article-title: Fast gapped-read alignment with bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 9 start-page: 2579 year: 2008 ident: 2023110303230463900_btac525-B21 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res – volume: 288 start-page: 3120 year: 2021 ident: 2023110303230463900_btac525-B24 article-title: Serum response factor-cofactor interactions and their implications in disease publication-title: FEBS J doi: 10.1111/febs.15544 – volume: 10 start-page: 7933 year: 2020 ident: 2023110303230463900_btac525-B23 article-title: CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection publication-title: Sci. Rep doi: 10.1038/s41598-020-64655-4 – volume: 12 start-page: e0169249 year: 2017 ident: 2023110303230463900_btac525-B37 article-title: Accurate promoter and enhancer identification in 127 ENCODE and roadmap epigenomics cell types and tissues by GenoSTAN publication-title: PLoS One doi: 10.1371/journal.pone.0169249 – volume: 47 start-page: e91 year: 2019 ident: 2023110303230463900_btac525-B32 article-title: HMMRATAC: a hidden Markov ModeleR for ATAC-seq publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz533 – volume: 25 start-page: 1952 year: 2009 ident: 2023110303230463900_btac525-B38 article-title: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp340 – volume: 595 start-page: 125 year: 2021 ident: 2023110303230463900_btac525-B12 article-title: Defining genome architecture at base-pair resolution publication-title: Nature doi: 10.1038/s41586-021-03639-4 – volume: 45 start-page: e173 year: 2017 ident: 2023110303230463900_btac525-B31 article-title: Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx799 – volume: 43 start-page: W39 year: 2015 ident: 2023110303230463900_btac525-B4 article-title: The MEME suite publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv416 – volume: 10 start-page: 669 year: 2009 ident: 2023110303230463900_btac525-B25 article-title: ChIP–seq: advantages and challenges of a maturing technology publication-title: Nat. Rev. Genet doi: 10.1038/nrg2641 – volume: 4 start-page: e5241 year: 2009 ident: 2023110303230463900_btac525-B34 article-title: Inherent signals in sequencing-based chromatin-immunoprecipitation control libraries publication-title: PLoS One doi: 10.1371/journal.pone.0005241 – volume: 9 start-page: 9354 year: 2019 ident: 2023110303230463900_btac525-B2 article-title: The ENCODE blacklist: identification of problematic regions of the publication-title: Sci. Rep doi: 10.1038/s41598-019-45839-z – volume: 36 start-page: 829 year: 2018 ident: 2023110303230463900_btac525-B35 article-title: Deep learning in biomedicine publication-title: Nat. Biotechnol doi: 10.1038/nbt.4233 – volume: 9 start-page: R137 year: 2008 ident: 2023110303230463900_btac525-B39 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 |
| SSID | ssj0051444 ssj0005056 |
| Score | 2.5057547 |
| Snippet | Abstract
Motivation
Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements... Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4255 |
| SubjectTerms | Base Sequence Chromatin Immunoprecipitation Sequencing Deep Learning High-Throughput Nucleotide Sequencing - methods Humans Original Papers Sequence Analysis, DNA - methods Software |
| Title | LanceOtron: a deep learning peak caller for genome sequencing experiments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35866989 https://www.proquest.com/docview/2693780472 https://pubmed.ncbi.nlm.nih.gov/PMC9477537 |
| Volume | 38 |
| WOSCitedRecordID | wos000842621200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5WUfDF-1gvIvgklO2RNKlvIi4Koj6o7FtJ0kQXtbvsIfjvzWy7u3ZBPB5LJ0OaSchMZ-b7AI41ldZkAuukIuNRq30vYTbwlOGS-ZKyotri8Zrf3IhWK7mrQTDuhZlN4SdRQ7U7JYgoAhc31EBqFmJbecAE7uz729a0qMNHaJjiwbkCtOC0RWhv4UfjBuFvdVbupkq_2xe3c7Z68st11Fz5x4eswnLpe5KzYrOsQc3k67BYsFF-bMDVqB_6Fv-NnxJJMmO6pCSVeCJdI1-IRuKVHnHKCWK7vhlSVmKjxJQroL8JD82L-_NLr2Ra8LRzoAZeRJUfZy744SZWPIwSY2XAlVKJMzG31tcu6jE6iKVvuYpVYoWbugozxqmw1EZbMJ93crMDRGU0tlmgM4ZIZTqTimmDQVughPNWbB3YeI1TXcKQIxvGa1qkw6O0ukxpuUx1aEzGdQsgjh9HnDgT_lr4aGzp1B0wzJrI3HSG_TSMnQcnEFSzDtuF5Sc6IyZiZOCsA6_siYkAgndX3-Tt5xGId0K5ixT57l8muQdLIXZfIIMF24f5QW9oDmBBvw_a_d4hzPGWOBydh0-lIBN2 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LanceOtron%3A+a+deep+learning+peak+caller+for+genome+sequencing+experiments&rft.jtitle=Bioinformatics&rft.au=Hentges%2C+Lance+D&rft.au=Sergeant%2C+Martin+J&rft.au=Cole%2C+Christopher+B&rft.au=Downes%2C+Damien+J&rft.date=2022-09-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=38&rft.issue=18&rft.spage=4255&rft.epage=4263&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac525&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtac525 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |