LanceOtron: a deep learning peak caller for genome sequencing experiments

Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Ročník 38; číslo 18; s. 4255 - 4263
Hlavní autoři: Hentges, Lance D, Sergeant, Martin J, Cole, Christopher B, Downes, Damien J, Hughes, Jim R, Taylor, Stephen
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 15.09.2022
Témata:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling. Results We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity. Availability and implementation A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling.MOTIVATIONGenome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling.We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity.RESULTSWe present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity.A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.AVAILABILITY AND IMPLEMENTATIONA fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay’s coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling. Results We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity. Availability and implementation A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron. Supplementary information Supplementary data are available at Bioinformatics online.
Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks in the analog signal of an assay's coverage track, and despite the ease with which humans can visually categorize these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human capabilities, providing an opportunity to reimagine and improve peak calling. We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChIP-seq and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity and near-perfect sensitivity. A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source code and benchmarking tests are available at https://github.com/LHentges/LanceOtron. Supplementary data are available at Bioinformatics online.
Author Hentges, Lance D
Sergeant, Martin J
Downes, Damien J
Cole, Christopher B
Hughes, Jim R
Taylor, Stephen
Author_xml – sequence: 1
  givenname: Lance D
  orcidid: 0000-0001-6327-6774
  surname: Hentges
  fullname: Hentges, Lance D
– sequence: 2
  givenname: Martin J
  orcidid: 0000-0001-7264-2668
  surname: Sergeant
  fullname: Sergeant, Martin J
– sequence: 3
  givenname: Christopher B
  orcidid: 0000-0002-6733-633X
  surname: Cole
  fullname: Cole, Christopher B
– sequence: 4
  givenname: Damien J
  orcidid: 0000-0002-5034-0869
  surname: Downes
  fullname: Downes, Damien J
– sequence: 5
  givenname: Jim R
  orcidid: 0000-0002-8955-7256
  surname: Hughes
  fullname: Hughes, Jim R
– sequence: 6
  givenname: Stephen
  orcidid: 0000-0002-3559-4334
  surname: Taylor
  fullname: Taylor, Stephen
  email: stephen.taylor@imm.ox.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35866989$$D View this record in MEDLINE/PubMed
BookMark eNqNUctqGzEUFSEhDze_EGbZzTSa0WtUSqGYPgyGbJK1kOQrR-2MNJXGIfn7yNg1TTbJ6grueV2dC3QcYgCErhr8qcGSXBsffXAxDXryNl-bSVvWsiN03lCO6xYzeVzehIuadpicoYucf2PMGkrpKTojrONcdvIcLZY6WLiZUgyfK12tAMaqB52CD-tqBP2nsrrvIVXFq1pDiANUGf5uINgtAh5HSH6AMOUP6MTpPsPlfs7Q3Y_vt_Nf9fLm52L-bVlbyvhUE2owX1EpBXAjWiLB6UYYY6QBK5zDlmMGtuEaO2G4ka4rl5l2xQTtHHVkhr7udMeNGWBli3fSvRpLDJ2eVNRevdwEf6_W8UFJKgQjogh83AukWA7Jkxp8ttD3OkDcZNVySUSHaQk3Q1f_ex1M_v1fAfAdwKaYcwJ3gDRYbYtSL4tS-6IK8csrovVTgcRtZt-_TW929LgZ32v5DH8Lth4
CitedBy_id crossref_primary_10_1038_s41588_024_01897_2
crossref_primary_10_1038_s41598_025_96248_4
crossref_primary_10_1038_s41467_024_49370_2
crossref_primary_10_1016_j_heliyon_2024_e39140
crossref_primary_10_1186_s13059_025_03590_x
crossref_primary_10_1038_s41596_023_00817_8
crossref_primary_10_1038_s41598_025_87351_7
crossref_primary_10_1038_s41467_022_35438_4
crossref_primary_10_1038_s41467_025_56380_1
crossref_primary_10_1016_j_bcmd_2023_102745
crossref_primary_10_1038_s44341_025_00010_w
crossref_primary_10_1002_jez_b_23305
crossref_primary_10_1016_j_stem_2023_04_012
crossref_primary_10_1093_bioinformatics_btaf375
crossref_primary_10_1093_bib_bbae459
crossref_primary_10_1093_nar_gkae666
crossref_primary_10_1101_gr_278638_123
crossref_primary_10_1038_s41467_023_40981_9
crossref_primary_10_1093_bioadv_vbae074
Cites_doi 10.1093/nar/gkx1081
10.1038/nature11247
10.1093/nar/gku365
10.1038/nbt.1754
10.1007/s10577-019-09619-9
10.1101/gr.136184.111
10.1371/journal.pone.0011471
10.1093/bioinformatics/btr064
10.1093/nar/gkq1187
10.1016/j.molcel.2010.05.004
10.1038/nature14539
10.1101/gr.229102
10.1073/pnas.0905443106
10.1101/gr.200535.115
10.1038/s42003-021-02097-y
10.1186/s12859-021-04097-5
10.1093/bioinformatics/btq033
10.1016/j.jmb.2019.04.045
10.1098/rstb.2012.0369
10.1214/11-AOAS466
10.1038/nmeth.3547
10.1093/bioinformatics/btw672
10.1145/2988450.2988454
10.1038/nmeth.1923
10.1111/febs.15544
10.1038/s41598-020-64655-4
10.1371/journal.pone.0169249
10.1093/nar/gkz533
10.1093/bioinformatics/btp340
10.1038/s41586-021-03639-4
10.1093/nar/gkx799
10.1093/nar/gkv416
10.1038/nrg2641
10.1371/journal.pone.0005241
10.1038/s41598-019-45839-z
10.1038/nbt.4233
10.1186/gb-2008-9-9-r137
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btac525
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 4263
ExternalDocumentID PMC9477537
35866989
10_1093_bioinformatics_btac525
10.1093/bioinformatics/btac525
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_EX_MR/R023301/1
– fundername: Medical Research Council
  grantid: MC_PC_15069
– fundername: Medical Research Council
  grantid: MC_UU_12025
– fundername: Medical Research Council
  grantid: MC_UU_00016/12
– fundername: Medical Research Council
  grantid: MC_U137961147
– fundername: Medical Research Council
  grantid: MC_U137961145
– fundername: NIH HHS
  grantid: R24DK106766
– fundername: Medical Research Council
  grantid: MC_PC_14131
– fundername: Medical Research Council
  grantid: MR/M00919X/1
– fundername: Medical Research Council
  grantid: MC_UU_00016/14
– fundername: ;
  grantid: 106130/Z/14/Z
– fundername: ;
  grantid: R24DK106766
– fundername: ;
  grantid: MC_UU_12025; MC_UU_00016/14
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-34b06d4997e6b7239efa17bbb9bec7ff0c605ec16a0f7b6b9f8c52b2d5748f4f3
IEDL.DBID TOX
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842621200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:39:38 EDT 2025
Thu Jul 10 17:59:48 EDT 2025
Mon Jul 21 06:03:52 EDT 2025
Tue Nov 18 22:15:51 EST 2025
Sat Nov 29 03:49:25 EST 2025
Wed Aug 28 03:19:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-34b06d4997e6b7239efa17bbb9bec7ff0c605ec16a0f7b6b9f8c52b2d5748f4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5034-0869
0000-0002-3559-4334
0000-0002-6733-633X
0000-0002-8955-7256
0000-0001-6327-6774
0000-0001-7264-2668
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btac525
PMID 35866989
PQID 2693780472
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9477537
proquest_miscellaneous_2693780472
pubmed_primary_35866989
crossref_primary_10_1093_bioinformatics_btac525
crossref_citationtrail_10_1093_bioinformatics_btac525
oup_primary_10_1093_bioinformatics_btac525
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bailey (2023110303230463900_btac525-B4) 2015; 43
Cheng (2023110303230463900_btac525-B5) 2016
Zhang (2023110303230463900_btac525-B39) 2008; 9
Robinson (2023110303230463900_btac525-B28) 2011; 29
Zang (2023110303230463900_btac525-B38) 2009; 25
Langmead (2023110303230463900_btac525-B18) 2012; 9
van der Maaten (2023110303230463900_btac525-B21) 2008; 9
Thomas (2023110303230463900_btac525-B33) 2017; 18
Wilbanks (2023110303230463900_btac525-B36) 2010; 5
Tarbell (2023110303230463900_btac525-B32) 2019; 47
Rye (2023110303230463900_btac525-B29) 2011; 39
Klein (2023110303230463900_btac525-B16) 2020; 28
McInnes (2023110303230463900_btac525-B22) 2018
Hua (2023110303230463900_btac525-B12) 2021; 595
Abugessaisa (2023110303230463900_btac525-B1) 2019; 431
Auerbach (2023110303230463900_btac525-B3) 2009; 106
Zheng (2023110303230463900_btac525-B40) 2021; 22
Hocking (2023110303230463900_btac525-B10) 2017; 33
Quinlan (2023110303230463900_btac525-B26) 2010; 26
Oh (2023110303230463900_btac525-B23) 2020; 10
Grant (2023110303230463900_btac525-B8) 2011; 27
Stanton (2023110303230463900_btac525-B31) 2017; 45
Onuh (2023110303230463900_btac525-B24) 2021; 288
Holwerda (2023110303230463900_btac525-B11) 2013; 368
Wainberg (2023110303230463900_btac525-B35) 2018; 36
Zacher (2023110303230463900_btac525-B37) 2017; 12
Davis (2023110303230463900_btac525-B6) 2018; 46
Landt (2023110303230463900_btac525-B17) 2012; 22
LeCun (2023110303230463900_btac525-B19) 2015; 521
Li (2023110303230463900_btac525-B20) 2011; 5
Zhou (2023110303230463900_btac525-B41) 2015; 12
ENCODE Project Consortium (2023110303230463900_btac525-B7) 2012; 489
Park (2023110303230463900_btac525-B25) 2009; 10
Sergeant (2023110303230463900_btac525-B30) 2021; 4
Vega (2023110303230463900_btac525-B34) 2009; 4
Kent (2023110303230463900_btac525-B15) 2002; 12
Kelley (2023110303230463900_btac525-B14) 2016; 26
Jolliffe (2023110303230463900_btac525-B13) 2016; 374
Ramírez (2023110303230463900_btac525-B27) 2014; 42
Amemiya (2023110303230463900_btac525-B2) 2019; 9
Heinz (2023110303230463900_btac525-B9) 2010; 38
References_xml – volume: 46
  start-page: D794
  year: 2018
  ident: 2023110303230463900_btac525-B6
  article-title: The Encyclopedia of DNA Elements (ENCODE): data portal update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1081
– volume: 489
  start-page: 57
  year: 2012
  ident: 2023110303230463900_btac525-B7
  article-title: An integrated Encyclopedia of DNA Elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 42
  start-page: W187
  year: 2014
  ident: 2023110303230463900_btac525-B27
  article-title: deepTools: a flexible platform for exploring deep-sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku365
– volume: 29
  start-page: 24
  year: 2011
  ident: 2023110303230463900_btac525-B28
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1754
– year: 2018
  ident: 2023110303230463900_btac525-B22
– volume: 28
  start-page: 69
  year: 2020
  ident: 2023110303230463900_btac525-B16
  article-title: Genomic methods in profiling DNA accessibility and factor localization
  publication-title: Chromosome Res
  doi: 10.1007/s10577-019-09619-9
– volume: 22
  start-page: 1813
  year: 2012
  ident: 2023110303230463900_btac525-B17
  article-title: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
  publication-title: Genome Res
  doi: 10.1101/gr.136184.111
– volume: 5
  start-page: e11471
  year: 2010
  ident: 2023110303230463900_btac525-B36
  article-title: Evaluation of algorithm performance in ChIP-seq peak detection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011471
– volume: 27
  start-page: 1017
  year: 2011
  ident: 2023110303230463900_btac525-B8
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr064
– volume: 39
  start-page: e25
  year: 2011
  ident: 2023110303230463900_btac525-B29
  article-title: A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1187
– volume: 38
  start-page: 576
  year: 2010
  ident: 2023110303230463900_btac525-B9
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 521
  start-page: 436
  year: 2015
  ident: 2023110303230463900_btac525-B19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 996
  year: 2002
  ident: 2023110303230463900_btac525-B15
  article-title: The human genome browser at UCSC
  publication-title: Genome Res
  doi: 10.1101/gr.229102
– volume: 106
  start-page: 14926
  year: 2009
  ident: 2023110303230463900_btac525-B3
  article-title: Mapping accessible chromatin regions using Sono-Seq
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0905443106
– volume: 26
  start-page: 990
  year: 2016
  ident: 2023110303230463900_btac525-B14
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res
  doi: 10.1101/gr.200535.115
– volume: 4
  start-page: 623
  year: 2021
  ident: 2023110303230463900_btac525-B30
  article-title: Multi locus view: an extensible web-based tool for the analysis of genomic data
  publication-title: Commun. Biol
  doi: 10.1038/s42003-021-02097-y
– volume: 18
  start-page: 441
  year: 2017
  ident: 2023110303230463900_btac525-B33
  article-title: Features that define the best ChIP-seq peak calling algorithms
  publication-title: Brief. Bioinform
– volume: 22
  start-page: 201
  year: 2021
  ident: 2023110303230463900_btac525-B40
  article-title: A flexible ChIP-sequencing simulation toolkit
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04097-5
– volume: 26
  start-page: 841
  year: 2010
  ident: 2023110303230463900_btac525-B26
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 431
  start-page: 2407
  year: 2019
  ident: 2023110303230463900_btac525-B1
  article-title: refTSS: a reference data set for human and mouse transcription start sites
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2019.04.045
– volume: 368
  start-page: 20120369
  year: 2013
  ident: 2023110303230463900_btac525-B11
  article-title: CTCF: the protein, the binding partners, the binding sites and their chromatin loops
  publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci
  doi: 10.1098/rstb.2012.0369
– volume: 5
  start-page: 1752
  year: 2011
  ident: 2023110303230463900_btac525-B20
  article-title: Measuring reproducibility of high-throughput experiments
  publication-title: Ann. Appl. Stat
  doi: 10.1214/11-AOAS466
– volume: 12
  start-page: 931
  year: 2015
  ident: 2023110303230463900_btac525-B41
  article-title: Predicting effects of noncoding variants with deep learning–based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– volume: 374
  start-page: 20150202
  year: 2016
  ident: 2023110303230463900_btac525-B13
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci
– volume: 33
  start-page: 491
  year: 2017
  ident: 2023110303230463900_btac525-B10
  article-title: Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw672
– start-page: 7
  volume-title: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016
  year: 2016
  ident: 2023110303230463900_btac525-B5
  doi: 10.1145/2988450.2988454
– volume: 9
  start-page: 357
  year: 2012
  ident: 2023110303230463900_btac525-B18
  article-title: Fast gapped-read alignment with bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2023110303230463900_btac525-B21
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res
– volume: 288
  start-page: 3120
  year: 2021
  ident: 2023110303230463900_btac525-B24
  article-title: Serum response factor-cofactor interactions and their implications in disease
  publication-title: FEBS J
  doi: 10.1111/febs.15544
– volume: 10
  start-page: 7933
  year: 2020
  ident: 2023110303230463900_btac525-B23
  article-title: CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection
  publication-title: Sci. Rep
  doi: 10.1038/s41598-020-64655-4
– volume: 12
  start-page: e0169249
  year: 2017
  ident: 2023110303230463900_btac525-B37
  article-title: Accurate promoter and enhancer identification in 127 ENCODE and roadmap epigenomics cell types and tissues by GenoSTAN
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169249
– volume: 47
  start-page: e91
  year: 2019
  ident: 2023110303230463900_btac525-B32
  article-title: HMMRATAC: a hidden Markov ModeleR for ATAC-seq
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz533
– volume: 25
  start-page: 1952
  year: 2009
  ident: 2023110303230463900_btac525-B38
  article-title: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp340
– volume: 595
  start-page: 125
  year: 2021
  ident: 2023110303230463900_btac525-B12
  article-title: Defining genome architecture at base-pair resolution
  publication-title: Nature
  doi: 10.1038/s41586-021-03639-4
– volume: 45
  start-page: e173
  year: 2017
  ident: 2023110303230463900_btac525-B31
  article-title: Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx799
– volume: 43
  start-page: W39
  year: 2015
  ident: 2023110303230463900_btac525-B4
  article-title: The MEME suite
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv416
– volume: 10
  start-page: 669
  year: 2009
  ident: 2023110303230463900_btac525-B25
  article-title: ChIP–seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2641
– volume: 4
  start-page: e5241
  year: 2009
  ident: 2023110303230463900_btac525-B34
  article-title: Inherent signals in sequencing-based chromatin-immunoprecipitation control libraries
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005241
– volume: 9
  start-page: 9354
  year: 2019
  ident: 2023110303230463900_btac525-B2
  article-title: The ENCODE blacklist: identification of problematic regions of the
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-45839-z
– volume: 36
  start-page: 829
  year: 2018
  ident: 2023110303230463900_btac525-B35
  article-title: Deep learning in biomedicine
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4233
– volume: 9
  start-page: R137
  year: 2008
  ident: 2023110303230463900_btac525-B39
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
SSID ssj0051444
ssj0005056
Score 2.5057547
Snippet Abstract Motivation Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements...
Genome sequencing experiments have revolutionized molecular biology by allowing researchers to identify important DNA-encoded elements genome wide. Regions...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4255
SubjectTerms Base Sequence
Chromatin Immunoprecipitation Sequencing
Deep Learning
High-Throughput Nucleotide Sequencing - methods
Humans
Original Papers
Sequence Analysis, DNA - methods
Software
Title LanceOtron: a deep learning peak caller for genome sequencing experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/35866989
https://www.proquest.com/docview/2693780472
https://pubmed.ncbi.nlm.nih.gov/PMC9477537
Volume 38
WOSCitedRecordID wos000842621200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5WUfDF-1gvIvgklO2RNKlvIi4Koj6o7FtJ0kQXtbvsIfjvzWy7u3ZBPB5LJ0OaSchMZ-b7AI41ldZkAuukIuNRq30vYTbwlOGS-ZKyotri8Zrf3IhWK7mrQTDuhZlN4SdRQ7U7JYgoAhc31EBqFmJbecAE7uz729a0qMNHaJjiwbkCtOC0RWhv4UfjBuFvdVbupkq_2xe3c7Z68st11Fz5x4eswnLpe5KzYrOsQc3k67BYsFF-bMDVqB_6Fv-NnxJJMmO6pCSVeCJdI1-IRuKVHnHKCWK7vhlSVmKjxJQroL8JD82L-_NLr2Ra8LRzoAZeRJUfZy744SZWPIwSY2XAlVKJMzG31tcu6jE6iKVvuYpVYoWbugozxqmw1EZbMJ93crMDRGU0tlmgM4ZIZTqTimmDQVughPNWbB3YeI1TXcKQIxvGa1qkw6O0ukxpuUx1aEzGdQsgjh9HnDgT_lr4aGzp1B0wzJrI3HSG_TSMnQcnEFSzDtuF5Sc6IyZiZOCsA6_siYkAgndX3-Tt5xGId0K5ixT57l8muQdLIXZfIIMF24f5QW9oDmBBvw_a_d4hzPGWOBydh0-lIBN2
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LanceOtron%3A+a+deep+learning+peak+caller+for+genome+sequencing+experiments&rft.jtitle=Bioinformatics&rft.au=Hentges%2C+Lance+D&rft.au=Sergeant%2C+Martin+J&rft.au=Cole%2C+Christopher+B&rft.au=Downes%2C+Damien+J&rft.date=2022-09-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=38&rft.issue=18&rft.spage=4255&rft.epage=4263&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac525&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtac525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon