Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing

Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science advances Ročník 5; číslo 8; s. eaav8754
Hlavní autori: Lowry, Daniel P., Golledge, Nicholas R., Bertler, Nancy A. N., Jones, R. Selwyn, McKay, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association for the Advancement of Science 01.08.2019
Predmet:
ISSN:2375-2548, 2375-2548
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica’s largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aav8754