Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing

Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science advances Ročník 5; číslo 8; s. eaav8754
Hlavní autori: Lowry, Daniel P., Golledge, Nicholas R., Bertler, Nancy A. N., Jones, R. Selwyn, McKay, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association for the Advancement of Science 01.08.2019
Predmet:
ISSN:2375-2548, 2375-2548
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica’s largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
AbstractList Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica's largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica's largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica’s largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica's largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica’s largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.
Author McKay, Robert
Lowry, Daniel P.
Jones, R. Selwyn
Bertler, Nancy A. N.
Golledge, Nicholas R.
Author_xml – sequence: 1
  givenname: Daniel P.
  orcidid: 0000-0002-9668-0850
  surname: Lowry
  fullname: Lowry, Daniel P.
  organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6012, New Zealand
– sequence: 2
  givenname: Nicholas R.
  orcidid: 0000-0001-7676-8970
  surname: Golledge
  fullname: Golledge, Nicholas R.
  organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6012, New Zealand., GNS Science, Lower Hutt 5010, New Zealand
– sequence: 3
  givenname: Nancy A. N.
  orcidid: 0000-0001-6028-4891
  surname: Bertler
  fullname: Bertler, Nancy A. N.
  organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6012, New Zealand., GNS Science, Lower Hutt 5010, New Zealand
– sequence: 4
  givenname: R. Selwyn
  orcidid: 0000-0003-2988-0999
  surname: Jones
  fullname: Jones, R. Selwyn
  organization: Department of Geography, Durham University, Durham DH1 3LE, UK
– sequence: 5
  givenname: Robert
  orcidid: 0000-0002-5602-6985
  surname: McKay
  fullname: McKay, Robert
  organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6012, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31565668$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNUbK199VHy6ENnTTJJZuZFKLV-QEEQfQ53kju7kUyyJtmF_e-dslupgk83cM_53XDOS3IWU0RCXnO24lzod8V6cPsVwL7vlHxGLkTbqUYo2Z89eZ-Tq1J-Msa41Frx4QU5b7nSSuv-gsQPuA6wcAJd57SLzsd1E3xEmrFmhEp9pHWD9Fsqhd7NIxxmjPWa3sQK2VZv4ZraFGtOIaCj44EmixApREehzqlsN5iRTinbBf2KPJ8gFLw6zUvy4-Pd99vPzf3XT19ub-4bK5WuDW8ds8xaLiYh204z12opxlGg6JmzbkIHMHHWd0wK55hGIZWyk0I9CRja9pK8P3K3u3FGZ5cvZwhmm_0M-WASePP3JvqNWae90Z1SQ6sXwNsTIKdfOyzVzL5YDAEipl0xQgyDlP3QqkX65umtP0ceQ14E8iiweQkx42Ssr1D9Q2rgg-HMPNRpjnWaU52LbfWP7ZH8H8NvwqGnjw
CitedBy_id crossref_primary_10_5194_tc_15_3329_2021
crossref_primary_10_1016_j_quascirev_2020_106629
crossref_primary_10_5194_cp_17_1_2021
crossref_primary_10_1016_j_palaeo_2024_112611
crossref_primary_10_1038_s41467_024_47369_3
crossref_primary_10_1016_j_quascirev_2022_107800
crossref_primary_10_1029_2020GL091454
crossref_primary_10_1038_s43017_022_00309_5
crossref_primary_10_1016_j_scitotenv_2023_166133
crossref_primary_10_5194_tc_15_5447_2021
crossref_primary_10_5194_tc_16_1543_2022
crossref_primary_10_1038_s41586_022_04946_0
crossref_primary_10_14770_jgsk_2025_018
crossref_primary_10_1029_2020JF005827
crossref_primary_10_3390_geosciences10100413
crossref_primary_10_1029_2021GL097371
crossref_primary_10_5194_tc_15_4655_2021
crossref_primary_10_1002_esp_5701
crossref_primary_10_5194_jm_43_187_2024
crossref_primary_10_1016_j_quascirev_2024_108988
crossref_primary_10_1016_j_earscirev_2023_104458
crossref_primary_10_1186_s40562_025_00381_x
crossref_primary_10_1016_j_quascirev_2020_106314
crossref_primary_10_1016_j_quascirev_2024_108787
crossref_primary_10_1016_j_quascirev_2020_106595
crossref_primary_10_1007_s11629_022_7338_1
crossref_primary_10_1029_2020GL088476
crossref_primary_10_5194_jm_40_15_2021
crossref_primary_10_1016_j_gloplacha_2025_104793
crossref_primary_10_5194_tc_19_3725_2025
Cites_doi 10.1126/science.1077998
10.1038/nature15706
10.1038/ngeo2563
10.1038/s41467-018-05625-3
10.1016/j.gloplacha.2018.04.007
10.5194/tc-10-1003-2016
10.1016/j.quascirev.2011.02.005
10.1038/s41586-018-0182-3
10.1002/2017GL074986
10.1007/s00161-003-0119-3
10.5194/cp-3-485-2007
10.1016/j.quageo.2015.01.009
10.1038/ncomms14596
10.5194/tc-7-375-2013
10.1029/2008JF001179
10.1006/qres.1999.2047
10.1038/s41598-018-29911-8
10.1126/science.286.5438.280
10.1016/j.quascirev.2004.07.015
10.1016/j.quascirev.2016.12.007
10.5194/tc-6-273-2012
10.5194/cp-15-189-2019
10.1016/j.gloplacha.2010.11.002
10.1038/ncomms9910
10.1073/pnas.1609132113
10.1126/science.1221294
10.1038/nature17145
10.1130/G45413.1
10.1038/nature10968
10.1016/j.quascirev.2014.06.025
10.1038/nature10902
10.1126/science.1171041
10.1016/j.quascirev.2013.08.020
10.1002/2016GL068356
10.1126/science.1172873
10.1016/j.quascirev.2010.02.001
10.1073/pnas.1516908113
10.5194/gmd-11-5149-2018
10.1038/ncomms6107
10.1002/2017GL074216
10.3189/2014JoG13J093
10.5194/tc-5-727-2011
10.1144/M46.168
10.1038/s41586-018-0208-x
10.1130/G37315.1
10.1038/271321a0
10.1038/ngeo1026
10.1126/science.1226481
10.1002/2015JF003580
10.1130/G38715.1
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.aav8754
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geology
EISSN 2375-2548
ExternalDocumentID PMC6755936
31565668
10_1126_sciadv_aav8754
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 609412
– fundername: ;
  grantid: VUW1501
– fundername: ;
  grantid: RDF-13-VUW-003
– fundername: ;
  grantid: 15-VUW-131
– fundername: ;
  grantid: 540GCT32
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
ADRAZ
BBORY
BCGUY
EJD
NPM
OVEED
RHF
7X8
5PM
ID FETCH-LOGICAL-c456t-13d0c0cc12f243760d3642bb2e280dcdfedaaf1087042dd06e2455cf5e6f2a933
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481798400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2375-2548
IngestDate Tue Sep 30 16:59:36 EDT 2025
Thu Jul 10 19:07:17 EDT 2025
Thu Jan 02 22:59:54 EST 2025
Tue Nov 18 21:46:31 EST 2025
Sat Nov 29 06:00:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-13d0c0cc12f243760d3642bb2e280dcdfedaaf1087042dd06e2455cf5e6f2a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7676-8970
0000-0003-2988-0999
0000-0001-6028-4891
0000-0002-9668-0850
0000-0002-5602-6985
OpenAccessLink http://dx.doi.org/10.1126/sciadv.aav8754
PMID 31565668
PQID 2299448935
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755936
proquest_miscellaneous_2299448935
pubmed_primary_31565668
crossref_citationtrail_10_1126_sciadv_aav8754
crossref_primary_10_1126_sciadv_aav8754
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2019
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References McKay R. (e_1_3_2_12_2) 2016; 1
Bart P. J. (e_1_3_2_15_2) 2018; 8
Stuhne G. R. (e_1_3_2_46_2) 2015; 120
e_1_3_2_49_2
Crosta X. (e_1_3_2_48_2) 2018; 166
e_1_3_2_43_2
e_1_3_2_22_2
Anderson J. B. (e_1_3_2_8_2) 2014; 100
e_1_3_2_24_2
e_1_3_2_47_2
Simkins L. M. (e_1_3_2_45_2) 2016; 46
Lenaerts J. T. M. (e_1_3_2_28_2) 2012; 39
Pollard D. (e_1_3_2_30_2) 2018; 11
Schoof C. (e_1_3_2_36_2) 2003; 15
Golledge N. R. (e_1_3_2_11_2) 2014; 5
Cuffey K. M. (e_1_3_2_25_2) 2016; 113
e_1_3_2_9_2
e_1_3_2_37_2
Andrews J. T. (e_1_3_2_18_2) 1999; 52
e_1_3_2_39_2
Levermann A. (e_1_3_2_52_2) 2012; 6
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_5_2
Bueler E. (e_1_3_2_20_2) 2009; 114
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
Robel A. A. (e_1_3_2_29_2) 2017; 8
Fudge T. J. (e_1_3_2_44_2) 2016; 43
Yokoyama Y. (e_1_3_2_16_2) 2016; 113
e_1_3_2_50_2
e_1_3_2_27_2
Stanford J. D. (e_1_3_2_33_2) 2011; 79
e_1_3_2_23_2
Todd C. (e_1_3_2_38_2) 2010; 29
Goehring B. M. (e_1_3_2_42_2) 2019; 47
e_1_3_2_17_2
Lowry D. P. (e_1_3_2_19_2) 2019; 15
e_1_3_2_6_2
e_1_3_2_53_2
e_1_3_2_32_2
Anderson J. T. H. (e_1_3_2_41_2) 2017; 157
e_1_3_2_51_2
Bentley M. J. (e_1_3_2_7_2) 2014; 100
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_2_2
Spector P. (e_1_3_2_40_2) 2017; 44
Kingslake J. (e_1_3_2_10_2) 2018; 558
Martin M. A. (e_1_3_2_21_2) 2011; 5
Lisiecki L. E. (e_1_3_2_26_2) 2005; 20
References_xml – ident: e_1_3_2_37_2
  doi: 10.1126/science.1077998
– ident: e_1_3_2_5_2
  doi: 10.1038/nature15706
– ident: e_1_3_2_4_2
  doi: 10.1038/ngeo2563
– ident: e_1_3_2_17_2
  doi: 10.1038/s41467-018-05625-3
– volume: 166
  start-page: 62
  year: 2018
  ident: e_1_3_2_48_2
  article-title: Ocean as the main driver of Antarctic ice sheet retreat during the Holocene
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2018.04.007
– ident: e_1_3_2_13_2
  doi: 10.5194/tc-10-1003-2016
– ident: e_1_3_2_22_2
  doi: 10.1016/j.quascirev.2011.02.005
– ident: e_1_3_2_43_2
  doi: 10.1038/s41586-018-0182-3
– ident: e_1_3_2_50_2
  doi: 10.1002/2017GL074986
– volume: 15
  start-page: 295
  year: 2003
  ident: e_1_3_2_36_2
  article-title: The effect of basal topography on ice sheet dynamics
  publication-title: Continuum Mech. Therm.
  doi: 10.1007/s00161-003-0119-3
– ident: e_1_3_2_24_2
  doi: 10.5194/cp-3-485-2007
– ident: e_1_3_2_54_2
  doi: 10.1016/j.quageo.2015.01.009
– volume: 8
  start-page: 14596
  year: 2017
  ident: e_1_3_2_29_2
  article-title: Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14596
– ident: e_1_3_2_35_2
  doi: 10.5194/tc-7-375-2013
– volume: 114
  start-page: F03008
  year: 2009
  ident: e_1_3_2_20_2
  article-title: Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JF001179
– volume: 52
  start-page: 206
  year: 1999
  ident: e_1_3_2_18_2
  article-title: Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica
  publication-title: Quat. Res.
  doi: 10.1006/qres.1999.2047
– volume: 8
  start-page: 12392
  year: 2018
  ident: e_1_3_2_15_2
  article-title: A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29911-8
– ident: e_1_3_2_9_2
  doi: 10.1126/science.286.5438.280
– ident: e_1_3_2_53_2
  doi: 10.1016/j.quascirev.2004.07.015
– volume: 157
  start-page: 1
  year: 2017
  ident: e_1_3_2_41_2
  article-title: Reconciling marine and terrestrial evidence for post LGM ice sheet retreat in southern McMurdo Sound, Antarctica
  publication-title: Qua. Sci. Rev.
  doi: 10.1016/j.quascirev.2016.12.007
– volume: 6
  start-page: 273
  year: 2012
  ident: e_1_3_2_52_2
  article-title: Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
  publication-title: Cryosphere
  doi: 10.5194/tc-6-273-2012
– volume: 15
  start-page: 189
  year: 2019
  ident: e_1_3_2_19_2
  article-title: Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations
  publication-title: Clim. Past
  doi: 10.5194/cp-15-189-2019
– volume: 79
  start-page: 193
  year: 2011
  ident: e_1_3_2_33_2
  article-title: Sea-level probability for the last deglaciation: A statistical analysis of far-field records
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2010.11.002
– ident: e_1_3_2_39_2
  doi: 10.1038/ncomms9910
– volume: 113
  start-page: 14249
  year: 2016
  ident: e_1_3_2_25_2
  article-title: Deglacial temperature history of West Antarctica
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1609132113
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1221294
– ident: e_1_3_2_6_2
  doi: 10.1038/nature17145
– volume: 47
  start-page: 291
  year: 2019
  ident: e_1_3_2_42_2
  article-title: Late-glacial grounding line retreat in the northern Ross Sea, Antarctica
  publication-title: Geology
  doi: 10.1130/G45413.1
– ident: e_1_3_2_49_2
  doi: 10.1038/nature10968
– volume: 100
  start-page: 1
  year: 2014
  ident: e_1_3_2_7_2
  article-title: A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2014.06.025
– ident: e_1_3_2_34_2
  doi: 10.1038/nature10902
– ident: e_1_3_2_23_2
  doi: 10.1126/science.1171041
– volume: 100
  start-page: 31
  year: 2014
  ident: e_1_3_2_8_2
  article-title: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2013.08.020
– volume: 43
  start-page: 3795
  year: 2016
  ident: e_1_3_2_44_2
  article-title: Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068356
– ident: e_1_3_2_32_2
  doi: 10.1126/science.1172873
– volume: 29
  start-page: 1328
  year: 2010
  ident: e_1_3_2_38_2
  article-title: Late Quaternary evolution of Reedy Glacier, Antarctica
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2010.02.001
– volume: 113
  start-page: 2354
  year: 2016
  ident: e_1_3_2_16_2
  article-title: Widespread collapse of the Ross Ice Shelf during the late Holocene
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1516908113
– ident: e_1_3_2_31_2
– volume: 39
  start-page: L04501
  year: 2012
  ident: e_1_3_2_28_2
  article-title: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 5149
  year: 2018
  ident: e_1_3_2_30_2
  article-title: A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-11-5149-2018
– volume: 5
  start-page: 5107
  year: 2014
  ident: e_1_3_2_11_2
  article-title: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6107
– volume: 44
  start-page: 7817
  year: 2017
  ident: e_1_3_2_40_2
  article-title: Rapid early-Holocene deglaciation in the Ross Sea, Antarctica
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074216
– ident: e_1_3_2_51_2
  doi: 10.3189/2014JoG13J093
– volume: 5
  start-page: 727
  year: 2011
  ident: e_1_3_2_21_2
  article-title: The Potsdam Parallel Ice Sheet Model (PISM-PIK)—Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-5-727-2011
– volume: 46
  start-page: 353
  year: 2016
  ident: e_1_3_2_45_2
  article-title: Glacial landform assemblage reveals complex retreat of grounded ice in the Ross Sea, Antarctica
  publication-title: Geol. Soc. Lond. Mem.
  doi: 10.1144/M46.168
– volume: 558
  start-page: 430
  year: 2018
  ident: e_1_3_2_10_2
  article-title: Extensive retreat and re-advance of the West Antarctic ice sheet during the Holocene
  publication-title: Nature
  doi: 10.1038/s41586-018-0208-x
– volume: 1
  start-page: 7
  year: 2016
  ident: e_1_3_2_12_2
  article-title: Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene
  publication-title: Geology
  doi: 10.1130/G37315.1
– ident: e_1_3_2_2_2
  doi: 10.1038/271321a0
– ident: e_1_3_2_47_2
  doi: 10.1038/ngeo1026
– volume: 20
  start-page: PA1003
  year: 2005
  ident: e_1_3_2_26_2
  article-title: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records
  publication-title: Paleoceanography
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1226481
– volume: 120
  start-page: 1841
  year: 2015
  ident: e_1_3_2_46_2
  article-title: Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica
  publication-title: J. Geophys. Res. Earth
  doi: 10.1002/2015JF003580
– ident: e_1_3_2_14_2
  doi: 10.1130/G38715.1
SSID ssj0001466519
Score 2.2820644
Snippet Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming...
Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat...
Oceanic and atmospheric warming were dominant controls of past ice sheet retreat in Antarctica’s largest catchment. Modern observations appear to link warming...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eaav8754
SubjectTerms Climatology
Geology
SciAdv r-articles
Title Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing
URI https://www.ncbi.nlm.nih.gov/pubmed/31565668
https://www.proquest.com/docview/2299448935
https://pubmed.ncbi.nlm.nih.gov/PMC6755936
Volume 5
WOSCitedRecordID wos000481798400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2375-2548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466519
  issn: 2375-2548
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2375-2548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466519
  issn: 2375-2548
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuiOVZHpWREA9pgxInTpwjgl04lIJWXam3yHEcUamblibb3V74K_xVxo-4CSzScuASta4Vt_m-jmfG80DoherownKQfoVMBRgoSg6C5eHJuOBRWpaUMNNsIplM2GyWfh0Mfra5MJtFUlXs8jJd_VeoYQzAVqmz_wC3uykMwGsAHa4AO1yvBfwHCRqxdoSrjA2dtOJpXXItdVR5G9l4slTh7mc532oHoSkkAM9CObfVOxvEvjAqKmxz3MQt8-ZsWatiBLpcuGi3PqvgtrLCxhY4jX28vLAH9jqnfZdW9lEvYRq8Ay2VqV13ohjlurG5inofADnmzo5cm4ETkHiLi23V9WCopCnWejC0oCNhQj0wVI0clleMWUlNO4RkHakrOd-A3RVdvSW0TSzhh7_tTOzX3p58yY5Px-NsejSbvlx991RbMnV8b3u07KEbJKGpEpuff3SceFEcU908xn1fWxjUJmZ11uwrPn9YM78H5Xa0nOkddNuaJ_idodUBGsjqLjqwoNb4ta1S_uYeqhzPcJ9n2PIMzysMPMOKZ9jx7BDvWHaIdxzD-RZrjmHgGN5xDFuO3Uenx0fT958827zDE6CTN14QFr7whQhIqWpexn4Rgqmb50QS5heiKGXBeRn4sF9EpCj8WJKIUlFSGZeEp2H4AO1XwKNHCJOEMbhDxGgqIymTHDbwkpA88HMZlTwaIq99spmwle1Vg5VFpi1cEmcGicwiMUSv3PyVqeny15nPW6AyELvqLI1XcnleZwTUuEgVbqJD9NAA5-4VBtpKYkOU9CB1E1RJ9_4n1fybLu0O5rtqsfn4Gus-Qbd2f6anaL9Zn8tn6KbYNPN6PUJ7yYyNtIdppDn7C7cBykI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deglacial+grounding-line+retreat+in+the+Ross+Embayment%2C+Antarctica%2C+controlled+by+ocean+and+atmosphere+forcing&rft.jtitle=Science+advances&rft.au=Lowry%2C+Daniel+P&rft.au=Golledge%2C+Nicholas+R&rft.au=Bertler%2C+Nancy+A+N&rft.au=Jones%2C+R+Selwyn&rft.date=2019-08-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=5&rft.issue=8&rft.spage=eaav8754&rft_id=info:doi/10.1126%2Fsciadv.aav8754&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon