Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders

Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenome...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials Vol. 10; no. 1; pp. 183 - 19
Main Authors: Valleti, Mani, Ziatdinov, Maxim, Liu, Yongtao, Kalinin, Sergei V.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 14.08.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2057-3960, 2057-3960
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenomena from the data, such as manifestations of symmetry breaking phenomena in electron and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs) are emerging as a powerful paradigm for the unsupervised data analysis, allowing to disentangle the factors of variability and discover optimal parsimonious representation. Here, we summarize recent developments in VAEs, covering the basic principles and intuition behind the VAEs. The invariant VAEs are introduced as an approach to accommodate scale and translation invariances present in imaging data and separate known factors of variations from the ones to be discovered. We further describe the opportunities enabled by the control over VAE architecture, including conditional, semi-supervised, and joint VAEs. Several case studies of VAE applications for toy models and experimental datasets in Scanning Transmission Electron Microscopy are discussed, emphasizing the deep connection between VAE and basic physical principles. Python codes and datasets discussed in this article are available at https://github.com/saimani5/VAE-tutorials and can be used by researchers as an application guide when applying these to their own datasets.
AbstractList Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenomena from the data, such as manifestations of symmetry breaking phenomena in electron and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs) are emerging as a powerful paradigm for the unsupervised data analysis, allowing to disentangle the factors of variability and discover optimal parsimonious representation. Here, we summarize recent developments in VAEs, covering the basic principles and intuition behind the VAEs. The invariant VAEs are introduced as an approach to accommodate scale and translation invariances present in imaging data and separate known factors of variations from the ones to be discovered. We further describe the opportunities enabled by the control over VAE architecture, including conditional, semi-supervised, and joint VAEs. Several case studies of VAE applications for toy models and experimental datasets in Scanning Transmission Electron Microscopy are discussed, emphasizing the deep connection between VAE and basic physical principles. Python codes and datasets discussed in this article are available at https://github.com/saimani5/VAE-tutorials and can be used by researchers as an application guide when applying these to their own datasets.
Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenomena from the data, such as manifestations of symmetry breaking phenomena in electron and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs) are emerging as a powerful paradigm for the unsupervised data analysis, allowing to disentangle the factors of variability and discover optimal parsimonious representation. Here, we summarize recent developments in VAEs, covering the basic principles and intuition behind the VAEs. The invariant VAEs are introduced as an approach to accommodate scale and translation invariances present in imaging data and separate known factors of variations from the ones to be discovered. We further describe the opportunities enabled by the control over VAE architecture, including conditional, semi-supervised, and joint VAEs. Several case studies of VAE applications for toy models and experimental datasets in Scanning Transmission Electron Microscopy are discussed, emphasizing the deep connection between VAE and basic physical principles. Python codes and datasets discussed in this article are available at https://github.com/saimani5/VAE-tutorials and can be used by researchers as an application guide when applying these to their own datasets.
Abstract Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemical phenomena from the data, such as manifestations of symmetry breaking phenomena in electron and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs) are emerging as a powerful paradigm for the unsupervised data analysis, allowing to disentangle the factors of variability and discover optimal parsimonious representation. Here, we summarize recent developments in VAEs, covering the basic principles and intuition behind the VAEs. The invariant VAEs are introduced as an approach to accommodate scale and translation invariances present in imaging data and separate known factors of variations from the ones to be discovered. We further describe the opportunities enabled by the control over VAE architecture, including conditional, semi-supervised, and joint VAEs. Several case studies of VAE applications for toy models and experimental datasets in Scanning Transmission Electron Microscopy are discussed, emphasizing the deep connection between VAE and basic physical principles. Python codes and datasets discussed in this article are available at https://github.com/saimani5/VAE-tutorials and can be used by researchers as an application guide when applying these to their own datasets.
ArticleNumber 183
Author Ziatdinov, Maxim
Liu, Yongtao
Valleti, Mani
Kalinin, Sergei V.
Author_xml – sequence: 1
  givenname: Mani
  surname: Valleti
  fullname: Valleti, Mani
  email: svalleti@vols.utk.edu
  organization: Bredesen Center for Interdisciplinary Research, University of Tennessee
– sequence: 2
  givenname: Maxim
  surname: Ziatdinov
  fullname: Ziatdinov, Maxim
  organization: Physical Sciences Division, Pacific Northwest National Laboratory
– sequence: 3
  givenname: Yongtao
  surname: Liu
  fullname: Liu, Yongtao
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
– sequence: 4
  givenname: Sergei V.
  orcidid: 0000-0001-5354-6152
  surname: Kalinin
  fullname: Kalinin, Sergei V.
  email: sergei2@utk.edu
  organization: Physical Sciences Division, Pacific Northwest National Laboratory, Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee
BackLink https://www.osti.gov/servlets/purl/2439897$$D View this record in Osti.gov
BookMark eNp9kU9v1DAQxSNUJErpF-AUwTkw_pM45oYqCpUqwQHOluNMdr3K2ovHW2m_fZ0NqIhDD6OxRr_3NOP3uroIMWBVvWXwgYHoP5JkLZcNLMV4C037orrk0KpG6A4u_nm_qq6JdgDANO-5hMsq_NieyDuqbRhrt8W9p5xO9ZTivj7YRH4fg49HqhMeEhKGbLOPgT7Vfm83WGR2LgZUP3hb-_Bgk7ch1-e-gHau7TFHDC6OmOhN9XKyM-H1n35V_br98vPmW3P__evdzef7xsm2yw0TTnZq1OC4Vm5Qup_a0SGHSSsYukFYIUdgVg-qRceZ6qHnnEvJLRsnx8RVdbf6jtHuzCGVZdPJROvNeRDTxtiUvZvRAJtQdRMTI6AUqKzSknMn-1GLoZVT8Xq3ekXK3pDzGd3WxRDQZcOl0L1WBXq_QocUfx-RstnFYyrnkxGgyxWKi7ZQ_Uq5FIkSTqa4nf8pJ-tnw8AsiZo1UQNLLYmaRcr_k_696lmRWEVU4LDB9LTVM6pH--y2Cw
CitedBy_id crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1002_aidi_202500063
crossref_primary_10_1063_5_0222403
crossref_primary_10_1039_D5DD00033E
crossref_primary_10_1016_j_ijpharm_2025_126046
crossref_primary_10_69761_udpm2547
crossref_primary_10_1016_j_nantod_2025_102766
crossref_primary_10_1021_acsnano_5c04200
crossref_primary_10_1002_adma_202418927
crossref_primary_10_1038_s41524_025_01770_8
Cites_doi 10.1145/3065386
10.1063/1.4998599
10.1002/adma.201900608
10.1002/smll.202104318
10.1007/s12274-018-2141-6
10.1021/ci00057a005
10.1088/2632-2153/acb316
10.1111/j.1551-2916.2009.03240.x
10.1002/adma.202103680
10.1002/smll.202100181
10.1613/jair.614
10.1063/1.123922
10.1088/2632-2153/ac28de
10.1088/1361-6528/ac2f5b
10.1063/1.119519
10.1021/acsami.0c15085
10.1126/science.275.5304.1295
10.1016/j.matt.2021.09.024
10.1088/2632-2153/aba947
10.1038/s42256-022-00555-8
10.1002/cphc.200400212
10.1038/s41928-019-0264-8
10.7717/peerj.453
10.1093/jmicro/dfn030
10.1021/acsnano.1c09059
10.1103/PhysRevLett.86.4056
10.1002/advs.202203957
10.1103/PhysRevLett.105.197602
10.1126/sciadv.abd5084
10.1103/PhysRevLett.57.2579
10.1016/0304-3991(92)90381-S
10.1063/1.97800
10.1111/j.1365-2818.1981.tb01227.x
10.1038/nmeth.1483
10.1146/annurev.matsci.27.1.381
10.1146/annurev.matsci.28.1.101
10.1146/annurev-matsci-070616-124014
10.1002/smll.201801771
10.1038/nnano.2006.70
10.1016/S1367-5931(00)00126-5
10.1126/sciadv.aaw8989
10.1021/acsnano.3c03363
10.1561/2200000056
10.1109/5.726791
10.1021/acsnano.7b07504
10.1007/978-3-319-60801-3_27
10.1007/978-3-030-01237-3_34
10.1201/9780429243011
ContentType Journal Article
Copyright UT-Battelle,LLC, Battelle Memorial Institute and Mani Valleti 2024
UT-Battelle,LLC, Battelle Memorial Institute and Mani Valleti 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: UT-Battelle,LLC, Battelle Memorial Institute and Mani Valleti 2024
– notice: UT-Battelle,LLC, Battelle Memorial Institute and Mani Valleti 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1038/s41524-024-01250-5
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 19
ExternalDocumentID oai_doaj_org_article_01fe76f13d0e43e7a79422c48d93b54f
2439897
10_1038_s41524_024_01250_5
GrantInformation_xml – fundername: Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.
– fundername: Center for 3D Ferroelectric Microelectronics (3DFeM), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award Number DE-SC0021118.
– fundername: US Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of the Energy Frontier 51 Research Centers program: CSSAS—The Center for the Science of Synthesis Across Scales— under Award No.DE-SC0019288
– fundername: US Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of the Energy Frontier Research Centers program: CSSAS—The Center for the Science of Synthesis Across Scales— under Award No.DE-SC0019288
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c456t-13c467d90c297cb798f5dce20f970b6b3a34d01a9b75ec217808222442a1dfc13
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001291740800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2057-3960
IngestDate Tue Oct 14 19:03:14 EDT 2025
Mon Dec 08 04:30:17 EST 2025
Sat Nov 29 14:47:01 EST 2025
Sat Nov 29 02:57:05 EST 2025
Tue Nov 18 22:43:11 EST 2025
Fri Feb 21 02:40:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-13c467d90c297cb798f5dce20f970b6b3a34d01a9b75ec217808222442a1dfc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
USDOE Laboratory Directed Research and Development (LDRD) Program
None
AC05-00OR22725; SC0019288
ORCID 0000-0001-5354-6152
0000000153546152
0000000301521783
OpenAccessLink https://doaj.org/article/01fe76f13d0e43e7a79422c48d93b54f
PQID 3092977235
PQPubID 2041924
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_01fe76f13d0e43e7a79422c48d93b54f
osti_scitechconnect_2439897
proquest_journals_3092977235
crossref_citationtrail_10_1038_s41524_024_01250_5
crossref_primary_10_1038_s41524_024_01250_5
springer_journals_10_1038_s41524_024_01250_5
PublicationCentury 2000
PublicationDate 2024-08-14
PublicationDateYYYYMMDD 2024-08-14
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Noy, Vezenov, Lieber (CR14) 1997; 27
Pennycook, Varela, Lupini, Oxley, Chisholm (CR17) 2009; 58
Grutter, Liu, LeBlanc, Durig (CR12) 1997; 71
CR36
CR35
CR34
CR33
CR31
Dyck (CR56) 2018; 14
Hui, Lanza (CR7) 2019; 2
Roccapriore, Ziatdinov, Cho, Hachtel, Kalinin (CR39) 2021; 17
CR4
Lecun, Bottou, Bengio, Haffner (CR41) 1998; 86
van Zuylen (CR1) 1981; 121
Gruverman, Auciello, Tokumoto (CR15) 1998; 28
Martin, Wickramasinghe (CR13) 1987; 50
Wen, Cherukara, Holt (CR6) 2019; 49
Liu, Ziatdinov, Kalinin (CR46) 2021; 16
Kalinin, Steffes, Liu, Huey, Ziatdinov (CR45) 2021; 33
Opitz, Maclin (CR26) 1999; 11
Liu, Kelley, Funakubo, Kalinin, Ziatdinov (CR29) 2022; 9
Kalinin, Dyck, Jesse, Ziatdinov (CR52) 2021; 7
Wang, Skaanvik, Xiong, Wang, Dong (CR5) 2021; 4
Krenn, Häse, Nigam, Friederich, Aspuru-Guzik (CR44) 2020; 1
Ntziachristos (CR2) 2010; 7
Fan (CR3) 2019; 31
Ziatdinov, Ghosh, Wong, Kalinin (CR40) 2022; 4
Kingma, Welling (CR32) 2019; 12
Clausen-Schaumann, Seitz, Krautbauer, Gaub (CR21) 2000; 4
Liu (CR30) 2023; 17
Binnig, Rohrer (CR9) 1982; 55
Ziatdinov (CR53) 2019; 5
Kalinin, Kelley, Vasudevan, Ziatdinov (CR38) 2021; 13
Van der Walt (CR24) 2014; 2
Duvenaud (CR42) 2015; 28
Browning (CR20) 1999; 74
CR51
Sohlberg, Rashkeev, Borisevich, Pennycook, Pantelides (CR18) 2004; 5
CR50
Dyck, Kim, Kalinin, Jesse (CR55) 2018; 11
Chisholm, Luo, Oxley, Pantelides, Lee (CR19) 2010; 105
Rief, Oesterhelt, Heymann, Gaub (CR22) 1997; 275
Balke, Bdikin, Kalinin, Kholkin (CR23) 2009; 92
Dyck, Kim, Kalinin, Jesse (CR54) 2017; 111
Liu, Proksch, Wong, Ziatdinov, Kalinin (CR49) 2021; 33
Liu (CR48) 2021; 2
Kim (CR16) 2001; 86
de Haan, Cohen, Welling (CR37) 2020; 33
Biswas, Vasudevan, Ziatdinov, Kalinin (CR58) 2023; 4
Ziatdinov (CR57) 2017; 11
CR28
CR27
Weininger (CR43) 1988; 28
Gerber, Lang (CR8) 2006; 1
Valleti, Ignatans, Kalinin, Tileli (CR47) 2022; 18
Asenjo, Gomezrodriguez, Baro (CR11) 1992; 42
Stroscio, Feenstra, Fein (CR10) 1986; 57
Krizhevsky, Sutskever, Hinton (CR25) 2017; 60
SJ Pennycook (1250_CR17) 2009; 58
Y Martin (1250_CR13) 1987; 50
V Ntziachristos (1250_CR2) 2010; 7
D Weininger (1250_CR43) 1988; 28
C Gerber (1250_CR8) 2006; 1
H Clausen-Schaumann (1250_CR21) 2000; 4
KM Roccapriore (1250_CR39) 2021; 17
S Van der Walt (1250_CR24) 2014; 2
DK Duvenaud (1250_CR42) 2015; 28
SV Kalinin (1250_CR38) 2021; 13
M Krenn (1250_CR44) 2020; 1
A Krizhevsky (1250_CR25) 2017; 60
M Ziatdinov (1250_CR53) 2019; 5
H Wen (1250_CR6) 2019; 49
Y Liu (1250_CR30) 2023; 17
Y Liu (1250_CR49) 2021; 33
ND Browning (1250_CR20) 1999; 74
P Grutter (1250_CR12) 1997; 71
P de Haan (1250_CR37) 2020; 33
D Opitz (1250_CR26) 1999; 11
1250_CR50
1250_CR51
1250_CR4
M Ziatdinov (1250_CR57) 2017; 11
A Noy (1250_CR14) 1997; 27
J van Zuylen (1250_CR1) 1981; 121
SMP Valleti (1250_CR47) 2022; 18
K Sohlberg (1250_CR18) 2004; 5
O Dyck (1250_CR54) 2017; 111
Y Lecun (1250_CR41) 1998; 86
A Gruverman (1250_CR15) 1998; 28
SV Kalinin (1250_CR45) 2021; 33
Y Liu (1250_CR29) 2022; 9
Y Liu (1250_CR48) 2021; 2
A Asenjo (1250_CR11) 1992; 42
JA Stroscio (1250_CR10) 1986; 57
O Dyck (1250_CR55) 2018; 11
DP Kingma (1250_CR32) 2019; 12
O Dyck (1250_CR56) 2018; 14
N Balke (1250_CR23) 2009; 92
1250_CR27
MF Chisholm (1250_CR19) 2010; 105
1250_CR28
M Rief (1250_CR22) 1997; 275
Y Liu (1250_CR46) 2021; 16
A Biswas (1250_CR58) 2023; 4
M Kim (1250_CR16) 2001; 86
G Binnig (1250_CR9) 1982; 55
M Ziatdinov (1250_CR40) 2022; 4
F Hui (1250_CR7) 2019; 2
1250_CR31
1250_CR34
1250_CR33
1250_CR36
1250_CR35
Z Fan (1250_CR3) 2019; 31
Y Wang (1250_CR5) 2021; 4
SV Kalinin (1250_CR52) 2021; 7
References_xml – volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 111
  start-page: 113104
  year: 2017
  ident: CR54
  article-title: Placing single atoms in graphene with a scanning transmission electron microscope
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4998599
– volume: 31
  year: 2019
  ident: CR3
  article-title: In situ transmission electron microscopy for energy materials and devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900608
– ident: CR4
– ident: CR51
– volume: 18
  start-page: 2104318
  year: 2022
  ident: CR47
  article-title: Decoding the mechanisms of phase transitions from in situ microscopy observations
  publication-title: Small
  doi: 10.1002/smll.202104318
– volume: 11
  start-page: 6217
  year: 2018
  end-page: 6226
  ident: CR55
  article-title: E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2141-6
– volume: 55
  start-page: 726
  year: 1982
  end-page: 735
  ident: CR9
  article-title: Scanning tunneling microscopy
  publication-title: Helvetica Phys. Acta
– ident: CR35
– volume: 28
  start-page: 31
  year: 1988
  end-page: 36
  ident: CR43
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– volume: 4
  start-page: 015011
  year: 2023
  ident: CR58
  article-title: Optimizing training trajectories in variational autoencoders via latent Bayesian optimization approach
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/acb316
– volume: 92
  start-page: 1629
  year: 2009
  end-page: 1647
  ident: CR23
  article-title: Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03240.x
– volume: 33
  start-page: 2103680
  year: 2021
  ident: CR49
  article-title: Disentangling ferroelectric wall dynamics and identification of pinning mechanisms via deep learning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103680
– volume: 17
  start-page: 2100181
  year: 2021
  ident: CR39
  article-title: Predictability of localized plasmonic responses in nanoparticle assemblies
  publication-title: Small
  doi: 10.1002/smll.202100181
– volume: 11
  start-page: 169
  year: 1999
  end-page: 198
  ident: CR26
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– ident: CR50
– volume: 74
  start-page: 2638
  year: 1999
  end-page: 2640
  ident: CR20
  article-title: The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123922
– volume: 2
  start-page: 045028
  year: 2021
  ident: CR48
  article-title: Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ac28de
– volume: 33
  start-page: 055707
  year: 2021
  ident: CR45
  article-title: Disentangling ferroelectric domain wall geometries and pathways in dynamic piezoresponse force microscopy via unsupervised machine learning
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac2f5b
– ident: CR36
– volume: 71
  start-page: 279
  year: 1997
  end-page: 281
  ident: CR12
  article-title: Magnetic dissipation force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119519
– volume: 13
  start-page: 1693
  year: 2021
  end-page: 1703
  ident: CR38
  article-title: Toward decoding the relationship between domain structure and functionality in ferroelectrics via hidden latent variables
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15085
– volume: 275
  start-page: 1295
  year: 1997
  end-page: 1297
  ident: CR22
  article-title: Single molecule force spectroscopy on polysaccharides by atomic force microscopy
  publication-title: Science
  doi: 10.1126/science.275.5304.1295
– volume: 4
  start-page: 3483
  year: 2021
  end-page: 3514
  ident: CR5
  article-title: Scanning probe microscopy for electrocatalysis
  publication-title: Matter
  doi: 10.1016/j.matt.2021.09.024
– volume: 1
  start-page: 045024
  year: 2020
  ident: CR44
  article-title: Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/aba947
– volume: 4
  start-page: 1101
  year: 2022
  end-page: 1112
  ident: CR40
  article-title: AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00555-8
– volume: 5
  start-page: 1893
  year: 2004
  end-page: 1897
  ident: CR18
  article-title: Origin of anomalous Pt-Pt distances in the Pt/alumina catalytic system
  publication-title: Chemphyschem
  doi: 10.1002/cphc.200400212
– volume: 2
  start-page: 221
  year: 2019
  end-page: 229
  ident: CR7
  article-title: Scanning probe microscopy for advanced nanoelectronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0264-8
– volume: 28
  start-page: 2224
  year: 2015
  end-page: 2232
  ident: CR42
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 2
  start-page: e453
  year: 2014
  ident: CR24
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– ident: CR33
– volume: 58
  start-page: 87
  year: 2009
  end-page: 97
  ident: CR17
  article-title: Atomic-resolution spectroscopic imaging: past, present and future
  publication-title: J. Electron Microsc.
  doi: 10.1093/jmicro/dfn030
– volume: 16
  start-page: 1250
  year: 2021
  end-page: 1259
  ident: CR46
  article-title: Exploring causal physical mechanisms via non-gaussian linear models and deep kernel learning: applications for ferroelectric domain structures
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09059
– volume: 86
  start-page: 4056
  year: 2001
  end-page: 4059
  ident: CR16
  article-title: Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4056
– ident: CR27
– volume: 33
  start-page: 3636
  year: 2020
  end-page: 3646
  ident: CR37
  article-title: Natural graph networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 2203957
  year: 2022
  ident: CR29
  article-title: Exploring physics of ferroelectric domain walls in real time: deep learning enabled scanning probe microscopy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202203957
– volume: 105
  start-page: 197602
  year: 2010
  ident: CR19
  article-title: Atomic-scale compensation phenomena at polar interfaces
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.105.197602
– volume: 7
  year: 2021
  ident: CR52
  article-title: Exploring order parameters and dynamic processes in disordered systems via variational autoencoders
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd5084
– volume: 57
  start-page: 2579
  year: 1986
  end-page: 2582
  ident: CR10
  article-title: Electronic-structure of the Si(111)2x1 surface by scanning-tunneling microscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2579
– volume: 42
  start-page: 933
  year: 1992
  end-page: 939
  ident: CR11
  article-title: Current imaging tunneling spectroscopy of metallic deposits on silicon
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(92)90381-S
– volume: 50
  start-page: 1455
  year: 1987
  end-page: 1457
  ident: CR13
  article-title: Magnetic imaging by force microscopy with 1000-A resolution
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97800
– volume: 121
  start-page: 309
  year: 1981
  end-page: 328
  ident: CR1
  article-title: The microscopes of Antoni van Leeuwenhoek
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1981.tb01227.x
– volume: 7
  start-page: 603
  year: 2010
  end-page: 614
  ident: CR2
  article-title: Going deeper than microscopy: the optical imaging frontier in biology
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1483
– ident: CR31
– volume: 27
  start-page: 381
  year: 1997
  end-page: 421
  ident: CR14
  article-title: Chemical force microscopy
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.27.1.381
– volume: 28
  start-page: 101
  year: 1998
  end-page: 123
  ident: CR15
  article-title: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.28.1.101
– volume: 49
  start-page: 389
  year: 2019
  end-page: 415
  ident: CR6
  article-title: Time-resolved X-ray microscopy for materials science
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070616-124014
– ident: CR34
– volume: 14
  year: 2018
  ident: CR56
  article-title: Building structures atom by atom via electron beam manipulation
  publication-title: Small
  doi: 10.1002/smll.201801771
– volume: 1
  start-page: 3
  year: 2006
  end-page: 5
  ident: CR8
  article-title: How the doors to the nanoworld were opened
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.70
– volume: 4
  start-page: 524
  year: 2000
  end-page: 530
  ident: CR21
  article-title: Force spectroscopy with single bio-molecules
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(00)00126-5
– volume: 5
  year: 2019
  ident: CR53
  article-title: Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8989
– volume: 17
  start-page: 9647
  year: 2023
  end-page: 9657
  ident: CR30
  article-title: Disentangling electronic transport and hysteresis at individual grain boundaries in hybrid perovskites via automated scanning probe microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c03363
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: CR32
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000056
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: CR28
– volume: 11
  start-page: 12742
  year: 2017
  end-page: 12752
  ident: CR57
  article-title: Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07504
– volume: 2
  start-page: e453
  year: 2014
  ident: 1250_CR24
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– ident: 1250_CR36
– volume: 12
  start-page: 307
  year: 2019
  ident: 1250_CR32
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000056
– volume: 17
  start-page: 2100181
  year: 2021
  ident: 1250_CR39
  publication-title: Small
  doi: 10.1002/smll.202100181
– volume: 1
  start-page: 3
  year: 2006
  ident: 1250_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.70
– volume: 71
  start-page: 279
  year: 1997
  ident: 1250_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119519
– volume: 5
  year: 2019
  ident: 1250_CR53
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8989
– volume: 1
  start-page: 045024
  year: 2020
  ident: 1250_CR44
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/aba947
– volume: 105
  start-page: 197602
  year: 2010
  ident: 1250_CR19
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.105.197602
– volume: 86
  start-page: 2278
  year: 1998
  ident: 1250_CR41
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 2
  start-page: 045028
  year: 2021
  ident: 1250_CR48
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ac28de
– volume: 14
  year: 2018
  ident: 1250_CR56
  publication-title: Small
  doi: 10.1002/smll.201801771
– volume: 7
  start-page: 603
  year: 2010
  ident: 1250_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1483
– volume: 31
  year: 2019
  ident: 1250_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900608
– volume: 275
  start-page: 1295
  year: 1997
  ident: 1250_CR22
  publication-title: Science
  doi: 10.1126/science.275.5304.1295
– volume: 74
  start-page: 2638
  year: 1999
  ident: 1250_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123922
– ident: 1250_CR34
  doi: 10.1007/978-3-319-60801-3_27
– volume: 86
  start-page: 4056
  year: 2001
  ident: 1250_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4056
– ident: 1250_CR33
– volume: 60
  start-page: 84
  year: 2017
  ident: 1250_CR25
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 4
  start-page: 015011
  year: 2023
  ident: 1250_CR58
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/acb316
– volume: 55
  start-page: 726
  year: 1982
  ident: 1250_CR9
  publication-title: Helvetica Phys. Acta
– volume: 7
  year: 2021
  ident: 1250_CR52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd5084
– volume: 18
  start-page: 2104318
  year: 2022
  ident: 1250_CR47
  publication-title: Small
  doi: 10.1002/smll.202104318
– volume: 11
  start-page: 169
  year: 1999
  ident: 1250_CR26
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– volume: 49
  start-page: 389
  year: 2019
  ident: 1250_CR6
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070616-124014
– volume: 111
  start-page: 113104
  year: 2017
  ident: 1250_CR54
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4998599
– volume: 92
  start-page: 1629
  year: 2009
  ident: 1250_CR23
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03240.x
– volume: 33
  start-page: 055707
  year: 2021
  ident: 1250_CR45
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac2f5b
– volume: 33
  start-page: 2103680
  year: 2021
  ident: 1250_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103680
– volume: 9
  start-page: 2203957
  year: 2022
  ident: 1250_CR29
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202203957
– volume: 28
  start-page: 2224
  year: 2015
  ident: 1250_CR42
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 50
  start-page: 1455
  year: 1987
  ident: 1250_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97800
– ident: 1250_CR27
  doi: 10.1007/978-3-030-01237-3_34
– volume: 4
  start-page: 524
  year: 2000
  ident: 1250_CR21
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(00)00126-5
– volume: 121
  start-page: 309
  year: 1981
  ident: 1250_CR1
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1981.tb01227.x
– ident: 1250_CR28
– volume: 33
  start-page: 3636
  year: 2020
  ident: 1250_CR37
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 1250_CR50
– volume: 2
  start-page: 221
  year: 2019
  ident: 1250_CR7
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0264-8
– volume: 13
  start-page: 1693
  year: 2021
  ident: 1250_CR38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15085
– ident: 1250_CR31
– volume: 4
  start-page: 3483
  year: 2021
  ident: 1250_CR5
  publication-title: Matter
  doi: 10.1016/j.matt.2021.09.024
– volume: 42
  start-page: 933
  year: 1992
  ident: 1250_CR11
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(92)90381-S
– ident: 1250_CR35
– volume: 4
  start-page: 1101
  year: 2022
  ident: 1250_CR40
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00555-8
– volume: 58
  start-page: 87
  year: 2009
  ident: 1250_CR17
  publication-title: J. Electron Microsc.
  doi: 10.1093/jmicro/dfn030
– ident: 1250_CR4
  doi: 10.1201/9780429243011
– volume: 27
  start-page: 381
  year: 1997
  ident: 1250_CR14
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.27.1.381
– volume: 17
  start-page: 9647
  year: 2023
  ident: 1250_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c03363
– volume: 28
  start-page: 101
  year: 1998
  ident: 1250_CR15
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.28.1.101
– volume: 28
  start-page: 31
  year: 1988
  ident: 1250_CR43
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– volume: 11
  start-page: 6217
  year: 2018
  ident: 1250_CR55
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2141-6
– volume: 16
  start-page: 1250
  year: 2021
  ident: 1250_CR46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09059
– volume: 57
  start-page: 2579
  year: 1986
  ident: 1250_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2579
– volume: 11
  start-page: 12742
  year: 2017
  ident: 1250_CR57
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07504
– volume: 5
  start-page: 1893
  year: 2004
  ident: 1250_CR18
  publication-title: Chemphyschem
  doi: 10.1002/cphc.200400212
– ident: 1250_CR51
SSID ssj0001928240
Score 2.3172483
Snippet Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale...
Abstract Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms 639/301
639/925/918
Broken symmetry
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Data analysis
Datasets
graphene
Image analysis
Image processing
Invariants
Machine learning
MATERIALS SCIENCE
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Microscopy
Nanoparticles
Representations
Scanning probe microscopy
Scanning transmission electron microscopy
Scanning tunneling microscopy
Theoretical
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD5SlCW-QDN7DqV9YOF0QRVU8VB5D2Zjl2jFaCZNls9_cz4zhdikQvHCJLiRM5mvE87PH3EfIGjKKVSXgGaZdh2tvAvEhI91K3MkYjokmZbMJcXtrlsvlSFtzGUlY528RsqOMQcI38VHFw5BAKqvrD-hdD1ijcXS0UGnfJPaTNRj03S7NfY2kgodC8nJXhyp6O6K8043jBcDirb_ijDNsPzQDT60bI-dcuaXY-54f_O-zH5FEJO-nHSU-ekDtd_5Q8_AOM8BnpczFoGKnvIw0zDxzF8yd0DekvCLXHglmacTDnM0v9-J6ufoJRgtcmeBO6W3m66neQhIPUaG6nBUfqr7YDAmdi8fRz8u3889dPF6ywMbAAQRZy1gcwqrHhAX4otKaxqY6hkzw1hreLVnmlIxe-aU3dBch0bCYL11p6EVMQ6gU56Ie-e0lo7AQojqr5wrcaOlqeECnNS_CjQTS2ImKWiQsFqhwZM364vGWurJvk6DheKEdXV-Tt9TvrCajj1t5nKOrrngiynW8Mm--uzFnomzqzSEJF3mnVGQ-2S8qgbWxUW-tUkSNUFAexCgLuBqxMClsnIcazjanI8awRrtiF0e3VoSLvZp3aP_73gF_d_rUj8kBmpbZM6GNysN1cdSfkfthtV-PmdZ4VvwHlhRMy
  priority: 102
  providerName: ProQuest
Title Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders
URI https://link.springer.com/article/10.1038/s41524-024-01250-5
https://www.proquest.com/docview/3092977235
https://www.osti.gov/servlets/purl/2439897
https://doaj.org/article/01fe76f13d0e43e7a79422c48d93b54f
Volume 10
WOSCitedRecordID wos001291740800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: M7P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: KB.
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcIADKi-xtF35wA1C_cra5sZWrUCIVYRAWk6WY8fSVpCtmu3-fmacpGyRKBcOTqTYlkae8Tzi8TeEvAKlaETivoCwSxfKm1B4nrDcS1mLGDWPOuViE3qxMMulrXZKfWFOWA8P3C_cMeOp0bPEZWSNko32IEBCBGWilXWpEmpfpu1OMHXe-y0GbNVwS4ZJc9yhpVIFwwaEsKK8YYkyYD-81rCxbjibf5yPZrNztk8eDf4ifd_T-Zjcadon5OEOiuBT0uYsztBR30YaxgJuFC-O0AuIW4EbLWa60gxgOV42art3dPUTtAlM63FJ6Hbl6ardQvQMy03zu_9TSP3VZo2Il5j1_Ix8Ozv9evKhGMooFAG8Iyw2H0AbRsuCsDrU2ppUxtAIlqxm9ayWXqrIuLe1LpsAIYrJVb6VEp7HFLh8Tvbaddu8IDQ2HDguSzbztYKBhiWEOPMCDGDg1kwIH5fUhQFjHEtd_HD5rFsa17PBMWzIBldOyOvrORc9wsato-fIqeuRiI6dP4DMuEFm3L9kZkIOkM8OnAxEyg2YUhQ2ToBzZqyekMOR_W7Y0J2TDPxIiEQkUPBmFInf3X8n-OX_IPiAPBBZciHiV4dkb3N51RyR-2G7WXWXU3JXL_WU3JufLqov07wR4Plp_naKmawV9FQfP1fffwFOiQru
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I0ILeADnCCqX9k4SAjxqrpqu9pDkcrJdewErQTJskkX8af4jYydpEuR6K0HDlGUxLHy-GY8tsffB_AMnaLiJTMxdrvSWBplY8NKL_eS5Ny5lLm0DGIT6XSqjo-z2Qb8GtbC-LTKwScGR-1q68fIdwTFhhxDQZG8WXyPvWqUn10dJDQ6WOwXP39gl615PfmA__c557sfj97vxb2qQGwxWPDa6xadg8uoxfpsnmaqTJwtOC2zlObjXBghHWUmy9OksBixqyB6LSU3zJWWCaz3CmzicUJHsDmbHM4-r0d1MuzCSNqvzqFC7TS-hZQx9Rt-ABon51rAIBSAuxoN-lyQ-9e8bGjudm_9bx_qNtzsA2vytrOEO7BRVHfhxh90i_egCumutiGmcsQOSnfEr7AhC-zgI2wrnxJMAtPnsCqral6R-Td0u3hbR-BCVnND5tXKoPFWLQn7bkiVmNO29tSgPj38Pny6lBd-AKOqroqHQFzB0DREQscml1hQ0dJzwRmOkYJlmYqADRjQtidj95ogX3VIChBKd7jR1G8eNzqJ4MXZPYuOiuTC0u88tM5KehrxcKJeftG9V8KyZZGOSyYcLaQoUoPemXMrlctEnsgygi0PTI3RmKcUtj73yraaYxSrsjSC7QGBuvd8jV7DL4KXA4bXl__9wI8uru0pXNs7OjzQB5Pp_hZc58GgVMzkNoza5WnxGK7aVTtvlk96myRwctno_g02nXAk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4FnE0gI-wAmi9SsbBwkhSruiKlqtEEi9GceO0UqQLJvtIv4av46xk3QpEr31wCGKlDhWHt-MZ5zx9wE8RaeouGcmwbQrS6RRNjHMB7mXtODOZcxlPopNZNOpOjnJZ1vwq18LE8oqe58YHbWrbZgjHwmKAzmGgiId-a4sYnYweb34ngQFqfCntZfTaCFyXP78gelb8-roAL_1M84nhx_fvks6hYHEYuAQdNgtOgqXU4t92yLLlU-dLTn1eUaLcSGMkI4ykxdZWlqM3lUUwJaSG-a8ZQL7vQLbmcCkZwDb-4fT2YfNDE-O6Yyk3UodKtSoCaOlTGjY8GXQJD03GkbRANzVaNznAt6__tHGoW9y639-abfhZhdwkzethdyBrbK6Czf-oGG8B1Usg7UNMZUjtlfAI2HlDVlg4o9wrkKpMIkMoP1qrap5Sebf0B3jZS2xC1nPDZlXa4NGXa1I3LdTrcScrupAGRrKxnfg06U88H0YVHVVPgDiSoYmI1I6NoXEhor6wBFnOEYQluVqCKzHg7YdSXvQCvmqY7GAULrFkKZhCxjS6RCen12zaClKLmy9H2B21jLQi8cD9fKL7rwVtvVlNvZMOFpKUWYGvTbnViqXiyKVfgi7AaQao7RANWxDTZZdaY7RrcqzIez1aNSdR2z0BopDeNHjeXP63zf88OLensA1hLR-fzQ93oXrPNqWSpjcg8FqeVo-gqt2vZo3y8edeRL4fNng_g1S7Hi-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+and+chemistry+from+parsimonious+representations%3A+image+analysis+via+invariant+variational+autoencoders&rft.jtitle=npj+computational+materials&rft.au=Mani+Valleti&rft.au=Maxim+Ziatdinov&rft.au=Yongtao+Liu&rft.au=Sergei+V.+Kalinin&rft.date=2024-08-14&rft.pub=Nature+Portfolio&rft.eissn=2057-3960&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs41524-024-01250-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01fe76f13d0e43e7a79422c48d93b54f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon