Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms

The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AI & society Ročník 38; číslo 2; s. 549 - 563
Hlavní autoři: Giovanola, Benedetta, Tiribelli, Simona
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.04.2023
Springer
Springer Nature B.V
Témata:
ISSN:0951-5666, 1435-5655
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently explored. Our paper aims to fill this gap and address the AI ethics principle of fairness from a conceptual standpoint, drawing insights from accounts of fairness elaborated in moral philosophy and using them to conceptualise fairness as an ethical value and to redefine fairness in HMLA accordingly. To achieve our goal, following a first section aimed at clarifying the background, methodology and structure of the paper, in the second section, we provide an overview of the discussion of the AI ethics principle of fairness in HMLA and show that the concept of fairness underlying this debate is framed in purely distributive terms and overlaps with non-discrimination, which is defined in turn as the absence of biases. After showing that this framing is inadequate, in the third section, we pursue an ethical inquiry into the concept of fairness and argue that fairness ought to be conceived of as an ethical value. Following a clarification of the relationship between fairness and non-discrimination, we show that the two do not overlap and that fairness requires much more than just non-discrimination. Moreover, we highlight that fairness not only has a distributive but also a socio-relational dimension. Finally, we pinpoint the constitutive components of fairness. In doing so, we base our arguments on a renewed reflection on the concept of respect, which goes beyond the idea of equal respect to include respect for individual persons. In the fourth section, we analyse the implications of our conceptual redefinition of fairness as an ethical value in the discussion of fairness in HMLA. Here, we claim that fairness requires more than non-discrimination and the absence of biases as well as more than just distribution; it needs to ensure that HMLA respects persons both as persons and as particular individuals. Finally, in the fifth section, we sketch some broader implications and show how our inquiry can contribute to making HMLA and, more generally, AI promote the social good and a fairer society.
AbstractList The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently explored. Our paper aims to fill this gap and address the AI ethics principle of fairness from a conceptual standpoint, drawing insights from accounts of fairness elaborated in moral philosophy and using them to conceptualise fairness as an ethical value and to redefine fairness in HMLA accordingly. To achieve our goal, following a first section aimed at clarifying the background, methodology and structure of the paper, in the second section, we provide an overview of the discussion of the AI ethics principle of fairness in HMLA and show that the concept of fairness underlying this debate is framed in purely distributive terms and overlaps with non-discrimination, which is defined in turn as the absence of biases. After showing that this framing is inadequate, in the third section, we pursue an ethical inquiry into the concept of fairness and argue that fairness ought to be conceived of as an ethical value. Following a clarification of the relationship between fairness and non-discrimination, we show that the two do not overlap and that fairness requires much more than just non-discrimination. Moreover, we highlight that fairness not only has a distributive but also a socio-relational dimension. Finally, we pinpoint the constitutive components of fairness. In doing so, we base our arguments on a renewed reflection on the concept of respect, which goes beyond the idea of equal respect to include respect for individual persons. In the fourth section, we analyse the implications of our conceptual redefinition of fairness as an ethical value in the discussion of fairness in HMLA. Here, we claim that fairness requires more than non-discrimination and the absence of biases as well as more than just distribution; it needs to ensure that HMLA respects persons both as persons and as particular individuals. Finally, in the fifth section, we sketch some broader implications and show how our inquiry can contribute to making HMLA and, more generally, AI promote the social good and a fairer society.
The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently explored. Our paper aims to fill this gap and address the AI ethics principle of fairness from a conceptual standpoint, drawing insights from accounts of fairness elaborated in moral philosophy and using them to conceptualise fairness as an ethical value and to redefine fairness in HMLA accordingly. To achieve our goal, following a first section aimed at clarifying the background, methodology and structure of the paper, in the second section, we provide an overview of the discussion of the AI ethics principle of fairness in HMLA and show that the concept of fairness underlying this debate is framed in purely distributive terms and overlaps with non-discrimination, which is defined in turn as the absence of biases. After showing that this framing is inadequate, in the third section, we pursue an ethical inquiry into the concept of fairness and argue that fairness ought to be conceived of as an ethical value. Following a clarification of the relationship between fairness and non-discrimination, we show that the two do not overlap and that fairness requires much more than just non-discrimination. Moreover, we highlight that fairness not only has a distributive but also a socio-relational dimension. Finally, we pinpoint the constitutive components of fairness. In doing so, we base our arguments on a renewed reflection on the concept of respect, which goes beyond the idea of equal respect to include respect for individual persons. In the fourth section, we analyse the implications of our conceptual redefinition of fairness as an ethical value in the discussion of fairness in HMLA. Here, we claim that fairness requires more than non-discrimination and the absence of biases as well as more than just distribution; it needs to ensure that HMLA respects persons both as persons and as particular individuals. Finally, in the fifth section, we sketch some broader implications and show how our inquiry can contribute to making HMLA and, more generally, AI promote the social good and a fairer society.The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently explored. Our paper aims to fill this gap and address the AI ethics principle of fairness from a conceptual standpoint, drawing insights from accounts of fairness elaborated in moral philosophy and using them to conceptualise fairness as an ethical value and to redefine fairness in HMLA accordingly. To achieve our goal, following a first section aimed at clarifying the background, methodology and structure of the paper, in the second section, we provide an overview of the discussion of the AI ethics principle of fairness in HMLA and show that the concept of fairness underlying this debate is framed in purely distributive terms and overlaps with non-discrimination, which is defined in turn as the absence of biases. After showing that this framing is inadequate, in the third section, we pursue an ethical inquiry into the concept of fairness and argue that fairness ought to be conceived of as an ethical value. Following a clarification of the relationship between fairness and non-discrimination, we show that the two do not overlap and that fairness requires much more than just non-discrimination. Moreover, we highlight that fairness not only has a distributive but also a socio-relational dimension. Finally, we pinpoint the constitutive components of fairness. In doing so, we base our arguments on a renewed reflection on the concept of respect, which goes beyond the idea of equal respect to include respect for individual persons. In the fourth section, we analyse the implications of our conceptual redefinition of fairness as an ethical value in the discussion of fairness in HMLA. Here, we claim that fairness requires more than non-discrimination and the absence of biases as well as more than just distribution; it needs to ensure that HMLA respects persons both as persons and as particular individuals. Finally, in the fifth section, we sketch some broader implications and show how our inquiry can contribute to making HMLA and, more generally, AI promote the social good and a fairer society.
Audience Academic
Author Tiribelli, Simona
Giovanola, Benedetta
Author_xml – sequence: 1
  givenname: Benedetta
  surname: Giovanola
  fullname: Giovanola, Benedetta
  email: benedetta.giovanola@unimc.it
  organization: Department of Political Sciences, Communication, and International Relations, University of Macerata, Department of Philosophy, Tufts University
– sequence: 2
  givenname: Simona
  surname: Tiribelli
  fullname: Tiribelli, Simona
  organization: Department of Political Sciences, Communication, and International Relations, University of Macerata, Institute for Technology and Global Health, PathCheck Foundation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35615443$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFAR3Rb-AAdkiQuXFH8n4YC0VHxUqsQFzpbjPCeuEnuxsxX993h3S0srVPngJ3tm_OZ5TtBRiAEQek3JGSWkfp8JoUJVhLGqFFJW6hlaUcFlJZWUR2hFWklLrdQxOsn5ihCiZMNeoGMuFZVC8BX6_QluYuhx503GphS9zzb52Qez-Bg-4AQ9OB98GPAyAl5fYFhGbzPeJB-s30yAo8PO-BQgZ-wDHsFMy2hNAjwbO_oA1QQm7SXMNMTkl3HOL9FzZ6YMr273U_Tzy-cf59-qy-9fL87Xl5UVpfOqJk0riAKpDLdKQGP63kqgqhONaWXLBBgOrlXEcmm6vuuEc9A407WUNA3wU_TxoLvZdjP0FsKSzKRL97NJNzoarx_eBD_qIV7rljKumCoC724FUvy1hbzouYwIpskEiNusmarLXEUreIG-fQS9itsUij3NGlLXDWk5uUcNZgLtg4vlXbsT1eta1KpmjNGCOvsPqqweZm9LEJwv5w8Ib_41eufw718XADsAbIo5J3B3EEr0LlD6EChdAqX3gdI7980jkvXLPhqlHT89TeUHat5FZYB0P40nWH8A9IXf2w
CitedBy_id crossref_primary_10_1007_s10664_023_10402_y
crossref_primary_10_1038_s44294_025_00092_w
crossref_primary_10_1016_j_cviu_2024_104142
crossref_primary_10_1016_j_sca_2025_100121
crossref_primary_10_3390_diagnostics14151594
crossref_primary_10_1016_j_chbr_2024_100577
crossref_primary_10_2196_53505
crossref_primary_10_1007_s00146_024_01946_8
crossref_primary_10_1016_j_imu_2025_101664
crossref_primary_10_3233_EFI_240045
crossref_primary_10_1007_s41666_025_00195_8
crossref_primary_10_1016_j_lanepe_2025_101421
crossref_primary_10_1016_j_gene_2025_149623
crossref_primary_10_1146_annurev_biodatasci_102623_104553
crossref_primary_10_1007_s12553_024_00916_w
crossref_primary_10_1007_s43681_024_00533_3
crossref_primary_10_1057_s41599_024_02926_5
crossref_primary_10_1038_s41746_023_00953_1
crossref_primary_10_1016_j_is_2024_102464
crossref_primary_10_1016_j_ijinfomgt_2023_102745
crossref_primary_10_3390_bdcc7030147
crossref_primary_10_2105_AJPH_2023_307225
crossref_primary_10_1007_s11739_022_03080_z
crossref_primary_10_1016_j_iot_2024_101352
crossref_primary_10_1108_RMJ_10_2023_0061
crossref_primary_10_1109_ACCESS_2024_3360306
crossref_primary_10_3389_fpubh_2025_1526360
crossref_primary_10_1038_s41746_025_01739_3
crossref_primary_10_1016_j_cjca_2024_07_026
crossref_primary_10_3390_rs16234529
crossref_primary_10_32604_cmes_2023_029451
crossref_primary_10_1038_s41746_024_01306_2
crossref_primary_10_3390_electronics13020416
crossref_primary_10_1080_02642069_2025_2537115
crossref_primary_10_3389_fmed_2023_1237432
crossref_primary_10_1007_s11245_023_09939_w
crossref_primary_10_2196_51308
crossref_primary_10_1038_s41598_024_68291_0
crossref_primary_10_1371_journal_pdig_0000692
crossref_primary_10_1371_journal_pdig_0000495
crossref_primary_10_2196_49575
crossref_primary_10_1080_09537325_2025_2556753
crossref_primary_10_1109_TAI_2024_3361836
crossref_primary_10_1080_02642069_2024_2359077
crossref_primary_10_1007_s00146_024_01901_7
crossref_primary_10_1038_s41746_025_01503_7
crossref_primary_10_1002_hcs2_114
crossref_primary_10_1016_j_engstruct_2024_119508
crossref_primary_10_1007_s11245_022_09874_2
crossref_primary_10_5209_dere_102342
crossref_primary_10_3390_info14080426
crossref_primary_10_3390_life14060652
crossref_primary_10_1002_mus_28023
crossref_primary_10_5209_dere_102345
Cites_doi 10.1007/s13347-019-00355-w
10.1017/CBO9780511624971
10.1093/acprof:oso/9780199664313.001.0001
10.1007/s11023-019-09509-3
10.1016/S2589-7500(20)30065-0
10.1561/110000001
10.1177/01914537211040568
10.4159/9780674042605
10.1353/pbm.2019.0012
10.1007/s11948-019-00104-4
10.1007/978-3-540-75829-7_5
10.1177/0049124118782533
10.4159/harvard.9780674736061
10.5040/9781472544735.ch-001
10.1023/A:1010676701382
10.1177/0090591784012001005
10.1080/13698230.2021.1893255
10.1056/NEJMp1714229
10.1007/s10676-013-9321-6
10.1017/S0269888913000039
10.1007/978-94-007-6970-0
10.1093/ijlit/ean018
10.1007/s10676-022-09622-5
10.1093/qje/qjx032
10.1086/233897
10.1017/CBO9780511810916
10.1089/big.2016.0047
10.1038/s41591-018-0316-z
10.1093/acprof:oso/9780198237907.001.0001
10.1371/journal.pmed.1001413
10.1086/692974
10.1108/JICES-06-2018-0056
10.1177/2053951715622512
10.1017/CBO9781139165860
10.1377/hlthaff.2014.0048
10.1038/d41586-018-05267-x
10.1136/bmj.m363
10.1016/j.chb.2019.04.019
10.1016/j.socscimed.2020.113172
10.1136/medethics-2019-105586
10.1177/2053951716679679
10.18574/nyu/9781479854608.001.0001
10.1007/s11023-020-09529-4
10.2139/ssrn.3072038
10.1093/acprof:oso/9780199656967.001.0001
10.1098/rsta.2017.0362
10.1038/s41591-018-0300-7
10.1177/1469540513480159
10.1001/jama.2016.17216
10.1080/17460441.2019.1621284
10.24963/ijcai.2017/654
10.1086/658897
10.1080/21670811.2016.1208053
10.1093/sf/soz162
10.4159/9780674978867
10.1111/j.1088-4963.1998.tb00063.x
10.1038/s41591-018-0320-3
10.1093/acprof:oso/9780199796113.001.0001
10.1080/00455091.1999.10717521
10.1109/TITB.2009.2039485
10.1038/s42256-019-0088-2
10.7326/M18-1990
10.1093/acprof:oso/9780198732877.001.0001
10.1056/NEJMms2004740
10.1007/s10551-019-04226-4
10.29173/irie345
10.1145/3340531.3412152
10.1007/s00146-016-0677-0
10.2307/j.ctv24w638g
10.1109/ACCESS.2018.2878254
10.1007/s43681-021-00038-3
10.1007/s13347-017-0278-y
10.1111/j.1088-4963.2003.00005.x
10.18574/nyu/9781479833641.001.0001
10.1177/1527476420919691
10.1145/3351095.3372871
10.1016/j.compbiomed.2019.04.027
10.4159/9780674977440
10.1007/s00146-021-01154-8
10.2139/ssrn.2972855
10.2139/ssrn.2477899
10.1001/jama.2018.11100
10.1111/j.1088-4963.2010.01181.x
10.1016/j.jsis.2015.02.001
10.1126/science.aax2342
10.1145/3287560.3287598
10.1007/978-1-4020-6914-7_2
10.1007/s10892-010-9085-8
10.1086/292054
10.1109/ICDMW.2012.101
10.3390/jcm8030360
ContentType Journal Article
Copyright The Authors 2023 2023. corrected publication 2023
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
COPYRIGHT 2023 Springer
The Authors 2023 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
Copyright_xml – notice: The Authors 2023 2023. corrected publication 2023
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
– notice: COPYRIGHT 2023 Springer
– notice: The Authors 2023 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7TK
7XB
8AL
8FD
8FE
8FG
8FH
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
LK8
L~C
L~D
M0N
M2O
M7P
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s00146-022-01455-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Biological Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest One Psychology

MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Philosophy
EISSN 1435-5655
EndPage 563
ExternalDocumentID PMC9123626
A747672221
35615443
10_1007_s00146_022_01455_6
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8FH
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACYUM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
ICJ
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAS
LK8
LLZTM
M0N
M2O
M4Y
M7P
MA-
MK~
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7SC
7TK
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4566-7089406e56a3c64e8addc5e16b48a95924ea3ef960c35abdbb4ffe8fab91088e3
IEDL.DBID RSV
ISSN 0951-5666
IngestDate Tue Nov 04 01:52:49 EST 2025
Thu Oct 02 05:35:06 EDT 2025
Wed Nov 05 14:51:15 EST 2025
Sat Nov 29 14:08:23 EST 2025
Sat Nov 29 10:28:12 EST 2025
Mon Jul 21 06:01:53 EDT 2025
Tue Nov 18 22:21:01 EST 2025
Sat Nov 29 06:28:19 EST 2025
Fri Feb 21 02:42:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Discrimination
Ethics of algorithms
Healthcare machine-learning algorithms
Bias
Fairness
Respect
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4566-7089406e56a3c64e8addc5e16b48a95924ea3ef960c35abdbb4ffe8fab91088e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00146-022-01455-6
PMID 35615443
PQID 2807780930
PQPubID 30083
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9123626
proquest_miscellaneous_2670064943
proquest_journals_2807780930
gale_infotracmisc_A747672221
gale_infotracacademiconefile_A747672221
pubmed_primary_35615443
crossref_primary_10_1007_s00146_022_01455_6
crossref_citationtrail_10_1007_s00146_022_01455_6
springer_journals_10_1007_s00146_022_01455_6
PublicationCentury 2000
PublicationDate 20230400
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationSubtitle Journal of Knowledge, Culture and Communication
PublicationTitle AI & society
PublicationTitleAbbrev AI & Soc
PublicationTitleAlternate AI Soc
PublicationYear 2023
Publisher Springer London
Springer
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer
– name: Springer Nature B.V
References Giovanola B, Tiribelli S (2022) Weapons of Moral construction? On the value of fairness in algorithmic decision-making. Ethics Inform Technol. https://doi.org/10.1007/s10676-022-09622-5
HintonGDeep learning-a technology with the potential to transform health careJAMA2018320111101110210.1001/jama.2018.11100
MorleyJMachadoCBurrCCowlsJJoshiITaddeoMFloridiLThe ethics of AI in health care: a mapping reviewSoc Sci Med202026010.1016/j.socscimed.2020.113172
Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Considerations on fairness-aware data mining. In: IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, pp 378–385. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406465. Retrieved March 10, 2021
ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience201936644745310.1126/science.aax2342
DarwallSTwo kinds of respectEthics197788364910.1086/292054
PasqualeFThe black box society: the secret algorithms that control money and information2015CambridgeHarvard University Press10.4159/harvard.9780674736061
DanielsNJust health care1985CambridgeCambridge University Press10.1017/CBO9780511624971
Ochigame R (2019) The invention of “Ethical AI”. https://theintercept.com/2019/12/20/mit-ethical-ai-artificial-intelligence/. Retrieved March 10, 2021
WilliamsBPersons, character and moralityMoral Luck: Philosophical papers 1973–19801981CambridgeCambridge University Press11910.1017/CBO9781139165860
Sangiovanni A (2017) Humanity without dignity. Moral equality, respect, and human rights. Harvard University Press, Cambridge
GulshanVPengLCoramMStumpeMCWuDNarayanaswamyAVenugopalanSWidnerKMadamsTCuadrosJKimRRamanRNelsonPCMegaJLWebsterDRDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.17216
Dieterich B, Mendoza C., Brennan T (2016) COMPAS risk scales: demonstrating accuracy equity and predictive parity performance of the COMPAS risk scales in broward county. https://www.semanticscholar.org/paper/COMPAS-Risk-Scales-%3A-Demonstrating-Accuracy-Equity/cb6a2c110f9fe675799c6aefe1082bb6390fdf49. Retrieved March 11, 2021
TsamadosAAggarwalNCowlsJMorleyJRobertsHTaddeoMFloridiLThe ethics of algorithms: key problems and solutionsAI Soc202110.1007/s00146-021-01154-8
RomeiARuggieriSA multidisciplinary survey on discrimination analysisKnowl Eng Rev201429558263810.1017/S0269888913000039
Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. https://arxiv.org/abs/1610.02413. Retrieved March 12, 2021
Scheffler S (2003) What is egalitarianism?. Philos Public Affairs 31(1): 5–39. http://www.jstor.org/stable/3558033. Retrieved March 11, 2021
NoorPCan we trust AI not to further embed racial bias and prejudice?BMJ (Clin Res Ed)202036810.1136/bmj.m363
Abebe R, Barocas S, Kleinberg J, Levy K, Raghavan M, Robinson DG (2020) Roles for computing in social change. https://doi.org/10.1145/3351095.3372871. ArXiv:1912.04883.
DiakopoulosNKoliskaMAlgorithmic transparency in the news mediaDigit J20175780982810.1080/21670811.2016.1208053
Overdorf R, Kulynych B, Balsa E, Troncoso C, Gürse S (2018) Questioning the assumptions behind fairness solutions. ArXiv:1811.11293. Retrieved March 11, 2021
Hinman LM (2008) Searching ethics: the role of search engines in the construction and distribution of knowledge. In: Spink A, Zimmer M (eds) Web search. Information science and knowledge management, Springer. https://doi.org/10.1007/978-3-540-75829-7_5.
Hu M (2017) Algorithmic jim crow. Fordham Law Rev. https://ir.lawnet.fordham.edu/flr/vol86/iss2/13/. Retrieved March 10, 2021
ShapiroSAlgorithmic television in the age of large-scale customizationTelevis New Med202021665866310.1177/1527476420919691
BartonCChettipallyUZhouYJiangZLynn-PalevskyALeSCalvertJDasREvaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signsComput Biol Med2019109798410.1016/j.compbiomed.2019.04.027
Friedler S, Scheidegger C, Venkatasubramanian S (2016) On the (im)possibility of fairness. https://www.researchgate.net/publication/308610093_On_the_impossibility_of_fairness/citation/download. Retrieved March 11, 2021
Richardson R, Schultz J, Crawford K (2019) Dirty data, bad predictions: how civil rights violations impact police data, predictive policing systems, and justice. N.Y.U. L. Review 94(192). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3333423. Retrieved March 10, 2021
Tufekci Z (2015) Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency. J Telecommun High Technol Law 13(203). https://ctlj.colorado.edu/wp-content/uploads/2015/08/Tufekci-final.pdf. Retrieved March 11, 2021
EstevaARobicquetARamsundarBKuleshovVDePristoMChouKCuiCCorradoGThrunSDeanJA guide to deep learning in healthcareNat Med2019251242910.1038/s41591-018-0316-z
KleinbergJLakkarajuHLeskovecJLudwigJMullainathanSHuman decisions and machine predictionsQ J Econ201710.1093/qje/qjx0321405.91119
Lippert-RasmussenKBorn free and equal? A philosophical inquiry into the nature of discrimination2013OxfordOxford University Press10.1093/acprof:oso/9780199796113.001.0001
BrighouseHRobeynsIMeasuring justice. Primary Goods and capabilities2010CambridgeCambridge University Press10.1017/CBO9780511810916
Cotter A, Jiang H, Sridharan K (2018) Two-player games for efficient non-convex constrained optimization. arXiv preprint arXiv:1804.06500.
BerkRHeidariHJabbariSKearnsMRothAFairness in criminal justice risk assessments: the state of the artSociol Methods Res201810.1177/0049124118782533
Benjamin R (2019) Race after technology: abolitionist tools for the new jim code. Polity, Medford
ShelbyTDark ghettos: injustice, dissent, and reform2016CambridgeHarvard University Press10.2307/j.ctv24w638g
HellmanDMoreauSPhilosophical foundations of discrimination law2013OxfordOxford University Press10.1093/acprof:oso/9780199664313.001.0001
BurrellJHow the machine ‘thinks’: understanding opacity in machine learning algorithmsBig Data Soc201610.1177/2053951715622512
FlemingNHow artificial intelligence is changing drug discoveryNature20185577707S55S5710.1038/d41586-018-05267-x
Mansoury M, Abdollahpouri H, Pechenizkiy M, Mobasher B, Burke R (2020) Feedback loop and bias amplification in recommender systems. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA: 2145–2148. https://doi.org/10.1145/3340531.3412152.
FergusonAGThe rise of big dtata policing. Surveillance, race, and the future of law enforcement2017New YorkNew York University Press10.18574/nyu/9781479854608.001.0001
CollSConsumption as biopower: governing bodies with loyalty cardsJ Consu Cult201313320122010.1177/1469540513480159
NobleSUAlgorithms of oppression: how search engines reinforce racism2018New YorkNew York University Press10.18574/nyu/9781479833641.001.0001
TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat Med2019251445610.1038/s41591-018-0300-7
BarocasSSelbstADBig data’s disparate impactSSRN Electron J201610.2139/ssrn.2477899
KhaitanTA theory of discrimination law2015OxfordOxford University Press10.1093/acprof:oso/9780199656967.001.0001
RobbinsSA misdirected principle with a catch: explicability for AIMind Mach2019294495514113141310.1007/s11023-019-09509-3
Deville J (2013) Leaky Data: How Wonga Makes Lending decisions. Charisma: Consumer Market Studies. http://www.charisma-network.net/finance/leaky-data-how-wonga-makes-lending-decisions. Retrieved March 11, 2021
CharDSShahNHMagnusDImplementing machine learning in health care—addressing ethical challengesN Engl J Med20183781198198310.1056/NEJMp1714229
DworkinRSovereign virtue: the theory and practice of equality2000CambridgeHarvard University Press
Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: a critical review of fair machine learning. http://arxiv.org/abs/1808.00023. Retrieved March 11, 2021
Barocas S (2014) Data mining and the discourse on discrimination. In: Proceedings of the Data Ethics Workshop, Conference on Knowledge Discovery and Data Mining (KDD). https://dataethics.github.io/proceedings/DataMiningandtheDiscourseOnDiscrimination.pdf. Retrieved March 10 2021
RajkomarAHardtMHowellMDCorradoGChinMHEnsuring fairness in machine learning to advance health equityAnn Intern Med20181691286687210.7326/M18-1990
Hildebrandt M (2008) Defining profiling: a new type of knowledge?. In: Hildebrandt M, Gutwirth S (eds) Profiling the European Citizen. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6914-7_2
PariserEThe filter bubble2011New YorkPenguin
ShahHAlgorithmic accountabilityPhilos Trans R Soc Math Phys Eng Sci201837621282017036210.1098/rsta.2017.0362
TranBXVuGTHaGHVuongQHHoMTVuongTTHoRCMGlobal evolution of research in artificial intelligence in health and medicine: a bibliometric studyJ Clin Med201910.3390/jcm8030360
Lobosco K (2013) Facebook friends could change your credit score. CNN Business. https://money.cnn.com/2013/08/26/technology/social/facebook-credit-score/index.html. . Retrieved March 11, 2021
WongPDemocratizing algorithmic fairnessPhilos Technol201910.1007/s13347-019-00355-w
HaySIGeorgeDBMoyesCLBrownsteinJSBig data opportunities for global infectious disease surveillancePLoS Med201310410.1371/journal.pmed.1001413
ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data20175215316310.1089/big.2016.0047
Turner LeeNDetecting racial bias in algorithms and machine learningJ Inf Commun Ethics Soc201816325226010.1108/JICES-06-2018-0056
Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, pp 5684–5693.
WolffJFairness respect, and the egalitarian ethosPhilos Public Affairs19982729712210
BX Tran (1455_CR106) 2019
1455_CR2
1455_CR1
V Gulshan (1455_CR53) 2016; 316
IG Cohen (1455_CR21) 2014; 33
M Fricker (1455_CR41) 2007
K Lippert-Rasmussen (1455_CR71) 2013
T Grote (1455_CR52) 2020; 46
1455_CR7
1455_CR73
1455_CR72
Z Obermeyer (1455_CR83) 2019; 366
1455_CR5
S Moreau (1455_CR77) 2010; 38
T Khaitan (1455_CR68) 2015
BD Mittelstadt (1455_CR75) 2016
R Dworkin (1455_CR33) 2000
A Tsamados (1455_CR107) 2021
S Shapiro (1455_CR100) 2020; 21
B Norgeot (1455_CR82) 2019; 25
H Brighouse (1455_CR17) 2010
1455_CR86
MD McCradden (1455_CR74) 2020; 2
1455_CR89
N Fleming (1455_CR39) 2018; 557
1455_CR84
N Barakat (1455_CR6) 2010; 14
A Jobin (1455_CR63) 2019; 1
V Eubanks (1455_CR37) 2018
J Morley (1455_CR78) 2020; 260
J Kleinberg (1455_CR67) 2017
R Noggle (1455_CR80) 1999; 29
1455_CR112
AG Ferguson (1455_CR38) 2017
M Seng Ah Lee (1455_CR98) 2020
H Shah (1455_CR99) 2018; 376
A Buhmann (1455_CR15) 2019
1455_CR119
D Hellman (1455_CR56) 2013
1455_CR54
EJ Topol (1455_CR105) 2019; 25
1455_CR59
1455_CR58
1455_CR57
EB Laidlaw (1455_CR70) 2008; 17
C Garattini (1455_CR45) 2019; 32
B Williams (1455_CR115) 1981
1455_CR51
1455_CR50
P Noor (1455_CR81) 2020; 368
1455_CR66
G Harerimana (1455_CR55) 2018; 6
1455_CR64
F Pasquale (1455_CR88) 2015
S Newell (1455_CR76) 2015; 24
A Chouldechova (1455_CR22) 2017; 5
1455_CR62
B Chin-Yee (1455_CR20) 2019; 62
A Romei (1455_CR94) 2014; 29
S Coll (1455_CR23) 2013; 13
D Shin (1455_CR102) 2019; 98
T Shelby (1455_CR101) 2016
1455_CR32
1455_CR31
1455_CR34
SI Hay (1455_CR60) 2013; 10
N Diakopoulos (1455_CR30) 2017; 5
A Esteva (1455_CR36) 2019; 25
P Wong (1455_CR118) 2019
S Barocas (1455_CR8) 2016
1455_CR44
1455_CR42
SU Noble (1455_CR79) 2018
SD Baum (1455_CR10) 2016
1455_CR47
C Barton (1455_CR9) 2019; 109
1455_CR46
A Rajkomar (1455_CR90) 2018; 169
1455_CR40
J Rawls (1455_CR91) 1971
E Kelly (1455_CR65) 2017; 128
S Umbrello (1455_CR110) 2020; 26
C O’Neil (1455_CR85) 2016
J Wolff (1455_CR116) 1998; 27
G Hinton (1455_CR61) 2018; 320
1455_CR11
DS Char (1455_CR19) 2018; 378
E Bozdag (1455_CR14) 2013; 15
1455_CR97
J Waldron (1455_CR114) 2017
1455_CR96
1455_CR13
S Umbrello (1455_CR111) 2021; 1
1455_CR95
R Berk (1455_CR12) 2018
B Giovanola (1455_CR48) 2021
1455_CR92
S Robbins (1455_CR93) 2019; 29
J Burrell (1455_CR16) 2016
I Carter (1455_CR18) 2011; 121
E Anderson (1455_CR4) 1999; 109
N Turner Lee (1455_CR109) 2018; 16
1455_CR103
1455_CR104
DA Vyas (1455_CR113) 2020; 383
1455_CR108
B Giovanola (1455_CR49) 2021
WJ Kuo (1455_CR69) 2001; 66
N Daniels (1455_CR26) 1985
Ó Álvarez-Machancoses (1455_CR3) 2019; 14
1455_CR25
1455_CR24
S Darwall (1455_CR28) 1977; 88
E Pariser (1455_CR87) 2011
B Eidelson (1455_CR35) 2015
J Wolff (1455_CR117) 2010; 14
B Friedman (1455_CR43) 2017; 11
1455_CR29
1455_CR27
References_xml – reference: Hu M (2017) Algorithmic jim crow. Fordham Law Rev. https://ir.lawnet.fordham.edu/flr/vol86/iss2/13/. Retrieved March 10, 2021
– reference: Van den Hoven J, Vermaas PE, van de Poel I (2015) Handbook of ethics, values, and technological design. Sources, theory, values and application domains. Springer. ISBN: 978-94-007-6969-4
– reference: Giovanola B, Tiribelli S (2022) Weapons of Moral construction? On the value of fairness in algorithmic decision-making. Ethics Inform Technol. https://doi.org/10.1007/s10676-022-09622-5
– reference: NobleSUAlgorithms of oppression: how search engines reinforce racism2018New YorkNew York University Press10.18574/nyu/9781479833641.001.0001
– reference: Abebe R, Barocas S, Kleinberg J, Levy K, Raghavan M, Robinson DG (2020) Roles for computing in social change. https://doi.org/10.1145/3351095.3372871. ArXiv:1912.04883.
– reference: Hinman LM (2008) Searching ethics: the role of search engines in the construction and distribution of knowledge. In: Spink A, Zimmer M (eds) Web search. Information science and knowledge management, Springer. https://doi.org/10.1007/978-3-540-75829-7_5.
– reference: O’NeilCWeapons of math destruction: how big data increases inequality and threatens democracy2016New YorkCrown1441.00001
– reference: BarocasSSelbstADBig data’s disparate impactSSRN Electron J201610.2139/ssrn.2477899
– reference: Benjamin R (2019) Race after technology: abolitionist tools for the new jim code. Polity, Medford
– reference: ShelbyTDark ghettos: injustice, dissent, and reform2016CambridgeHarvard University Press10.2307/j.ctv24w638g
– reference: EidelsonBDiscrimination and disrespect2015OxfordOxford University Press10.1093/acprof:oso/9780198732877.001.0001
– reference: NoggleRKantian respect and particular personsCan J Philos19992944947710.1080/00455091.1999.10717521
– reference: MittelstadtBDAlloPTaddeoMWachterSFloridiLThe ethics of algorithms: mapping the debateBig Data Soc201610.1177/2053951716679679
– reference: Hinman LM (2005) Esse est indicato in Google: Ethical and Political Issues in Search Engines. International Review of Information Ethics 3. Retrieved March 11, 2021, from https://informationethics.ca/index.php/irie/article/view/345.
– reference: Scheffler S (2003) What is egalitarianism?. Philos Public Affairs 31(1): 5–39. http://www.jstor.org/stable/3558033. Retrieved March 11, 2021
– reference: EubanksVAutomating inequality. How high-tech tools profile, police, and punish the poor2018New YorkSt Martin’s Publishing
– reference: Fuster A, Goldsmith-Pinkham P, Ramadorai T, Walther A (2017) Predictably unequal? The effects of machine learning on credit markets. SSRN Electron J. https://doi.org/10.2139/ssrn.3072038.
– reference: Dieterich B, Mendoza C., Brennan T (2016) COMPAS risk scales: demonstrating accuracy equity and predictive parity performance of the COMPAS risk scales in broward county. https://www.semanticscholar.org/paper/COMPAS-Risk-Scales-%3A-Demonstrating-Accuracy-Equity/cb6a2c110f9fe675799c6aefe1082bb6390fdf49. Retrieved March 11, 2021
– reference: BrighouseHRobeynsIMeasuring justice. Primary Goods and capabilities2010CambridgeCambridge University Press10.1017/CBO9780511810916
– reference: NorgeotBGlicksbergBSButteAJA call for deep-learning healthcareNat Med2019251141510.1038/s41591-018-0320-3
– reference: Corbett-Davies S, Goel S (2018) The measure and mismeasure of fairness: a critical review of fair machine learning. http://arxiv.org/abs/1808.00023. Retrieved March 11, 2021
– reference: Friedler S, Scheidegger C, Venkatasubramanian S (2016) On the (im)possibility of fairness. https://www.researchgate.net/publication/308610093_On_the_impossibility_of_fairness/citation/download. Retrieved March 11, 2021
– reference: KleinbergJLakkarajuHLeskovecJLudwigJMullainathanSHuman decisions and machine predictionsQ J Econ201710.1093/qje/qjx0321405.91119
– reference: FergusonAGThe rise of big dtata policing. Surveillance, race, and the future of law enforcement2017New YorkNew York University Press10.18574/nyu/9781479854608.001.0001
– reference: Chin-YeeBUpshurRThree problems with big data and artificial intelligence in medicinePerspect Biol Med201962223725610.1353/pbm.2019.0012
– reference: LaidlawEBPrivate power, public interest: an examination of search engine accountabilityInt J Law Inform Technol200817111314510.1093/ijlit/ean018
– reference: ObermeyerZPowersBVogeliCMullainathanSDissecting racial bias in an algorithm used to manage the health of populationsScience201936644745310.1126/science.aax2342
– reference: Tufekci Z (2015) Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency. J Telecommun High Technol Law 13(203). https://ctlj.colorado.edu/wp-content/uploads/2015/08/Tufekci-final.pdf. Retrieved March 11, 2021
– reference: GiovanolaBSalaRThe reasons of the unreasonable: is political liberalism still an option?Philos Soc Crit202110.1177/01914537211040568
– reference: Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Considerations on fairness-aware data mining. In: IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, pp 378–385. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6406465. Retrieved March 10, 2021
– reference: GiovanolaBJustice, emotions, socially disruptive technologiesCrit Rev Int Soc Polit Philos202110.1080/13698230.2021.1893255
– reference: GarattiniCRaffleJAisyahDNSartainFKozlakidisZBig data analytics, infectious diseases and associated ethical impactsPhilos Technol2019321698510.1007/s13347-017-0278-y
– reference: WongPDemocratizing algorithmic fairnessPhilos Technol201910.1007/s13347-019-00355-w
– reference: HarerimanaGJangBKimJWParkHKHealth big data analytics: a technology surveyIEEE Access20186656616567810.1109/ACCESS.2018.2878254
– reference: Lippert-RasmussenKBorn free and equal? A philosophical inquiry into the nature of discrimination2013OxfordOxford University Press10.1093/acprof:oso/9780199796113.001.0001
– reference: CollSConsumption as biopower: governing bodies with loyalty cardsJ Consu Cult201313320122010.1177/1469540513480159
– reference: BurrellJHow the machine ‘thinks’: understanding opacity in machine learning algorithmsBig Data Soc201610.1177/2053951715622512
– reference: KhaitanTA theory of discrimination law2015OxfordOxford University Press10.1093/acprof:oso/9780199656967.001.0001
– reference: Binns R (2018) Fairness in machine learning: lessons from political philosophy. http://arxiv.org/abs/1712.03586. Retrieved 11 March, 2021
– reference: Angwin J, Larson J, Mattu S, Lauren K (2016) Machine bias. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Retrieved March 10, 2021
– reference: Danks D, London AJ (2017) Algorithmic bias in autonomous systems. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, pp 4691–4697. https://doi.org/10.24963/ijcai.2017/654.
– reference: BartonCChettipallyUZhouYJiangZLynn-PalevskyALeSCalvertJDasREvaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signsComput Biol Med2019109798410.1016/j.compbiomed.2019.04.027
– reference: TsamadosAAggarwalNCowlsJMorleyJRobertsHTaddeoMFloridiLThe ethics of algorithms: key problems and solutionsAI Soc202110.1007/s00146-021-01154-8
– reference: CharDSShahNHMagnusDImplementing machine learning in health care—addressing ethical challengesN Engl J Med20183781198198310.1056/NEJMp1714229
– reference: GulshanVPengLCoramMStumpeMCWuDNarayanaswamyAVenugopalanSWidnerKMadamsTCuadrosJKimRRamanRNelsonPCMegaJLWebsterDRDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.17216
– reference: ShapiroSAlgorithmic television in the age of large-scale customizationTelevis New Med202021665866310.1177/1527476420919691
– reference: DanielsNJust health care1985CambridgeCambridge University Press10.1017/CBO9780511624971
– reference: Seng Ah LeeMFloridiLAlgorithmic fairness in mortgage lending: from absolute conditions to relational trade-offsMinds Mach202010.1007/s11023-020-09529-4
– reference: WolffJFairness respect, and the egalitarian ethosPhilos Public Affairs19982729712210.1111/j.1088-4963.1998.tb00063.x
– reference: WolffJFairness, respect, and the egalitarian “ethos” revisitedJ Ethics2010143/433535010.1007/s10892-010-9085-8
– reference: MoreauSWhat is discrimination?Philos Public Aff201038214317910.1111/j.1088-4963.2010.01181.x
– reference: Turner LeeNDetecting racial bias in algorithms and machine learningJ Inf Commun Ethics Soc201816325226010.1108/JICES-06-2018-0056
– reference: NoorPCan we trust AI not to further embed racial bias and prejudice?BMJ (Clin Res Ed)202036810.1136/bmj.m363
– reference: Mansoury M, Abdollahpouri H, Pechenizkiy M, Mobasher B, Burke R (2020) Feedback loop and bias amplification in recommender systems. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management. Association for Computing Machinery, New York, NY, USA: 2145–2148. https://doi.org/10.1145/3340531.3412152.
– reference: Gillis TB, Spiess J (2019) Big data and discrimination. Univ Chicago Law Rev. https://lawreview.uchicago.edu/sites/lawreview.uchicago.edu/files/09%20Gillis%20%26%20Spiess_SYMP_Post-SA%20%28BE%29.pdf. Retrieved March 11, 2021
– reference: Overdorf R, Kulynych B, Balsa E, Troncoso C, Gürse S (2018) Questioning the assumptions behind fairness solutions. ArXiv:1811.11293. Retrieved March 11, 2021
– reference: ShahHAlgorithmic accountabilityPhilos Trans R Soc Math Phys Eng Sci201837621282017036210.1098/rsta.2017.0362
– reference: FrickerMEpistemic injustice: power and the ethics of knowing2007New YorkOxford University Press10.1093/acprof:oso/9780198237907.001.0001
– reference: Sandel M (1984) The procedural republic and the unencumbered self. Polit Theory 12: 81–96. http://www.jstor.org/stable/191382. Retrieved March 11, 2021
– reference: Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, pp 5684–5693.
– reference: PariserEThe filter bubble2011New YorkPenguin
– reference: WilliamsBPersons, character and moralityMoral Luck: Philosophical papers 1973–19801981CambridgeCambridge University Press11910.1017/CBO9781139165860
– reference: RomeiARuggieriSA multidisciplinary survey on discrimination analysisKnowl Eng Rev201429558263810.1017/S0269888913000039
– reference: Sangiovanni A (2017) Humanity without dignity. Moral equality, respect, and human rights. Harvard University Press, Cambridge
– reference: TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat Med2019251445610.1038/s41591-018-0300-7
– reference: UmbrelloSvan de PoelIMapping value sensitive design onto AI for social good principlesAI Ethics20211311410.1007/s43681-021-00038-3
– reference: Forst R (2014) Two pictures of justice. In: Justice, Democracy and the Right to Justification. Rainer Forst in Dialogue, Bloomsbury, London, pp 3–26.
– reference: Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. https://arxiv.org/abs/1610.02413. Retrieved March 12, 2021
– reference: McCraddenMDJoshiSMazwiMAndersonJAEthical limitations of algorithmic fairness solutions in health care machine learningLancet Digital Health202025e221e22310.1016/S2589-7500(20)30065-0
– reference: Edwards L, Veale M (2017) Slave to the algorithm? Why a right to explanationn is probably not the remedy you are looking for. SSRN Electron J. https://doi.org/10.2139/ssrn.2972855.
– reference: DworkinRSovereign virtue: the theory and practice of equality2000CambridgeHarvard University Press
– reference: CarterIRespect and the basis of equalityEthics2011121353857110.1086/658897
– reference: NewellSMarabelliMStrategic opportunities (and challenges) of algorithmic decision-making: a call for action on the long-term societal effects of ‘datificaion’J Strateg Inf Syst201524131410.1016/j.jsis.2015.02.001
– reference: UmbrelloSImaginative value sensitive design: using moral imagination theory to inform responsible technology designSci Eng Ethics202026257559510.1007/s11948-019-00104-4
– reference: Dwork C, Hard M, Pitassi T, Reingold O, Zemel R (2011) Fairness through awareness. http://arxi-v.org/abs/1104.3913. Retrieved March 11, 2021
– reference: WaldronJOne another’s equal. The basis of human equality2017CambridgeHarvard University Press10.4159/9780674978867
– reference: Hildebrandt M (2008) Defining profiling: a new type of knowledge?. In: Hildebrandt M, Gutwirth S (eds) Profiling the European Citizen. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6914-7_2
– reference: JobinAIencaMVayenaEArtificial intelligence: the global landscape of ethics guidelinesNat Mach Intell2019138939910.1038/s42256-019-0088-2
– reference: DiakopoulosNKoliskaMAlgorithmic transparency in the news mediaDigit J20175780982810.1080/21670811.2016.1208053
– reference: Deville J (2013) Leaky Data: How Wonga Makes Lending decisions. Charisma: Consumer Market Studies. http://www.charisma-network.net/finance/leaky-data-how-wonga-makes-lending-decisions. Retrieved March 11, 2021
– reference: BaumSDOn the promotion of safe and socially beneficial artificial intelligenceAI Soc201610.1007/s00146-016-0677-0
– reference: RajkomarAHardtMHowellMDCorradoGChinMHEnsuring fairness in machine learning to advance health equityAnn Intern Med20181691286687210.7326/M18-1990
– reference: Cotter A, Jiang H, Sridharan K (2018) Two-player games for efficient non-convex constrained optimization. arXiv preprint arXiv:1804.06500.
– reference: KuoWJChangRFChenDRLeeCCData mining with decision trees for diagnosis of breast tumor in medical ultrasonic imagesBreast Cancer Res Treat2001661515710.1023/A:1010676701382
– reference: RobbinsSA misdirected principle with a catch: explicability for AIMind Mach2019294495514113141310.1007/s11023-019-09509-3
– reference: PasqualeFThe black box society: the secret algorithms that control money and information2015CambridgeHarvard University Press10.4159/harvard.9780674736061
– reference: Ochigame R (2019) The invention of “Ethical AI”. https://theintercept.com/2019/12/20/mit-ethical-ai-artificial-intelligence/. Retrieved March 10, 2021
– reference: Barocas S (2014) Data mining and the discourse on discrimination. In: Proceedings of the Data Ethics Workshop, Conference on Knowledge Discovery and Data Mining (KDD). https://dataethics.github.io/proceedings/DataMiningandtheDiscourseOnDiscrimination.pdf. Retrieved March 10 2021
– reference: CohenIGAmarasinghamRShahAXieBLoBThe legal and ethical concerns that arise from using complex predictive analytics in health careHealth Aff20143371139114710.1377/hlthaff.2014.0048
– reference: DarwallSTwo kinds of respectEthics197788364910.1086/292054
– reference: VyasDAEisensteinLGJonesDSHidden in plain sight—reconsidering the use of race correction in clinical algorithmsN Engl J Med2020383987488210.1056/NEJMms2004740
– reference: GroteTBerensPOn the ethics of algorithmic decision-making in healthcareJ Med Ethics202046320521110.1136/medethics-2019-105586
– reference: HaySIGeorgeDBMoyesCLBrownsteinJSBig data opportunities for global infectious disease surveillancePLoS Med201310410.1371/journal.pmed.1001413
– reference: Selbst AD, Boyd D, Friedler AS, Venkatasubramanian S, Vertesi J (2019) Fairness and abstraction in sociotechnical systems. In: Proceedings of the Conference on Fairness, Accountability, and Transparency - FAT* ’19, 59–68. ACM Press. Atlanta, GA, USA: https://doi.org/10.1145/3287560.3287598.
– reference: MorleyJMachadoCBurrCCowlsJJoshiITaddeoMFloridiLThe ethics of AI in health care: a mapping reviewSoc Sci Med202026010.1016/j.socscimed.2020.113172
– reference: BozdagEBias in algorithmic filtering and personalizationEthics Inf Technol20131520922710.1007/s10676-013-9321-6
– reference: ShinDParkYJRole of fairness, accountability, and transparency in algorithmic affordanceComput Hum Behav20199827728410.1016/j.chb.2019.04.019
– reference: RawlsJA theory of justice1971CambridgeHarvard University Press10.4159/9780674042605
– reference: TranBXVuGTHaGHVuongQHHoMTVuongTTHoRCMGlobal evolution of research in artificial intelligence in health and medicine: a bibliometric studyJ Clin Med201910.3390/jcm8030360
– reference: Kim PT (2017) Data-driven discrimination at work. 58 Wm. & Mary L. Rev 857(3). https://scholarship.law.wm.edu/wmlr/vol58/iss3/4. Retrieved March 11, 2021
– reference: BerkRHeidariHJabbariSKearnsMRothAFairness in criminal justice risk assessments: the state of the artSociol Methods Res201810.1177/0049124118782533
– reference: HintonGDeep learning-a technology with the potential to transform health careJAMA2018320111101110210.1001/jama.2018.11100
– reference: HellmanDMoreauSPhilosophical foundations of discrimination law2013OxfordOxford University Press10.1093/acprof:oso/9780199664313.001.0001
– reference: Goh G, Cotter A, Gupta M, Friedlander MP (2016) Satisfying real-world goals with dataset con- straints. In: Advances in Neural Information Processing Systems, pp 2415–2423. Available at: https://papers.nips.cc/paper/2016/file/dc4c44f624d600aa568390f1f1104aa0-Paper.pdf
– reference: ChouldechovaAFair prediction with disparate impact: a study of bias in recidivism prediction instrumentsBig Data20175215316310.1089/big.2016.0047
– reference: Lobosco K (2013) Facebook friends could change your credit score. CNN Business. https://money.cnn.com/2013/08/26/technology/social/facebook-credit-score/index.html. . Retrieved March 11, 2021
– reference: AndersonEWhat is the point of equality?Ethics1999109228933710.1086/233897
– reference: EstevaARobicquetARamsundarBKuleshovVDePristoMChouKCuiCCorradoGThrunSDeanJA guide to deep learning in healthcareNat Med2019251242910.1038/s41591-018-0316-z
– reference: Simonite T (2020) Meet the secret algorithm that's keeping students out of college. Wired. https://www.wired.com/story/algorithm-set-students-grades-altered-futures/. Retrieved March 11, 2021
– reference: Richardson R, Schultz J, Crawford K (2019) Dirty data, bad predictions: how civil rights violations impact police data, predictive policing systems, and justice. N.Y.U. L. Review 94(192). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3333423. Retrieved March 10, 2021
– reference: Agarwal A, Beygelzimer A, Dudik M, Langford J., Wallach H (2018) A reductions approach to fair classification. In: Proceedings of the 35th International Conference on Machine Learning. In Proceedings of Machine Learning Research, 80: 60–69. Available at https://proceedings.mlr.press/v80/agarwal18a.html
– reference: Zafar MB, Valera I, Gomez Rodriguez M, Gummadi KP (2015) Fairness constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259.
– reference: FlemingNHow artificial intelligence is changing drug discoveryNature20185577707S55S5710.1038/d41586-018-05267-x
– reference: Giovanola B (2018) Giustizia sociale. Eguaglianza e rispetto nelle società diseguali. Il Mulino, Bologna.
– reference: Álvarez-MachancosesÓFernández-MartínezJLUsing artificial intelligence methods to speed up drug discoveryExpert Opin Drug Discov201914876977710.1080/17460441.2019.1621284
– reference: BuhmannAPaßmannJFieselerCManaging algorithmic accountability: balancing reputational concerns, engagement strategies, and the potential of rational discourseJ Bus Ethics201910.1007/s10551-019-04226-4
– reference: FriedmanBHendryDGBorningAA survey of value sensitive design methods. Foundations and Trends®Human Comput Interact20171126312510.1561/110000001
– reference: BarakatNBradleyAPBarakatMNHIntelligible support vector machines for diagnosis of diabetes mellitusIEEE Trans Inf Technol Biomed20101441114112010.1109/TITB.2009.2039485
– reference: KellyEThe historical injustice problem for political liberalismEthics2017128759410.1086/692974
– year: 2019
  ident: 1455_CR118
  publication-title: Philos Technol
  doi: 10.1007/s13347-019-00355-w
– volume-title: Just health care
  year: 1985
  ident: 1455_CR26
  doi: 10.1017/CBO9780511624971
– volume-title: Philosophical foundations of discrimination law
  year: 2013
  ident: 1455_CR56
  doi: 10.1093/acprof:oso/9780199664313.001.0001
– volume: 29
  start-page: 495
  issue: 4
  year: 2019
  ident: 1455_CR93
  publication-title: Mind Mach
  doi: 10.1007/s11023-019-09509-3
– volume: 2
  start-page: e221
  issue: 5
  year: 2020
  ident: 1455_CR74
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30065-0
– volume: 11
  start-page: 63
  issue: 2
  year: 2017
  ident: 1455_CR43
  publication-title: Human Comput Interact
  doi: 10.1561/110000001
– year: 2021
  ident: 1455_CR49
  publication-title: Philos Soc Crit
  doi: 10.1177/01914537211040568
– volume-title: A theory of justice
  year: 1971
  ident: 1455_CR91
  doi: 10.4159/9780674042605
– volume: 62
  start-page: 237
  issue: 2
  year: 2019
  ident: 1455_CR20
  publication-title: Perspect Biol Med
  doi: 10.1353/pbm.2019.0012
– volume: 26
  start-page: 575
  issue: 2
  year: 2020
  ident: 1455_CR110
  publication-title: Sci Eng Ethics
  doi: 10.1007/s11948-019-00104-4
– ident: 1455_CR59
  doi: 10.1007/978-3-540-75829-7_5
– year: 2018
  ident: 1455_CR12
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124118782533
– ident: 1455_CR119
– volume-title: The black box society: the secret algorithms that control money and information
  year: 2015
  ident: 1455_CR88
  doi: 10.4159/harvard.9780674736061
– ident: 1455_CR40
  doi: 10.5040/9781472544735.ch-001
– ident: 1455_CR51
– volume: 66
  start-page: 51
  issue: 1
  year: 2001
  ident: 1455_CR69
  publication-title: Breast Cancer Res Treat
  doi: 10.1023/A:1010676701382
– ident: 1455_CR95
  doi: 10.1177/0090591784012001005
– year: 2021
  ident: 1455_CR48
  publication-title: Crit Rev Int Soc Polit Philos
  doi: 10.1080/13698230.2021.1893255
– ident: 1455_CR92
– ident: 1455_CR5
– volume: 378
  start-page: 981
  issue: 11
  year: 2018
  ident: 1455_CR19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1714229
– volume: 15
  start-page: 209
  year: 2013
  ident: 1455_CR14
  publication-title: Ethics Inf Technol
  doi: 10.1007/s10676-013-9321-6
– volume: 29
  start-page: 582
  issue: 5
  year: 2014
  ident: 1455_CR94
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888913000039
– ident: 1455_CR13
– ident: 1455_CR86
– volume-title: The filter bubble
  year: 2011
  ident: 1455_CR87
– ident: 1455_CR112
  doi: 10.1007/978-94-007-6970-0
– volume: 17
  start-page: 113
  issue: 1
  year: 2008
  ident: 1455_CR70
  publication-title: Int J Law Inform Technol
  doi: 10.1093/ijlit/ean018
– ident: 1455_CR50
  doi: 10.1007/s10676-022-09622-5
– ident: 1455_CR54
– year: 2017
  ident: 1455_CR67
  publication-title: Q J Econ
  doi: 10.1093/qje/qjx032
– volume: 109
  start-page: 289
  issue: 2
  year: 1999
  ident: 1455_CR4
  publication-title: Ethics
  doi: 10.1086/233897
– volume-title: Measuring justice. Primary Goods and capabilities
  year: 2010
  ident: 1455_CR17
  doi: 10.1017/CBO9780511810916
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  ident: 1455_CR22
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– volume-title: Automating inequality. How high-tech tools profile, police, and punish the poor
  year: 2018
  ident: 1455_CR37
– ident: 1455_CR108
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  ident: 1455_CR36
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– volume-title: Epistemic injustice: power and the ethics of knowing
  year: 2007
  ident: 1455_CR41
  doi: 10.1093/acprof:oso/9780198237907.001.0001
– volume: 10
  issue: 4
  year: 2013
  ident: 1455_CR60
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001413
– volume: 128
  start-page: 75
  year: 2017
  ident: 1455_CR65
  publication-title: Ethics
  doi: 10.1086/692974
– ident: 1455_CR66
– volume: 16
  start-page: 252
  issue: 3
  year: 2018
  ident: 1455_CR109
  publication-title: J Inf Commun Ethics Soc
  doi: 10.1108/JICES-06-2018-0056
– year: 2016
  ident: 1455_CR16
  publication-title: Big Data Soc
  doi: 10.1177/2053951715622512
– start-page: 1
  volume-title: Moral Luck: Philosophical papers 1973–1980
  year: 1981
  ident: 1455_CR115
  doi: 10.1017/CBO9781139165860
– volume: 33
  start-page: 1139
  issue: 7
  year: 2014
  ident: 1455_CR21
  publication-title: Health Aff
  doi: 10.1377/hlthaff.2014.0048
– volume: 557
  start-page: S55
  issue: 7707
  year: 2018
  ident: 1455_CR39
  publication-title: Nature
  doi: 10.1038/d41586-018-05267-x
– volume: 368
  year: 2020
  ident: 1455_CR81
  publication-title: BMJ (Clin Res Ed)
  doi: 10.1136/bmj.m363
– ident: 1455_CR24
– ident: 1455_CR72
– volume: 98
  start-page: 277
  year: 2019
  ident: 1455_CR102
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2019.04.019
– volume: 260
  year: 2020
  ident: 1455_CR78
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2020.113172
– volume: 46
  start-page: 205
  issue: 3
  year: 2020
  ident: 1455_CR52
  publication-title: J Med Ethics
  doi: 10.1136/medethics-2019-105586
– year: 2016
  ident: 1455_CR75
  publication-title: Big Data Soc
  doi: 10.1177/2053951716679679
– ident: 1455_CR46
– volume-title: The rise of big dtata policing. Surveillance, race, and the future of law enforcement
  year: 2017
  ident: 1455_CR38
  doi: 10.18574/nyu/9781479854608.001.0001
– year: 2020
  ident: 1455_CR98
  publication-title: Minds Mach
  doi: 10.1007/s11023-020-09529-4
– ident: 1455_CR29
– ident: 1455_CR44
  doi: 10.2139/ssrn.3072038
– volume-title: Weapons of math destruction: how big data increases inequality and threatens democracy
  year: 2016
  ident: 1455_CR85
– volume-title: A theory of discrimination law
  year: 2015
  ident: 1455_CR68
  doi: 10.1093/acprof:oso/9780199656967.001.0001
– volume: 376
  start-page: 20170362
  issue: 2128
  year: 2018
  ident: 1455_CR99
  publication-title: Philos Trans R Soc Math Phys Eng Sci
  doi: 10.1098/rsta.2017.0362
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  ident: 1455_CR105
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 13
  start-page: 201
  issue: 3
  year: 2013
  ident: 1455_CR23
  publication-title: J Consu Cult
  doi: 10.1177/1469540513480159
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 1455_CR53
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 14
  start-page: 769
  issue: 8
  year: 2019
  ident: 1455_CR3
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2019.1621284
– ident: 1455_CR27
  doi: 10.24963/ijcai.2017/654
– volume: 121
  start-page: 538
  issue: 3
  year: 2011
  ident: 1455_CR18
  publication-title: Ethics
  doi: 10.1086/658897
– volume: 5
  start-page: 809
  issue: 7
  year: 2017
  ident: 1455_CR30
  publication-title: Digit J
  doi: 10.1080/21670811.2016.1208053
– ident: 1455_CR32
– ident: 1455_CR11
  doi: 10.1093/sf/soz162
– volume-title: One another’s equal. The basis of human equality
  year: 2017
  ident: 1455_CR114
  doi: 10.4159/9780674978867
– volume: 27
  start-page: 97
  issue: 2
  year: 1998
  ident: 1455_CR116
  publication-title: Philos Public Affairs
  doi: 10.1111/j.1088-4963.1998.tb00063.x
– volume: 25
  start-page: 14
  issue: 1
  year: 2019
  ident: 1455_CR82
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0320-3
– volume-title: Born free and equal? A philosophical inquiry into the nature of discrimination
  year: 2013
  ident: 1455_CR71
  doi: 10.1093/acprof:oso/9780199796113.001.0001
– volume: 29
  start-page: 449
  year: 1999
  ident: 1455_CR80
  publication-title: Can J Philos
  doi: 10.1080/00455091.1999.10717521
– volume: 14
  start-page: 1114
  issue: 4
  year: 2010
  ident: 1455_CR6
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2039485
– volume: 1
  start-page: 389
  year: 2019
  ident: 1455_CR63
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0088-2
– volume: 169
  start-page: 866
  issue: 12
  year: 2018
  ident: 1455_CR90
  publication-title: Ann Intern Med
  doi: 10.7326/M18-1990
– volume-title: Discrimination and disrespect
  year: 2015
  ident: 1455_CR35
  doi: 10.1093/acprof:oso/9780198732877.001.0001
– volume: 383
  start-page: 874
  issue: 9
  year: 2020
  ident: 1455_CR113
  publication-title: N Engl J Med
  doi: 10.1056/NEJMms2004740
– year: 2019
  ident: 1455_CR15
  publication-title: J Bus Ethics
  doi: 10.1007/s10551-019-04226-4
– ident: 1455_CR58
  doi: 10.29173/irie345
– ident: 1455_CR73
  doi: 10.1145/3340531.3412152
– year: 2016
  ident: 1455_CR10
  publication-title: AI Soc
  doi: 10.1007/s00146-016-0677-0
– ident: 1455_CR2
– volume-title: Dark ghettos: injustice, dissent, and reform
  year: 2016
  ident: 1455_CR101
  doi: 10.2307/j.ctv24w638g
– ident: 1455_CR62
– volume: 6
  start-page: 65661
  year: 2018
  ident: 1455_CR55
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878254
– volume: 1
  start-page: 1
  issue: 3
  year: 2021
  ident: 1455_CR111
  publication-title: AI Ethics
  doi: 10.1007/s43681-021-00038-3
– ident: 1455_CR47
– volume: 32
  start-page: 69
  issue: 1
  year: 2019
  ident: 1455_CR45
  publication-title: Philos Technol
  doi: 10.1007/s13347-017-0278-y
– ident: 1455_CR104
  doi: 10.1111/j.1088-4963.2003.00005.x
– volume-title: Algorithms of oppression: how search engines reinforce racism
  year: 2018
  ident: 1455_CR79
  doi: 10.18574/nyu/9781479833641.001.0001
– volume: 21
  start-page: 658
  issue: 6
  year: 2020
  ident: 1455_CR100
  publication-title: Televis New Med
  doi: 10.1177/1527476420919691
– ident: 1455_CR1
  doi: 10.1145/3351095.3372871
– ident: 1455_CR89
– volume: 109
  start-page: 79
  year: 2019
  ident: 1455_CR9
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.04.027
– ident: 1455_CR96
  doi: 10.4159/9780674977440
– year: 2021
  ident: 1455_CR107
  publication-title: AI Soc
  doi: 10.1007/s00146-021-01154-8
– ident: 1455_CR34
  doi: 10.2139/ssrn.2972855
– ident: 1455_CR42
– year: 2016
  ident: 1455_CR8
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.2477899
– volume-title: Sovereign virtue: the theory and practice of equality
  year: 2000
  ident: 1455_CR33
– volume: 320
  start-page: 1101
  issue: 11
  year: 2018
  ident: 1455_CR61
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
– volume: 38
  start-page: 143
  issue: 2
  year: 2010
  ident: 1455_CR77
  publication-title: Philos Public Aff
  doi: 10.1111/j.1088-4963.2010.01181.x
– ident: 1455_CR103
– ident: 1455_CR7
– volume: 24
  start-page: 3
  issue: 1
  year: 2015
  ident: 1455_CR76
  publication-title: J Strateg Inf Syst
  doi: 10.1016/j.jsis.2015.02.001
– volume: 366
  start-page: 447
  year: 2019
  ident: 1455_CR83
  publication-title: Science
  doi: 10.1126/science.aax2342
– ident: 1455_CR97
  doi: 10.1145/3287560.3287598
– ident: 1455_CR84
– ident: 1455_CR31
– ident: 1455_CR57
  doi: 10.1007/978-1-4020-6914-7_2
– ident: 1455_CR25
– volume: 14
  start-page: 335
  issue: 3/4
  year: 2010
  ident: 1455_CR117
  publication-title: J Ethics
  doi: 10.1007/s10892-010-9085-8
– volume: 88
  start-page: 36
  year: 1977
  ident: 1455_CR28
  publication-title: Ethics
  doi: 10.1086/292054
– ident: 1455_CR64
  doi: 10.1109/ICDMW.2012.101
– year: 2019
  ident: 1455_CR106
  publication-title: J Clin Med
  doi: 10.3390/jcm8030360
SSID ssj0006582
Score 2.5918636
Snippet The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 549
SubjectTerms Algorithms
Artificial Intelligence
Bias
Computer Science
Control
Data mining
Engineering Economics
Ethics
Health care
Learning algorithms
Logistics
Machine learning
Marketing
Mechatronics
Medical ethics
Methodology of the Social Sciences
Organization
Original
Original Article
Performing Arts
Philosophy
Principles
Robotics
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4dALhQIlUJCRkDiARRI7jsMFrRAVCFT1AKi3yHGc7kptdtlsEfx7ZhwnJSvRC7es7ET2zvP4jT0fAC_Q4LKyLmJuKym4bGTGdYU_szTGZS4QAf664PuX_PhYn54WJ-HArQtulYNO9Iq6Xlo6I39DWVtyjfZ3_G71g1PVKLpdDSU0bsKtJE0TwvnnnI-aGHfXdCglj7RFhaAZHzpHtgG535JjgswyriYb07Z6_mt_2vad3LpA9fvS0d7_zugu3AmMlM16CN2DG67dh72h2gMLi38fdk-Gqge_78OvPvKFVQvTMYMPFN3bVwgjSb9la1e7xhefYEgx2ewTc96znq2G0322bBjdJpGuZYuWzUdPNHbhPTwdDyUtzpg5P8ORb-YX3QP4dvTh6_uPPBRx4Ba5meJ5rAskDS5TRlglnUaFajOXqEpqU2Ro_jkjXIOGlBWZqeqqkk3jdGMqJDJaO_EQdtpl6x4BEwilNKlcZpBYGKkLG7vYqLqQdZ07aSJIBgmWNmQ4p0Ib5-WYm9lLvUSpl17qpYrg1fjOqs_vcW3vlwSMkhY_ftmaEMOA46M0WuUMjTOVI-VKIjic9MRFa6fNAybKoDS68goQETwfm-lNcoRr3fIS-1BYlZKFFBEc9Egcxy2QC1M6wwjyCUbHDpRKfNrSLuY-pXhBSXhSnN_rAc1Xw_r33_H4-lk8gd0UKWHv53QIO5v1pXsKt-3PzaJbP_NL9Q_8BUQo
  priority: 102
  providerName: ProQuest
Title Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms
URI https://link.springer.com/article/10.1007/s00146-022-01455-6
https://www.ncbi.nlm.nih.gov/pubmed/35615443
https://www.proquest.com/docview/2807780930
https://www.proquest.com/docview/2670064943
https://pubmed.ncbi.nlm.nih.gov/PMC9123626
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1435-5655
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006582
  issn: 0951-5666
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMXyrMEyspISBwgUjZ-xOG2oFYgYFkVqFZcIsdxupHabLW7Rfx8ZpwHZAVIcLESeRLZzjw-x_MAeIobLiuKNAptLngoSiFDneOtjCMUc44c4I8LTt8n06mez9NZGxS27rzduyNJr6n7YDdC8-QwS64EQspQ7cAemjtN4njy6bTXv2hT466APIIV1YbK_P4dA3O0rZR_sUrbHpNbx6beGh3v_988bsHNFn2yScMut-Gaq-_AflfZgbWCfhe-N4EtLK_Mmhm8oODdpgAYfciXbOUKV_raEgwRJJu8Zc47zrPL7uc9W5aMDotIlbKqZove0YxdeAdOF7YVK86YOT9brqrN4mJ9D74cH31-_SZsazSEFqGXCpNIp4gJnFSGWyWcRn1ppRurXGiTStzdOcNdifsky6XJizwXZel0aXLEKVo7fh9262XtHgDjyCnxOHfSIG4wQqc2cpFRRSqKInHCBDDuPlVm2wTmVEfjPOtTL_ulzXBpM7-0mQrgef_MZZO-46_Uz4gDMpJtfLM1bYgCjo-yZGUT3HupBBHVOIDDASXKpB12dzyUtTphnVHeoURHKY8CeNJ305Pk51a75RXSUNSUEqngARw0LNePmyPUpWyFASQDZuwJKFP4sKeuFj5jeEo5dmKc34uOJX8O68_L8fDfyB_BjRgRYOPWdAi7m9WVewzX7bdNtV6NYCeZ6xHsvTqazk7w7l0SYvsh_khtMsN2Jr-OvCT_AKaGPDw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQvLZRHDQUWCcQBLBx7ba-REIqAqlFDlENBvW3X63UTqXVCnAL9U_xGZtaP4kj01gO3RLt21ptvXt6Z-QBeYMCleZZ4rk554PKch65I8WvoeyjmASLAHhd8G8ajkTg6SsZr8LuphaG0ykYnWkWdzTS9I39LXVtigfG392H-3SXWKDpdbSg0KlgcmIufGLKV7wef8P996ft7nw8_7rs1q4Cr0VmI3NgTCVoxE0Yq0BE3AiVch6YXpVyoJMR4xKjA5OjZ6yBUaZamPM-NyFWKllUIE-B9b8BNdCN8YVMFx63mR2vuN9T1-FNRXaRjS_UoFqF0X0qE4GHoRh1DuGoO_rKHq7maKwe21g7ubf1vO3gHNmuPm_UrEbkLa6bYhq2GzYLVym0bNsYNq8PFPfhVVfawdKpKpvADVS9XDGiE5HdsYTKTW3INhi406w-YsZUDbN6cXrBZzui0jGwJmxZs0mbasTObwWrcmrLjhKnTE9yp5eSsvA9fr2UzHsB6MSvMDrAARcXvpSZU6DgpLhLtGU9FWcKzLDZcOdBrECN13cGdiEROZdt72qJMIsqkRZmMHHjdXjOv-pdcOfsVAVGScsM7a1XXaOD6qE2Y7GPwGcXoUvYc2O3MRKWku8MNBmWtFEt5CUAHnrfDdCUl-hVmdo5zqGws4gkPHHhYIb9dd4C-PrVrdCDuyEQ7gVqld0eK6cS2TE-oyZCPz_emkZ7LZf17Ox5d_RTP4Pb-4ZehHA5GB49hw0f3t8rp2oX15eLcPIFb-sdyWi6eWjXB4Pi6peoPGwii2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvLZSXocAigTiAVcde22skhCJKRNQqygFQxcVdr9dNpNZJ4xToX-PXMbP2ujgSvfXALdGunfXmm5d3Zj6AlxhwKZ4nnqsyHri84KErMvwa-h6KeYAIMMcF3w7i0UgcHibjNfhta2EordLqRKOo85mid-S71LUlFhh_e7tFkxYx3ht8mJ-5xCBFJ62WTqOGyL6--InhW_V-uIf_9SvfH3z68vGz2zAMuAodh8iNPZGgRdNhJAMVcS1Q2lWoe1HGhUxCjE20DHSBXr4KQpnlWcaLQotCZmhlhdAB3vcG3IwxxqTAbxx-b60AWnbf0tjjT0VNwY4p26O4hFJ_KSmCh6EbdYziqmn4yzau5m2uHN4amzjY-p938w5sNp4469eicxfWdLkNW5blgjVKbxs2xpbt4eIe_Korflg2lRWT-IGqmmtmNEL4O7bQuS4M6QZD15r1h0ybigI2t6cabFYwOkUjG8OmJZu0GXjs1GS2areh8jhm8uQYd2o5Oa3uw9dr2YwHsF7OSv0IWIAi5PcyHUp0qCQXifK0J6M84Xkeay4d6Fn0pKrp7E4EIydp25PaIC5FxKUGcWnkwJv2mnnd1-TK2a8JlCkpPbyzkk3tBq6P2oelfQxKoxhdzZ4DO52ZqKxUd9jiMW2UZZVegtGBF-0wXUkJgKWeneMcKieLeMIDBx7WUtCuO8AYgNo4OhB35KOdQC3UuyPldGJaqSfUfMjH53trJelyWf_ejsdXP8VzuI3ClB4MR_tPYMNHr7hO9dqB9eXiXD-FW-rHclotnhmNweDouoXqD8Iuq7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+bias+and+discrimination%3A+redefining+the+AI+ethics+principle+of+fairness+in+healthcare+machine-learning+algorithms&rft.jtitle=AI+%26+society&rft.au=Giovanola%2C+Benedetta&rft.au=Tiribelli%2C+Simona&rft.date=2023-04-01&rft.pub=Springer+London&rft.issn=0951-5666&rft.eissn=1435-5655&rft.volume=38&rft.issue=2&rft.spage=549&rft.epage=563&rft_id=info:doi/10.1007%2Fs00146-022-01455-6&rft.externalDocID=10_1007_s00146_022_01455_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-5666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-5666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-5666&client=summon