A method to measure paddle and detector pressures and footprints in mammography

Purpose: Compression is necessary in mammography to improve image quality and reduce radiation burden. Maximizing the amount of breast in contact with the image receptor (IR) is important. To achieve this, for the craniocaudal projection, there is no consensus within the literature regarding how the...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 40; no. 4; pp. 041907 - n/a
Main Authors: Hogg, Peter, Szczepura, Katy, Darlington, Alison, Maxwell, Anthony
Format: Journal Article
Language:English
Published: United States American Association of Physicists in Medicine 01.04.2013
Subjects:
ISSN:0094-2405, 2473-4209, 2473-4209
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Compression is necessary in mammography to improve image quality and reduce radiation burden. Maximizing the amount of breast in contact with the image receptor (IR) is important. To achieve this, for the craniocaudal projection, there is no consensus within the literature regarding how the IR should be positioned relative to the inframammary fold (IMF). No information exists within the literature to describe how pressure balancing between IR and paddle, and IR breast footprint, might be optimized. This paper describes a novel method for measuring the respective pressures applied to the breast from the IR and the paddle and a method to simultaneously measure the breast footprints on the IR and the paddle. Methods: Using a deformable breast phantom and electronic pressure-sensitive mat, area and pressure readings were gathered from two mammography machines and four paddles at 60, 80, and 100 N with the IR positioned at −2, −1, 0, +1, and +2 cm relative to the IMF (60 combinations in total). Results: Paddle and IR footprints were calculated along with a uniformity index (UI). For all four paddle/machine/pressure combinations the greatest IR footprint was achieved at IMF +2 cm. The UI indicates that the best pressure/footprint balance is achieved at IMF +1 cm. Conclusions: The authors’ method appears to be suited to measuring breast footprints and pressures on IR and paddle and a human female study is planned.
Bibliography:Author to whom correspondence should be addressed. Electronic mail
P.Hogg@salford.ac.uk
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:0094-2405
2473-4209
2473-4209
DOI:10.1118/1.4792720