Corneal wound healing
The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such a...
Gespeichert in:
| Veröffentlicht in: | Experimental eye research Jg. 197; S. 108089 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.08.2020
|
| Schlagworte: | |
| ISSN: | 0014-4835, 1096-0007, 1096-0007 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.
•Keratocyte apoptosis is the first observable stromal event after anterior corneal injury.•Normal or defective regeneration of the EBM controls regenerative vs. fibrotic healing.•Descemet's membrane modulates regenerative vs. fibrotic healing for posterior injuries.•Fibrosis is dynamic with ongoing mitosis, development and apoptosis of myofibroblasts. |
|---|---|
| AbstractList | The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet’s basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA+ myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. •Keratocyte apoptosis is the first observable stromal event after anterior corneal injury.•Normal or defective regeneration of the EBM controls regenerative vs. fibrotic healing.•Descemet's membrane modulates regenerative vs. fibrotic healing for posterior injuries.•Fibrosis is dynamic with ongoing mitosis, development and apoptosis of myofibroblasts. The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. |
| ArticleNumber | 108089 |
| Author | Wilson, Steven E. |
| Author_xml | – sequence: 1 givenname: Steven E. surname: Wilson fullname: Wilson, Steven E. email: wilsons4@ccf.org, wilsons4@ccf.org organization: Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32553485$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PwyAYx4nR6Hw5evFgPHrpBAotTYyJWXxLTLzomVB4urF0oNBN_fbSdDPqwRPkef4v8NtH2847QOiE4DHBpLiYj-EDwphi2g8EFtUWGhFcFRnGuNxGI4wJy5jI-R7aj3Gepjkr2S7ayynnORN8hI4nPjhQ7dm7XzpzNktX66aHaKdRbYSj9XmAXm5vnif32ePT3cPk-jHTjPMua3iR8sqcVqY2hQDOCgpFXZvGMGY0qxvMiNZCaFETZcrCANPQ8FqVhgms8wN0NeS-LusFGA2uC6qVr8EuVPiUXln5e-PsTE79SpbpV4zyFHC-Dgj-bQmxkwsbNbStcuCXUVJGOK3Ss8okPf3Z9V2yYZEEYhDo4GMM0EhtO9VZ31fbVhIse-xyLnvssscuB-zJSv9YN-n_mi4HEyTCK5u2UVtwGowNoDtpvP3P_gWLcJte |
| CitedBy_id | crossref_primary_10_1038_s42003_024_05934_y crossref_primary_10_3390_app15179794 crossref_primary_10_1016_j_csbj_2025_05_042 crossref_primary_10_1088_2752_5724_adac80 crossref_primary_10_1097_ICO_0000000000003242 crossref_primary_10_31083_j_fbl2705147 crossref_primary_10_1096_fj_202401054R crossref_primary_10_1002_adbi_202400571 crossref_primary_10_1016_j_ijbiomac_2024_135479 crossref_primary_10_1016_j_exer_2023_109523 crossref_primary_10_2147_OPTH_S548579 crossref_primary_10_1016_j_lssr_2025_05_005 crossref_primary_10_1016_j_jddst_2024_105529 crossref_primary_10_1242_dmm_050090 crossref_primary_10_1038_s41419_022_04963_x crossref_primary_10_3390_jcm11205991 crossref_primary_10_1111_eos_12956 crossref_primary_10_1016_j_jhazmat_2023_133219 crossref_primary_10_1016_j_cellsig_2023_110755 crossref_primary_10_3389_fimmu_2025_1586039 crossref_primary_10_3390_cells13050458 crossref_primary_10_1038_s41598_021_87910_8 crossref_primary_10_1016_j_exer_2023_109657 crossref_primary_10_1007_s13744_025_01306_1 crossref_primary_10_1038_s41433_025_03619_2 crossref_primary_10_3390_ijms241612615 crossref_primary_10_3389_fcell_2020_00731 crossref_primary_10_3390_gels10100662 crossref_primary_10_1186_s13287_025_04504_1 crossref_primary_10_1016_j_exer_2023_109495 crossref_primary_10_1002_adhm_202402567 crossref_primary_10_1097_ICO_0000000000003378 crossref_primary_10_1016_j_matbio_2024_02_004 crossref_primary_10_1371_journal_pone_0320802 crossref_primary_10_1016_j_exer_2024_110130 crossref_primary_10_3390_ijms24043329 crossref_primary_10_1080_17425247_2024_2391473 crossref_primary_10_3389_fimmu_2023_1050594 crossref_primary_10_1038_s41420_025_02684_6 crossref_primary_10_1177_11206721251333590 crossref_primary_10_1016_j_bioactmat_2024_07_008 crossref_primary_10_1021_acsomega_5c01135 crossref_primary_10_1186_s40662_024_00387_0 crossref_primary_10_1007_s11033_025_10810_x crossref_primary_10_1016_j_ijbiomac_2025_142695 crossref_primary_10_3390_biomedicines12102289 crossref_primary_10_3390_cells12091294 crossref_primary_10_1167_iovs_63_4_2 crossref_primary_10_1002_adhm_202300192 crossref_primary_10_1016_j_exer_2024_109982 crossref_primary_10_3389_fgene_2023_1114601 crossref_primary_10_1016_j_mtbio_2025_101695 crossref_primary_10_3390_vetsci12080785 crossref_primary_10_7759_cureus_87260 crossref_primary_10_1007_s00417_022_05572_2 crossref_primary_10_4081_ejh_2023_3663 crossref_primary_10_1016_j_ijbiomac_2023_127084 crossref_primary_10_1038_s41598_024_66608_7 crossref_primary_10_1016_j_exer_2024_110027 crossref_primary_10_3389_fmed_2025_1517403 crossref_primary_10_1021_acs_biomac_5c00221 crossref_primary_10_1016_j_ejpb_2023_07_007 crossref_primary_10_1515_jcim_2023_0076 crossref_primary_10_3390_biomedicines12122784 crossref_primary_10_1016_j_lssr_2024_08_007 crossref_primary_10_3390_polym16081118 crossref_primary_10_1016_j_clae_2022_101795 crossref_primary_10_3390_ijms24021461 crossref_primary_10_1016_j_jbc_2023_105233 crossref_primary_10_1016_j_intimp_2024_113023 crossref_primary_10_1016_j_jddst_2025_107271 crossref_primary_10_1016_j_biopha_2023_115206 crossref_primary_10_3390_biomedicines10020339 crossref_primary_10_1016_j_exer_2023_109390 crossref_primary_10_3341_kjo_2023_0019 crossref_primary_10_3390_ijms25084400 crossref_primary_10_1016_j_jtos_2023_05_005 crossref_primary_10_1097_ICO_0000000000003829 crossref_primary_10_3390_pharmaceutics16111424 crossref_primary_10_1016_j_biopha_2025_117857 crossref_primary_10_1016_j_exer_2023_109440 crossref_primary_10_1080_02713683_2022_2129072 crossref_primary_10_2217_epi_2023_0147 crossref_primary_10_47172_ijhmreview_v11i1_405 crossref_primary_10_3390_biology12091263 crossref_primary_10_1186_s12893_025_03023_3 crossref_primary_10_1016_j_exer_2024_110163 crossref_primary_10_1016_j_isci_2022_104200 crossref_primary_10_3389_fbioe_2024_1455027 crossref_primary_10_1080_17460751_2025_2472578 crossref_primary_10_3390_ijms23073630 crossref_primary_10_1016_j_exer_2025_110321 crossref_primary_10_1038_s41598_023_37776_9 crossref_primary_10_1097_j_jcro_0000000000000153 crossref_primary_10_1167_iovs_64_14_1 crossref_primary_10_1093_burnst_tkae071 crossref_primary_10_1038_s41598_021_04086_x crossref_primary_10_1016_S0246_0343_24_87292_1 crossref_primary_10_1016_j_exer_2021_108647 crossref_primary_10_1016_j_exer_2022_109312 crossref_primary_10_15407_biotech15_02_053 crossref_primary_10_1111_jcmm_18027 crossref_primary_10_3390_gels8070431 crossref_primary_10_1016_j_preteyeres_2022_101090 crossref_primary_10_1080_17435889_2025_2550236 crossref_primary_10_1167_iovs_64_12_13 crossref_primary_10_3390_life13101981 crossref_primary_10_1016_j_jtos_2023_02_003 crossref_primary_10_3390_cells12060876 crossref_primary_10_1080_09273948_2023_2173240 crossref_primary_10_1016_j_jtos_2024_10_005 crossref_primary_10_1371_journal_pone_0296022 crossref_primary_10_1016_j_ajpath_2024_10_017 crossref_primary_10_3390_cells12232730 crossref_primary_10_3390_ijms232315325 crossref_primary_10_1016_j_displa_2023_102507 crossref_primary_10_1016_j_exer_2025_110419 crossref_primary_10_1055_a_2272_6077 crossref_primary_10_11603_mcch_2410_681X_2025_i2_15521 crossref_primary_10_1016_j_exer_2020_108218 crossref_primary_10_1002_pol_20210916 crossref_primary_10_1016_j_exer_2021_108459 crossref_primary_10_1016_j_exer_2021_108579 crossref_primary_10_1016_j_exer_2020_108213 crossref_primary_10_1016_j_ajpath_2024_11_007 crossref_primary_10_1167_iovs_62_4_8 crossref_primary_10_1016_j_addr_2023_114721 crossref_primary_10_1016_j_actbio_2025_02_006 crossref_primary_10_1167_iovs_64_13_9 crossref_primary_10_3390_biom13071028 crossref_primary_10_3390_ijms24087319 crossref_primary_10_3390_pharmaceutics15041167 crossref_primary_10_1167_iovs_66_2_45 crossref_primary_10_3390_cells12111533 crossref_primary_10_1097_ICO_0000000000003637 crossref_primary_10_3389_fmed_2024_1384500 crossref_primary_10_1007_s10792_025_03708_x crossref_primary_10_3390_ijms24076839 crossref_primary_10_3390_bioengineering9080405 crossref_primary_10_1186_s12886_023_03234_3 crossref_primary_10_3390_ijms23158226 crossref_primary_10_1097_ICO_0000000000003476 crossref_primary_10_1016_j_jtos_2023_04_012 crossref_primary_10_1016_j_exer_2024_110198 crossref_primary_10_1167_iovs_63_2_30 |
| Cites_doi | 10.1006/exer.2001.1054 10.1016/0012-1606(91)90081-D 10.1016/j.exer.2008.12.006 10.3928/1081597X-20181112-01 10.1016/j.matbio.2017.06.003 10.1159/000310834 10.1016/j.jdermsci.2005.10.005 10.1016/j.preteyeres.2015.07.002 10.1038/s41598-018-30964-y 10.1006/exer.1997.0371 10.1167/iovs.09-4753 10.1016/j.exer.2018.03.025 10.1056/NEJM199307013290118 10.1177/34.1.3510247 10.1038/nri3070 10.3109/09273949409057079 10.1016/j.exer.2018.02.018 10.3109/02713689609008900 10.1016/j.exer.2008.11.019 10.1167/iovs.13-12106 10.1002/ar.24181 10.1097/00003226-199609000-00011 10.4049/jimmunol.144.8.3021 10.1006/exer.1996.0266 10.1016/j.exer.2011.12.022 10.1073/pnas.92.15.6768 10.1097/00003226-199707000-00015 10.1167/iovs.03-1162 10.1242/jcs.112.5.613 10.1016/j.exer.2017.05.003 10.1189/jlb.0712365 10.1016/j.exer.2015.03.016 10.1006/exer.1994.1081 10.3109/02713689509033520 10.1006/exer.1999.0807 10.1096/fj.02-0935fje 10.1016/S0014-4835(02)00251-8 10.1002/jcp.25623 10.1007/s10059-009-0069-0 10.1016/j.brainresbull.2009.08.024 10.1016/j.exer.2005.09.021 10.3928/1081597X-20170126-02 10.1016/j.exer.2010.06.021 10.1016/bs.pmbts.2015.05.002 10.1006/exer.2002.2066 10.1016/j.exer.2009.02.011 10.1016/j.exer.2010.04.007 10.1167/iovs.18-25202 10.22336/rjo.2019.4 10.1016/S0161-6420(97)30306-6 10.1074/jbc.M111.336073 10.1167/iovs.08-2699 10.1002/(SICI)1097-4652(199709)172:3<361::AID-JCP10>3.0.CO;2-9 10.1046/j.1432-1327.1998.2550060.x 10.1016/j.exer.2009.02.022 10.1097/00004397-199603640-00005 10.3928/1081597X-20171128-01 10.1002/jcp.24268 10.1076/ceyr.16.1.19.5119 10.1038/s41598-018-22821-9 10.1167/iovs.13-12547 10.1242/jcs.111.22.3323 10.1016/j.exer.2010.06.023 10.1167/iovs.04-0561 10.1167/iovs.18-26451 10.1016/j.exer.2014.01.003 10.1006/exer.1994.1152 10.1073/pnas.93.9.4219 10.1167/iovs.02-1188 10.1006/exer.2000.0926 10.1006/exer.1996.0038 10.1006/exer.1996.0226 10.1016/j.exer.2009.06.003 10.1016/j.exer.2009.03.001 10.1001/archopht.1994.01090140130034 10.1016/j.ajo.2005.09.021 10.1016/j.exer.2011.09.012 10.1074/jbc.274.8.5236 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.exer.2020.108089 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1096-0007 |
| EndPage | 108089 |
| ExternalDocumentID | PMC7483425 32553485 10_1016_j_exer_2020_108089 S0014483520303481 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY025585 – fundername: NEI NIH HHS grantid: R01 EY010056 – fundername: NEI NIH HHS grantid: P30 EY001730 |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXLA AAXUO ABBQC ABCQJ ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HMQ HVGLF HZ~ IHE J1W KOM L7B LCYCR LG5 LUGTX LZ2 M29 M2U M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSI SSN SSZ T5K TEORI WUQ X7M XPP ZA5 ZGI ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c455t-f564747329dbd68e5462e6bbdfd44dc4bf041cc88c8b1ad76de4cef5ba7d480c3 |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565674000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-4835 1096-0007 |
| IngestDate | Tue Sep 30 16:02:22 EDT 2025 Sun Sep 28 02:33:25 EDT 2025 Mon Jul 21 06:02:19 EDT 2025 Sat Nov 29 07:33:52 EST 2025 Tue Nov 18 20:35:38 EST 2025 Fri Feb 23 02:46:04 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cornea Interleukin-1 Wound healing Fibrocytes Injury Scarring. corneal Stromal-epithelial interactions Infection PDGF Fibrosis Corneal fibroblasts Keratocyte apoptosis Myofibroblasts TGF beta |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c455t-f564747329dbd68e5462e6bbdfd44dc4bf041cc88c8b1ad76de4cef5ba7d480c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7483425 |
| PMID | 32553485 |
| PQID | 2415294627 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483425 proquest_miscellaneous_2415294627 pubmed_primary_32553485 crossref_citationtrail_10_1016_j_exer_2020_108089 crossref_primary_10_1016_j_exer_2020_108089 elsevier_sciencedirect_doi_10_1016_j_exer_2020_108089 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Experimental eye research |
| PublicationTitleAlternate | Exp Eye Res |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wilson, Walker, Chwang, He (bib97) 1993; 34 Cousins, McCabe, Danielpour, Streilein (bib11) 1991; 32 Hassell, Schrecengost, Rada, SundarRaj, Sossi, Thoft (bib23) 1992; 33 Jester, Huang, Petroll, Cavanag (bib30) 2002; 75 Nakayasu (bib59) 1988; 32 Marino, Santhiago, Santhanam, Lassance, Thangavadivel, Medeiros, Torricelli, Wilson (bib47) 2017; 33 Hassell, Birk (bib22) 2010; 91 Stramer, Zieske, Jung, Austin, Fini (bib72) 2003; 44 Girard, Matsubara, Fini (bib18) 1991; 32 Zieske, Guimarães, Hutcheon (bib100) 2001; 72 Wilson, Medeiros, Santhiago (bib93) 2018; 34 Tervo, Vesaluoma, Bennett, Schwall, Helena, Liang, Wilson (bib73) 1997; 64 Jester, Barry-Lane, Cavanagh, Petroll (bib29) 1996; 15 Solomon, Dursun, Liu, Xie, Macri, Pflugfelder (bib71) 2001; 42 Gohring, Sasaki, Heldin, Timpl (bib19) 1998; 255 Medeiros, Marino, Lassance, Thangavadivel, Santhiago, Wilson (bib51) 2018; 34 Nakamura, Kurosaka, Yoshino, Oshima, Kurosaka (bib58) 2002; 43 Wilson, He, Weng, Zieske, Jester, Schultz (bib86) 1994; 59 Kaur, Chaurasia, Agrawal, Wilson (bib32) 2009; 89 Singh, Santhiago, Barbosa, Agrawal, Ambati, Singh, Wilson (bib70) 2011; 93 Iozzo, Zoeller, Nystrom (bib27) 2009; 27 Ko, Yanai, Chikama, Nishida (bib35) 2010; 51 Liu, Kao (bib44) 2015; 134 Wilson, He, Weng, Li, McDowall, Vital, Chwang (bib84) 1996; 62 Li, Tseng (bib41) 1997; 172 Torricelli, Marino, Santhanam, Wu, Singh, Wilson (bib76) 2015; 134 Hong, Liu, Lee, Mohan, Mohan, Woods, He, Wilson (bib24) 2001; 42 Torres, de Vos, van der Gaag, Kijlstra (bib75) 1994; 2 Yu, Yin, Xu, Huang (bib98) 2010; 81 Lecler, Roy, Santerre, Proulx (bib39) 2018; 8 Gupta, Monroy, Ji, Yoshino, Huang, Pflugfelder (bib21) 1996; 15 Koizumi, Yamasaki, Kawasaki, Sotozono, Inatomi, Mochida, Kinoshita (bib36) 2006; 141 Meltendorf, Burbach, Ohrloff, Ghebremedhin, Deller (bib53) 2009; 50 Mastropasqua, Massaro-Giordano, Nubile, Sacchetti (bib48) 2017; 232 Jester, Moller-Pedersen, Huang, Sax, Kays, Cavangh, Petroll, Piatigorsky (bib31) 1999; 112 Torricelli, Singh, Agrawal, Santhiago, Wilson (bib77) 2013; 54 Galligan, Fish (bib17) 2013; 93 Kim, Mohan, Mohan, Wilson (bib34) 1999; 40 Li, Lokeshwar, Solomon, Monroy, Ji, Pflugfelder (bib40) 2001; 73 Shibuya, Okamoto, Fujiwara (bib68) 2006; 41 Sharif, Sharif (bib66) 2019; 63 Dohlman, Gasset, Rose (bib14) 1968; 7 Mohan, Mohan, Kim, Stark, Wilson (bib57) 2000; 70 Torricelli, Singh, Santhiago, Wilson (bib78) 2013; 54 Shi, Pamer (bib67) 2011; 11 Wilson, Schultz, Chegini, Weng, He (bib96) 1994; 59 Wilson, Mohan, Netto, Perez, Possin, Huang, Kwon, Alekseev (bib94) 2004; 45 Barbosa, Chaurasia, Kaur, de Medeiros, Agrawal, Wilson (bib3) 2010; 91 Chaurasia, Kaur, Medeiros, Smith, Wilson (bib9) 2009; 89 Li, Weng, Mohan, Bennett, Schwall, Wang, Tabor, Kim, Hargrave, Cuevas, Wilson (bib42) 1996; 37 Latvala, Linna, Tervo (bib38) 1996; 36 Wilson, Lloyd, He (bib91) 1992; 33 Netto, Mohan, Sinha, Sharma, Dupps, Wilson (bib60) 2006; 82 Wilson, Lloyd (bib90) 1991; 32 Weng, Mohan, Li, Wilson (bib80) 1997; 16 Behrens, Villone, Koch, Brunner, Sorokin, Robenek, Bruckner-Tuderman, Bruckner, Hansen (bib5) 2012; 287 Vesaluoma, Teppo, Gronhangen-Riska, Tervo (bib79) 1997; 16 Yurchenco, Tsilibary, Charonis, Furthmayr (bib99) 1986; 34 Santhanam, Torricelli, Wu, Marino, Wilson (bib65) 2015; 21 Thygeson (bib74) 1947; 51 Lipshitz, Loewenstein, Varssano, Lazar (bib43) 1997; 104 Barbosa, Lin, Santhiago, Singh, Agrawal, Wilson (bib4) 2012; 96 Wilson, Pedroza, Beuerman, Hill (bib95) 1997; 64 Danjo, Gipson (bib13) 1998; 111 Fannon, Forsten-Williams, Dowd, Freedman, Folkman, Nugent (bib16) 2003; 17 Barbosa, Chaurasia, Cutler, Asosingh, Kaur, de Medeiros, Agrawal, Wilson (bib2) 2010; 91 Dowd, Cooney, Nugent (bib15) 1999; 274 Wilson, Li, Weng, Barry-Lane, Jester, Liang, Wordinger (bib88) 1996; 37 Paralkar, Vukicevic, Reddi (bib62) 1991; 143 Marino, Santhiago, Santhanam, Lassance, Thangavadivel, Medeiros, Bose, Tam, Wilson (bib46) 2017; 161 Kaur, Chaurasia, Medeiros, Agrawal, Salomao, Singh, Ambati, Wilson (bib33) 2009; 88 Bilgihan, Gurelik, Okur, Bilgihan, Hasanreisoglu, Imir (bib6) 1997; 211 Wilson, Lee, Murakami, Weng, Moninger (bib87) 1993; 329 Wilson, Liang, Kim (bib89) 1999; 40 Nishida, Sotozono, Adachi, Yamamoto, Yokoi, Kinoshita (bib61) 1995; 14 Saikia, Thangavadivel, Lassance, Medeiros, Wilson (bib63) 2018; 59 Wilson, Marino, Torricelli, Medeiros (bib92) 2017; 64 Ambrósio, Kara-José, Wilson (bib1) 2009; 89 Campos, Szerenyi, Lee, McDonnell, Lopez, McDonnell (bib8) 1994; 112 Mohan, Mohan, Ambrósio, Wilson (bib56) 2002; 43 Jeon, Hindman, Bubel, McDaniel, DeMagistris, Callan, Huxlin (bib28) 2018; 8 Wilson, He, Lloyd (bib83) 1992; 33 Santhanam, Marino, Torricelli, Wilson (bib64) 2017; 23 Wilson, Esposito (bib82) 2009; 89 Lassance, Marino, Medeiros, Thangavadivel, Wilson (bib37) 2018; 170 Mohan, Hutcheon, Choi, Hong, Lee, Mohan, Ambrósio, Zieske, Wilson (bib54) 2003; 76 Masur, Dewal, Dinh, Erenburg, Petridou (bib49) 1996; 93 West-Mays, Strissel, Sadow, Fini (bib81) 1995; 92 Crosson (bib12) 1989 Granstein, Staszewski, Knisely, Zeira, Nazareno, Latina, Albert (bib20) 1990; 144 Wilson, He, Weng, Li, Vital, Chwang (bib85) 1995; 36 Huer, Chaurasia, Wilson (bib25) 2009; 88 Huh, Chang, Jung (bib26) 2009; 24 Chi, Trinkaus-Randall (bib10) 2013; 228 Mohan, Liang, Kim, Helena, Baerveldt, Wilson (bib55) 1997; 65 Medeiros, Saikia, de Oliveira, Lassance, Santhiago, Wilson (bib52) 2019; 60 Medeiros, Lassance, Saikia, Wilson (bib50) 2018; 172 Calvillo, McLaren, Hodge, Bourne (bib7) 2004; 45 Singh, Barbosa, Torricelli, Santhiago, Wilson (bib69) 2014; 120 Zieske, Hutcheon, Guo (bib101) 2020; 303 Ljubimov, Saghizadeh (bib45) 2015; 49 Huer (10.1016/j.exer.2020.108089_bib25) 2009; 88 Ljubimov (10.1016/j.exer.2020.108089_bib45) 2015; 49 Wilson (10.1016/j.exer.2020.108089_bib87) 1993; 329 Cousins (10.1016/j.exer.2020.108089_bib11) 1991; 32 Gupta (10.1016/j.exer.2020.108089_bib21) 1996; 15 Behrens (10.1016/j.exer.2020.108089_bib5) 2012; 287 Lecler (10.1016/j.exer.2020.108089_bib39) 2018; 8 Li (10.1016/j.exer.2020.108089_bib40) 2001; 73 Mohan (10.1016/j.exer.2020.108089_bib56) 2002; 43 Hassell (10.1016/j.exer.2020.108089_bib23) 1992; 33 Meltendorf (10.1016/j.exer.2020.108089_bib53) 2009; 50 Wilson (10.1016/j.exer.2020.108089_bib93) 2018; 34 Zieske (10.1016/j.exer.2020.108089_bib100) 2001; 72 Singh (10.1016/j.exer.2020.108089_bib70) 2011; 93 Weng (10.1016/j.exer.2020.108089_bib80) 1997; 16 Tervo (10.1016/j.exer.2020.108089_bib73) 1997; 64 Li (10.1016/j.exer.2020.108089_bib42) 1996; 37 Saikia (10.1016/j.exer.2020.108089_bib63) 2018; 59 Kaur (10.1016/j.exer.2020.108089_bib33) 2009; 88 Huh (10.1016/j.exer.2020.108089_bib26) 2009; 24 Campos (10.1016/j.exer.2020.108089_bib8) 1994; 112 Ko (10.1016/j.exer.2020.108089_bib35) 2010; 51 Mohan (10.1016/j.exer.2020.108089_bib55) 1997; 65 Torricelli (10.1016/j.exer.2020.108089_bib78) 2013; 54 Wilson (10.1016/j.exer.2020.108089_bib90) 1991; 32 Barbosa (10.1016/j.exer.2020.108089_bib2) 2010; 91 Kaur (10.1016/j.exer.2020.108089_bib32) 2009; 89 Dowd (10.1016/j.exer.2020.108089_bib15) 1999; 274 Jeon (10.1016/j.exer.2020.108089_bib28) 2018; 8 Mastropasqua (10.1016/j.exer.2020.108089_bib48) 2017; 232 Wilson (10.1016/j.exer.2020.108089_bib83) 1992; 33 Danjo (10.1016/j.exer.2020.108089_bib13) 1998; 111 Masur (10.1016/j.exer.2020.108089_bib49) 1996; 93 Stramer (10.1016/j.exer.2020.108089_bib72) 2003; 44 Medeiros (10.1016/j.exer.2020.108089_bib50) 2018; 172 Shibuya (10.1016/j.exer.2020.108089_bib68) 2006; 41 Ambrósio (10.1016/j.exer.2020.108089_bib1) 2009; 89 Bilgihan (10.1016/j.exer.2020.108089_bib6) 1997; 211 Lassance (10.1016/j.exer.2020.108089_bib37) 2018; 170 Santhanam (10.1016/j.exer.2020.108089_bib65) 2015; 21 Wilson (10.1016/j.exer.2020.108089_bib85) 1995; 36 Li (10.1016/j.exer.2020.108089_bib41) 1997; 172 Barbosa (10.1016/j.exer.2020.108089_bib3) 2010; 91 Koizumi (10.1016/j.exer.2020.108089_bib36) 2006; 141 Lipshitz (10.1016/j.exer.2020.108089_bib43) 1997; 104 Wilson (10.1016/j.exer.2020.108089_bib89) 1999; 40 Kim (10.1016/j.exer.2020.108089_bib34) 1999; 40 Liu (10.1016/j.exer.2020.108089_bib44) 2015; 134 Wilson (10.1016/j.exer.2020.108089_bib91) 1992; 33 Granstein (10.1016/j.exer.2020.108089_bib20) 1990; 144 Medeiros (10.1016/j.exer.2020.108089_bib52) 2019; 60 Hassell (10.1016/j.exer.2020.108089_bib22) 2010; 91 Yu (10.1016/j.exer.2020.108089_bib98) 2010; 81 Chi (10.1016/j.exer.2020.108089_bib10) 2013; 228 Solomon (10.1016/j.exer.2020.108089_bib71) 2001; 42 Crosson (10.1016/j.exer.2020.108089_bib12) 1989 Paralkar (10.1016/j.exer.2020.108089_bib62) 1991; 143 Marino (10.1016/j.exer.2020.108089_bib46) 2017; 161 Barbosa (10.1016/j.exer.2020.108089_bib4) 2012; 96 Vesaluoma (10.1016/j.exer.2020.108089_bib79) 1997; 16 Jester (10.1016/j.exer.2020.108089_bib31) 1999; 112 Netto (10.1016/j.exer.2020.108089_bib60) 2006; 82 Thygeson (10.1016/j.exer.2020.108089_bib74) 1947; 51 Iozzo (10.1016/j.exer.2020.108089_bib27) 2009; 27 Singh (10.1016/j.exer.2020.108089_bib69) 2014; 120 Latvala (10.1016/j.exer.2020.108089_bib38) 1996; 36 Mohan (10.1016/j.exer.2020.108089_bib57) 2000; 70 Gohring (10.1016/j.exer.2020.108089_bib19) 1998; 255 Jester (10.1016/j.exer.2020.108089_bib29) 1996; 15 Calvillo (10.1016/j.exer.2020.108089_bib7) 2004; 45 Galligan (10.1016/j.exer.2020.108089_bib17) 2013; 93 Shi (10.1016/j.exer.2020.108089_bib67) 2011; 11 Torricelli (10.1016/j.exer.2020.108089_bib76) 2015; 134 Chaurasia (10.1016/j.exer.2020.108089_bib9) 2009; 89 West-Mays (10.1016/j.exer.2020.108089_bib81) 1995; 92 Nakayasu (10.1016/j.exer.2020.108089_bib59) 1988; 32 Nishida (10.1016/j.exer.2020.108089_bib61) 1995; 14 Yurchenco (10.1016/j.exer.2020.108089_bib99) 1986; 34 Sharif (10.1016/j.exer.2020.108089_bib66) 2019; 63 Torricelli (10.1016/j.exer.2020.108089_bib77) 2013; 54 Marino (10.1016/j.exer.2020.108089_bib47) 2017; 33 Wilson (10.1016/j.exer.2020.108089_bib84) 1996; 62 Wilson (10.1016/j.exer.2020.108089_bib95) 1997; 64 Wilson (10.1016/j.exer.2020.108089_bib88) 1996; 37 Girard (10.1016/j.exer.2020.108089_bib18) 1991; 32 Wilson (10.1016/j.exer.2020.108089_bib97) 1993; 34 Santhanam (10.1016/j.exer.2020.108089_bib64) 2017; 23 Wilson (10.1016/j.exer.2020.108089_bib96) 1994; 59 Hong (10.1016/j.exer.2020.108089_bib24) 2001; 42 Mohan (10.1016/j.exer.2020.108089_bib54) 2003; 76 Fannon (10.1016/j.exer.2020.108089_bib16) 2003; 17 Wilson (10.1016/j.exer.2020.108089_bib94) 2004; 45 Nakamura (10.1016/j.exer.2020.108089_bib58) 2002; 43 Wilson (10.1016/j.exer.2020.108089_bib82) 2009; 89 Zieske (10.1016/j.exer.2020.108089_bib101) 2020; 303 Dohlman (10.1016/j.exer.2020.108089_bib14) 1968; 7 Medeiros (10.1016/j.exer.2020.108089_bib51) 2018; 34 Jester (10.1016/j.exer.2020.108089_bib30) 2002; 75 Torres (10.1016/j.exer.2020.108089_bib75) 1994; 2 Wilson (10.1016/j.exer.2020.108089_bib92) 2017; 64 Wilson (10.1016/j.exer.2020.108089_bib86) 1994; 59 |
| References_xml | – volume: 11 start-page: 762 year: 2011 end-page: 774 ident: bib67 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat. Rev. Immunol. – volume: 32 start-page: 2201 year: 1991 end-page: 2211 ident: bib11 article-title: Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 17 start-page: 902 year: 2003 end-page: 904 ident: bib16 article-title: Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment publication-title: Faseb. J. – volume: 40 start-page: 1364 year: 1999 end-page: 1372 ident: bib34 article-title: Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 45 start-page: 3991 year: 2004 end-page: 3996 ident: bib7 article-title: Corneal reinnervation after LASIK: prospective 3-year longitudinal study publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 34 start-page: 59 year: 2018 end-page: 64 ident: bib93 article-title: Pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries publication-title: J. Refract. Surg. – volume: 33 start-page: 1987 year: 1992 end-page: 1995 ident: bib91 article-title: EGF, basic FGF, and TGF beta-1 messenger RNA production in rabbit corneal epithelial cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 91 start-page: 92 year: 2010 end-page: 96 ident: bib2 article-title: Corneal myofibroblast generation from bone marrow-derived cells publication-title: Exp. Eye Res. – volume: 112 start-page: 613 year: 1999 end-page: 622 ident: bib31 article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins' publication-title: J. Cell Sci. – volume: 89 start-page: 152 year: 2009 end-page: 158 ident: bib32 article-title: Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta-1 publication-title: Exp. Eye Res. – volume: 40 start-page: 2185 year: 1999 end-page: 2190 ident: bib89 article-title: Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 16 start-page: 19 year: 1997 end-page: 25 ident: bib79 article-title: Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy publication-title: Curr. Eye Res. – volume: 172 start-page: 361 year: 1997 end-page: 372 ident: bib41 article-title: Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts publication-title: J. Cell. Physiol. – volume: 24 start-page: 1405 year: 2009 end-page: 1416 ident: bib26 article-title: Temporal and spatial distribution of TGF-beta isoforms and signaling intermediates in corneal regenerative wound repair publication-title: Histol. Histopathol. – volume: 72 start-page: 33 year: 2001 end-page: 39 ident: bib100 article-title: Kinetics of keratocyte proliferation in response to epithelial debridement publication-title: Exp. Eye Res. – volume: 134 start-page: 61 year: 2015 end-page: 71 ident: bib44 article-title: Corneal epithelial wound healing publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 7 start-page: 520 year: 1968 end-page: 534 ident: bib14 article-title: The effect of the absence of corneal epithelium or endothelium on stromal keratocytes publication-title: Invest. Ophthalmol. – volume: 44 start-page: 4237 year: 2003 end-page: 4246 ident: bib72 article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 15 start-page: 505 year: 1996 end-page: 516 ident: bib29 article-title: Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes publication-title: Cornea – volume: 63 start-page: 15 year: 2019 end-page: 22 ident: bib66 article-title: Corneal neovascularization: updates on pathophysiology, investigations & management publication-title: Rom. J. Ophthalmol. – volume: 88 start-page: 992 year: 2009 end-page: 994 ident: bib25 article-title: Expression of interleukin-1 receptor antagonist in the cornea publication-title: Exp. Eye Res. – volume: 65 start-page: 575 year: 1997 end-page: 589 ident: bib55 article-title: Apoptosis in the cornea: further characterization of Fas-Fas ligand system publication-title: Exp. Eye Res. – volume: 104 start-page: 369 year: 1997 end-page: 373 ident: bib43 article-title: Late onset corneal haze after photorefractive keratectomy for moderate and high myopia publication-title: Ophthalmology – volume: 15 start-page: 605 year: 1996 end-page: 614 ident: bib21 article-title: Transforming growth factor beta-1 and beta-2 in human tear fluid publication-title: Curr. Eye Res. – volume: 8 start-page: 12945 year: 2018 ident: bib28 article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing publication-title: Sci. Rep. – volume: 32 start-page: 2441 year: 1991 end-page: 2454 ident: bib18 article-title: Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 112 start-page: 254 year: 1994 end-page: 260 ident: bib8 article-title: Keratocyte loss after corneal de-epithelialization in primates and rabbits publication-title: Arch. Ophthalmol. – volume: 2 start-page: 217 year: 1994 end-page: 222 ident: bib75 article-title: Expression of the interleukin 1 receptor antagonist in the normal human cornea publication-title: Ocul. Immunol. Inflamm. – volume: 89 start-page: 133 year: 2009 end-page: 139 ident: bib9 article-title: Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury publication-title: Exp. Eye Res. – volume: 120 start-page: 152 year: 2014 end-page: 160 ident: bib69 article-title: Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro publication-title: Exp. Eye Res. – volume: 8 start-page: 4438 year: 2018 end-page: 4453 ident: bib39 article-title: TGF-β1 promotes cell barrier function upon maturation of corneal endothelial cells publication-title: Sci. Rep. – volume: 172 start-page: 30 year: 2018 end-page: 35 ident: bib50 article-title: Posterior stromal keratocyte apoptosis triggered by mechanical endothelial injury and nidogen-1 production in the cornea publication-title: Exp. Eye Res. – volume: 59 start-page: 5589 year: 2018 end-page: 5598 ident: bib63 article-title: IL-1 and TGFβ modulation of epithelial basement membrane components perlecan and nidogen production by corneal stromal cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 37 start-page: 1582 year: 1996 end-page: 1592 ident: bib88 article-title: The Fas/Fas ligand system and other modulators of apoptosis in the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 287 start-page: 18700 year: 2012 end-page: 18709 ident: bib5 article-title: The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens publication-title: J. Biol. Chem. – volume: 50 start-page: 3688 year: 2009 end-page: 3695 ident: bib53 article-title: Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 23 start-page: 39 year: 2017 end-page: 51 ident: bib64 article-title: Epithelial basement membrane (EBM) regeneration and changes in EBM component mRNA expression in the anterior stroma after corneal injury publication-title: Mol. Vis. – volume: 59 start-page: 665 year: 1994 end-page: 678 ident: bib86 article-title: Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells publication-title: Exp. Eye Res. – volume: 27 start-page: 503 year: 2009 end-page: 513 ident: bib27 article-title: Basement membrane proteoglycans: modulators par excellence of cancer growth and angiogenesis publication-title: Mol. Cell. – volume: 93 start-page: 45 year: 2013 end-page: 50 ident: bib17 article-title: The role of circulating fibrocytes in inflammation and autoimmunity publication-title: J. Leukoc. Biol. – volume: 36 year: 1995 ident: bib85 article-title: Epithelial- and endothelial-derived interleukin-1 (IL-1) modulates corneal tissue organization and wound healing response through induction of keratocyte apoptosis publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 33 start-page: 1756 year: 1992 end-page: 1765 ident: bib83 article-title: EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 170 start-page: 177 year: 2018 end-page: 187 ident: bib37 article-title: Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury publication-title: Exp. Eye Res. – volume: 255 start-page: 60 year: 1998 end-page: 66 ident: bib19 article-title: Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope publication-title: Eur. J. Biochem. – volume: 51 start-page: 6286 year: 2010 end-page: 6293 ident: bib35 article-title: Downregulation of matrix metalloproteinase-2 in corneal fibroblasts by interleukin-1 receptor antagonist released from corneal epithelial cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 33 start-page: 337 year: 2017 end-page: 346 ident: bib47 article-title: Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy publication-title: J. Refract. Surg. – volume: 49 start-page: 17 year: 2015 end-page: 45 ident: bib45 article-title: Progress in corneal wound healing publication-title: Prog. Retin. Eye Res. – volume: 91 start-page: 326 year: 2010 end-page: 335 ident: bib22 article-title: The molecular basis of corneal transparency publication-title: Exp. Eye Res. – volume: 82 start-page: 788 year: 2006 end-page: 797 ident: bib60 article-title: Stromal haze, myofibroblasts, and surface irregularity after PRK publication-title: Exp. Eye Res. – volume: 34 start-page: 790 year: 2018 end-page: 798 ident: bib51 article-title: The impact of photorefractive keratectomy (PRK) and mitomycin C (MMC) on corneal nerves and their regeneration publication-title: J. Refract. Surg. – volume: 62 start-page: 325 year: 1996 end-page: 328 ident: bib84 article-title: Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing publication-title: Exp. Eye Res. – volume: 144 start-page: 3021 year: 1990 end-page: 3027 ident: bib20 article-title: Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation publication-title: J. Immunol. – volume: 33 start-page: 547 year: 1992 end-page: 557 ident: bib23 article-title: Biosynthesis of stromal matrix proteoglycans and basement membrane components by human corneal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 89 start-page: 124 year: 2009 end-page: 125 ident: bib82 article-title: Interleukin-1: a master regulator of the corneal response to injury publication-title: Exp. Eye Res. – volume: 228 start-page: 925 year: 2013 end-page: 929 ident: bib10 article-title: New insights in wound response and repair of epithelium publication-title: J. Cell. Physiol. – volume: 14 start-page: 235 year: 1995 end-page: 241 ident: bib61 article-title: Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea publication-title: Curr. Eye Res. – volume: 59 start-page: 63 year: 1994 end-page: 71 ident: bib96 article-title: Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea publication-title: Exp. Eye Res. – volume: 161 start-page: 101 year: 2017 end-page: 105 ident: bib46 article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits publication-title: Exp. Eye Res. – volume: 111 start-page: 3323 year: 1998 end-page: 3332 ident: bib13 article-title: Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement publication-title: J. Cell Sci. – volume: 70 start-page: 485 year: 2000 end-page: 491 ident: bib57 article-title: Defective keratocyte apoptosis in response to epithelial injury in STAT1 null mice publication-title: Exp. Eye Res. – volume: 32 start-page: 113 year: 1988 end-page: 125 ident: bib59 article-title: Stromal changes following removal of epithelium in rat cornea publication-title: Jpn. J. Ophthalmol. – volume: 51 start-page: I98 year: 1947 end-page: I209 ident: bib74 article-title: Marginal corneal infiltrates and ulcers publication-title: Trans. Am. Acad. Ophthalmol. Otolaryngol. – volume: 54 start-page: 6390 year: 2013 end-page: 6400 ident: bib78 article-title: The corneal epithelial basement membrane: structure, function and disease publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 64 start-page: 775 year: 1997 end-page: 779 ident: bib95 article-title: Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes publication-title: Exp. Eye Res. – volume: 32 start-page: 2747 year: 1991 end-page: 2756 ident: bib90 article-title: Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 64 start-page: 501 year: 1997 end-page: 504 ident: bib73 article-title: Tear hepatocyte growth factor (HGF) availability increases markedly after excimer laser surface ablation publication-title: Exp. Eye Res. – volume: 21 start-page: 1318 year: 2015 end-page: 1327 ident: bib65 article-title: Differential expression of epithelial basement membrane components nidogens-1 and 2 and perlecan in corneal stromal cells in vitro publication-title: Mol. Vis. – volume: 42 start-page: 2283 year: 2001 end-page: 2292 ident: bib71 article-title: Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 303 start-page: 1727 year: 2020 end-page: 1734 ident: bib101 article-title: Extracellular vesicles and cell-cell communications in the cornea publication-title: Anat. Rec. – volume: 43 start-page: 2603 year: 2002 end-page: 2608 ident: bib58 article-title: Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 143 start-page: 303 year: 1991 end-page: 308 ident: bib62 article-title: Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development publication-title: Dev. Biol. – volume: 64 start-page: 17 year: 2017 end-page: 26 ident: bib92 article-title: Corneal fibrosis: injury and defective regeneration of the epithelial basement membrane. A paradigm for fibrosis in other organs? publication-title: Matrix Biol. – volume: 88 start-page: 960 year: 2009 end-page: 965 ident: bib33 article-title: Corneal stroma PDGF blockade and myofibroblast development publication-title: Exp. Eye Res. – volume: 60 start-page: 1010 year: 2019 end-page: 1020 ident: bib52 article-title: Descemet's membrane modulation of posterior corneal fibrosis publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 81 start-page: 229 year: 2010 end-page: 235 ident: bib98 article-title: Growth factors and corneal epithelial wound healing publication-title: Brain Res. Bull. – volume: 42 start-page: 2795 year: 2001 end-page: 2803 ident: bib24 article-title: Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 211 start-page: 380 year: 1997 end-page: 383 ident: bib6 article-title: Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation publication-title: Ophthalmologica – volume: 92 start-page: 6768 year: 1995 end-page: 6772 ident: bib81 article-title: Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 37 start-page: 727 year: 1996 end-page: 739 ident: bib42 article-title: Hepatocyte growth factor and hepatocyte growth factor receptor in the lacrimal gland, tears, and cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 91 start-page: 456 year: 2010 end-page: 461 ident: bib3 article-title: Stromal interleukin-1 expression in the cornea after haze-associated injury publication-title: Exp. Eye Res. – volume: 76 start-page: 71 year: 2003 end-page: 87 ident: bib54 article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK publication-title: Exp. Eye Res. – volume: 54 start-page: 4026 year: 2013 end-page: 4033 ident: bib77 article-title: Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 34 start-page: 93 year: 1986 end-page: 102 ident: bib99 article-title: Models for the self-assembly of basement membrane publication-title: J. Histochem. Cytochem. – volume: 36 start-page: 21 year: 1996 end-page: 27 ident: bib38 article-title: Corneal nerve recovery after photorefractive keratectomy and laser in situ keratomileusis publication-title: Int. Ophthalmol. Clin. – volume: 41 start-page: 187 year: 2006 end-page: 195 ident: bib68 article-title: The bioactivity of transforming growth factor-beta1 can be regulated via binding to dermal collagens in mink lung epithelial cells publication-title: J. Dermatol. Sci. – volume: 93 start-page: 810 year: 2011 end-page: 817 ident: bib70 article-title: Effect of TGFβ and PDGF-B blockade on corneal myofibroblast development in mice publication-title: Exp. Eye Res. – volume: 329 start-page: 62 year: 1993 ident: bib87 article-title: Mooren's corneal ulcers and hepatitis C virus infection publication-title: N. Engl. J. Med. – volume: 96 start-page: 65 year: 2012 end-page: 69 ident: bib4 article-title: Interleukin-1 receptor role in the viability of corneal myofibroblasts publication-title: Exp. Eye Res. – volume: 45 start-page: 2201 year: 2004 end-page: 2211 ident: bib94 article-title: RANK, RANKL, OPG, and M-CSF expression in stromal cells during corneal wound healing publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 134 start-page: 33 year: 2015 end-page: 38 ident: bib76 article-title: Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas publication-title: Exp. Eye Res. – volume: 89 start-page: 597 year: 2009 end-page: 599 ident: bib1 article-title: Early keratocyte apoptosis after epithelial scrape injury in the human cornea publication-title: Exp. Eye Res. – volume: 43 start-page: 1679 year: 2002 ident: bib56 article-title: Activation of keratocyte apoptosis in response to epithelial scrape injury does not require tears publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 73 start-page: 449 year: 2001 end-page: 459 ident: bib40 article-title: Regulation of MMP-9 production by human corneal epithelial cells publication-title: Exp. Eye Res. – volume: 16 start-page: 465 year: 1997 end-page: 471 ident: bib80 article-title: IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea publication-title: Cornea – volume: 141 start-page: 564 year: 2006 end-page: 565 ident: bib36 article-title: Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis publication-title: Am. J. Ophthalmol. – volume: 232 start-page: 717 year: 2017 end-page: 724 ident: bib48 article-title: Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves publication-title: J. Cell. Physiol. – start-page: 3 year: 1989 end-page: 14 ident: bib12 article-title: Cellular changes following epithelial abrasion publication-title: Healing Processes in the Cornea – volume: 75 start-page: 645 year: 2002 end-page: 657 ident: bib30 article-title: TGF beta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGF beta, PDGF and integrin signaling publication-title: Exp. Eye Res. – volume: 274 start-page: 5236 year: 1999 end-page: 5244 ident: bib15 article-title: Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding publication-title: J. Biol. Chem. – volume: 34 start-page: 2544 year: 1993 end-page: 2561 ident: bib97 article-title: Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 93 start-page: 4219 year: 1996 end-page: 4223 ident: bib49 article-title: Myofibroblasts differentiate from fibroblasts when plated at low density publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 73 start-page: 449 year: 2001 ident: 10.1016/j.exer.2020.108089_bib40 article-title: Regulation of MMP-9 production by human corneal epithelial cells publication-title: Exp. Eye Res. doi: 10.1006/exer.2001.1054 – volume: 143 start-page: 303 year: 1991 ident: 10.1016/j.exer.2020.108089_bib62 article-title: Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development publication-title: Dev. Biol. doi: 10.1016/0012-1606(91)90081-D – volume: 88 start-page: 960 year: 2009 ident: 10.1016/j.exer.2020.108089_bib33 article-title: Corneal stroma PDGF blockade and myofibroblast development publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.12.006 – volume: 34 start-page: 790 year: 2018 ident: 10.1016/j.exer.2020.108089_bib51 article-title: The impact of photorefractive keratectomy (PRK) and mitomycin C (MMC) on corneal nerves and their regeneration publication-title: J. Refract. Surg. doi: 10.3928/1081597X-20181112-01 – volume: 64 start-page: 17 year: 2017 ident: 10.1016/j.exer.2020.108089_bib92 article-title: Corneal fibrosis: injury and defective regeneration of the epithelial basement membrane. A paradigm for fibrosis in other organs? publication-title: Matrix Biol. doi: 10.1016/j.matbio.2017.06.003 – volume: 42 start-page: 2283 year: 2001 ident: 10.1016/j.exer.2020.108089_bib71 article-title: Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 211 start-page: 380 year: 1997 ident: 10.1016/j.exer.2020.108089_bib6 article-title: Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation publication-title: Ophthalmologica doi: 10.1159/000310834 – volume: 32 start-page: 2201 year: 1991 ident: 10.1016/j.exer.2020.108089_bib11 article-title: Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 33 start-page: 547 year: 1992 ident: 10.1016/j.exer.2020.108089_bib23 article-title: Biosynthesis of stromal matrix proteoglycans and basement membrane components by human corneal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 41 start-page: 187 year: 2006 ident: 10.1016/j.exer.2020.108089_bib68 article-title: The bioactivity of transforming growth factor-beta1 can be regulated via binding to dermal collagens in mink lung epithelial cells publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2005.10.005 – volume: 21 start-page: 1318 year: 2015 ident: 10.1016/j.exer.2020.108089_bib65 article-title: Differential expression of epithelial basement membrane components nidogens-1 and 2 and perlecan in corneal stromal cells in vitro publication-title: Mol. Vis. – volume: 49 start-page: 17 year: 2015 ident: 10.1016/j.exer.2020.108089_bib45 article-title: Progress in corneal wound healing publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2015.07.002 – volume: 8 start-page: 12945 year: 2018 ident: 10.1016/j.exer.2020.108089_bib28 article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing publication-title: Sci. Rep. doi: 10.1038/s41598-018-30964-y – volume: 7 start-page: 520 year: 1968 ident: 10.1016/j.exer.2020.108089_bib14 article-title: The effect of the absence of corneal epithelium or endothelium on stromal keratocytes publication-title: Invest. Ophthalmol. – volume: 65 start-page: 575 year: 1997 ident: 10.1016/j.exer.2020.108089_bib55 article-title: Apoptosis in the cornea: further characterization of Fas-Fas ligand system publication-title: Exp. Eye Res. doi: 10.1006/exer.1997.0371 – volume: 43 start-page: 1679 year: 2002 ident: 10.1016/j.exer.2020.108089_bib56 article-title: Activation of keratocyte apoptosis in response to epithelial scrape injury does not require tears publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 42 start-page: 2795 year: 2001 ident: 10.1016/j.exer.2020.108089_bib24 article-title: Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 51 start-page: 6286 year: 2010 ident: 10.1016/j.exer.2020.108089_bib35 article-title: Downregulation of matrix metalloproteinase-2 in corneal fibroblasts by interleukin-1 receptor antagonist released from corneal epithelial cells publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.09-4753 – volume: 172 start-page: 30 year: 2018 ident: 10.1016/j.exer.2020.108089_bib50 article-title: Posterior stromal keratocyte apoptosis triggered by mechanical endothelial injury and nidogen-1 production in the cornea publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.03.025 – volume: 329 start-page: 62 year: 1993 ident: 10.1016/j.exer.2020.108089_bib87 article-title: Mooren's corneal ulcers and hepatitis C virus infection publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199307013290118 – volume: 34 start-page: 93 year: 1986 ident: 10.1016/j.exer.2020.108089_bib99 article-title: Models for the self-assembly of basement membrane publication-title: J. Histochem. Cytochem. doi: 10.1177/34.1.3510247 – volume: 43 start-page: 2603 year: 2002 ident: 10.1016/j.exer.2020.108089_bib58 article-title: Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 11 start-page: 762 year: 2011 ident: 10.1016/j.exer.2020.108089_bib67 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3070 – volume: 2 start-page: 217 year: 1994 ident: 10.1016/j.exer.2020.108089_bib75 article-title: Expression of the interleukin 1 receptor antagonist in the normal human cornea publication-title: Ocul. Immunol. Inflamm. doi: 10.3109/09273949409057079 – volume: 170 start-page: 177 year: 2018 ident: 10.1016/j.exer.2020.108089_bib37 article-title: Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.02.018 – volume: 24 start-page: 1405 year: 2009 ident: 10.1016/j.exer.2020.108089_bib26 article-title: Temporal and spatial distribution of TGF-beta isoforms and signaling intermediates in corneal regenerative wound repair publication-title: Histol. Histopathol. – volume: 15 start-page: 605 year: 1996 ident: 10.1016/j.exer.2020.108089_bib21 article-title: Transforming growth factor beta-1 and beta-2 in human tear fluid publication-title: Curr. Eye Res. doi: 10.3109/02713689609008900 – volume: 88 start-page: 992 year: 2009 ident: 10.1016/j.exer.2020.108089_bib25 article-title: Expression of interleukin-1 receptor antagonist in the cornea publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.11.019 – volume: 54 start-page: 4026 year: 2013 ident: 10.1016/j.exer.2020.108089_bib77 article-title: Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-12106 – volume: 303 start-page: 1727 year: 2020 ident: 10.1016/j.exer.2020.108089_bib101 article-title: Extracellular vesicles and cell-cell communications in the cornea publication-title: Anat. Rec. doi: 10.1002/ar.24181 – volume: 15 start-page: 505 year: 1996 ident: 10.1016/j.exer.2020.108089_bib29 article-title: Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes publication-title: Cornea doi: 10.1097/00003226-199609000-00011 – volume: 144 start-page: 3021 year: 1990 ident: 10.1016/j.exer.2020.108089_bib20 article-title: Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation publication-title: J. Immunol. doi: 10.4049/jimmunol.144.8.3021 – volume: 64 start-page: 775 year: 1997 ident: 10.1016/j.exer.2020.108089_bib95 article-title: Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes publication-title: Exp. Eye Res. doi: 10.1006/exer.1996.0266 – volume: 96 start-page: 65 year: 2012 ident: 10.1016/j.exer.2020.108089_bib4 article-title: Interleukin-1 receptor role in the viability of corneal myofibroblasts publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2011.12.022 – volume: 92 start-page: 6768 year: 1995 ident: 10.1016/j.exer.2020.108089_bib81 article-title: Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.15.6768 – volume: 16 start-page: 465 year: 1997 ident: 10.1016/j.exer.2020.108089_bib80 article-title: IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea publication-title: Cornea doi: 10.1097/00003226-199707000-00015 – volume: 45 start-page: 2201 year: 2004 ident: 10.1016/j.exer.2020.108089_bib94 article-title: RANK, RANKL, OPG, and M-CSF expression in stromal cells during corneal wound healing publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.03-1162 – volume: 37 start-page: 1582 year: 1996 ident: 10.1016/j.exer.2020.108089_bib88 article-title: The Fas/Fas ligand system and other modulators of apoptosis in the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 112 start-page: 613 year: 1999 ident: 10.1016/j.exer.2020.108089_bib31 article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins' publication-title: J. Cell Sci. doi: 10.1242/jcs.112.5.613 – volume: 161 start-page: 101 year: 2017 ident: 10.1016/j.exer.2020.108089_bib46 article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2017.05.003 – volume: 93 start-page: 45 year: 2013 ident: 10.1016/j.exer.2020.108089_bib17 article-title: The role of circulating fibrocytes in inflammation and autoimmunity publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0712365 – volume: 134 start-page: 33 year: 2015 ident: 10.1016/j.exer.2020.108089_bib76 article-title: Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2015.03.016 – volume: 59 start-page: 63 year: 1994 ident: 10.1016/j.exer.2020.108089_bib96 article-title: Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea publication-title: Exp. Eye Res. doi: 10.1006/exer.1994.1081 – volume: 14 start-page: 235 year: 1995 ident: 10.1016/j.exer.2020.108089_bib61 article-title: Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea publication-title: Curr. Eye Res. doi: 10.3109/02713689509033520 – volume: 32 start-page: 2747 year: 1991 ident: 10.1016/j.exer.2020.108089_bib90 article-title: Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 70 start-page: 485 year: 2000 ident: 10.1016/j.exer.2020.108089_bib57 article-title: Defective keratocyte apoptosis in response to epithelial injury in STAT1 null mice publication-title: Exp. Eye Res. doi: 10.1006/exer.1999.0807 – volume: 17 start-page: 902 year: 2003 ident: 10.1016/j.exer.2020.108089_bib16 article-title: Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment publication-title: Faseb. J. doi: 10.1096/fj.02-0935fje – volume: 76 start-page: 71 year: 2003 ident: 10.1016/j.exer.2020.108089_bib54 article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK publication-title: Exp. Eye Res. doi: 10.1016/S0014-4835(02)00251-8 – volume: 232 start-page: 717 year: 2017 ident: 10.1016/j.exer.2020.108089_bib48 article-title: Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25623 – volume: 27 start-page: 503 year: 2009 ident: 10.1016/j.exer.2020.108089_bib27 article-title: Basement membrane proteoglycans: modulators par excellence of cancer growth and angiogenesis publication-title: Mol. Cell. doi: 10.1007/s10059-009-0069-0 – volume: 81 start-page: 229 year: 2010 ident: 10.1016/j.exer.2020.108089_bib98 article-title: Growth factors and corneal epithelial wound healing publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2009.08.024 – volume: 82 start-page: 788 year: 2006 ident: 10.1016/j.exer.2020.108089_bib60 article-title: Stromal haze, myofibroblasts, and surface irregularity after PRK publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2005.09.021 – volume: 33 start-page: 337 year: 2017 ident: 10.1016/j.exer.2020.108089_bib47 article-title: Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy publication-title: J. Refract. Surg. doi: 10.3928/1081597X-20170126-02 – volume: 36 year: 1995 ident: 10.1016/j.exer.2020.108089_bib85 article-title: Epithelial- and endothelial-derived interleukin-1 (IL-1) modulates corneal tissue organization and wound healing response through induction of keratocyte apoptosis publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 91 start-page: 326 year: 2010 ident: 10.1016/j.exer.2020.108089_bib22 article-title: The molecular basis of corneal transparency publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2010.06.021 – volume: 134 start-page: 61 year: 2015 ident: 10.1016/j.exer.2020.108089_bib44 article-title: Corneal epithelial wound healing publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2015.05.002 – volume: 40 start-page: 2185 year: 1999 ident: 10.1016/j.exer.2020.108089_bib89 article-title: Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 75 start-page: 645 year: 2002 ident: 10.1016/j.exer.2020.108089_bib30 article-title: TGF beta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGF beta, PDGF and integrin signaling publication-title: Exp. Eye Res. doi: 10.1006/exer.2002.2066 – volume: 89 start-page: 124 year: 2009 ident: 10.1016/j.exer.2020.108089_bib82 article-title: Interleukin-1: a master regulator of the corneal response to injury publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2009.02.011 – volume: 23 start-page: 39 year: 2017 ident: 10.1016/j.exer.2020.108089_bib64 article-title: Epithelial basement membrane (EBM) regeneration and changes in EBM component mRNA expression in the anterior stroma after corneal injury publication-title: Mol. Vis. – volume: 40 start-page: 1364 year: 1999 ident: 10.1016/j.exer.2020.108089_bib34 article-title: Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 51 start-page: I98 year: 1947 ident: 10.1016/j.exer.2020.108089_bib74 article-title: Marginal corneal infiltrates and ulcers publication-title: Trans. Am. Acad. Ophthalmol. Otolaryngol. – volume: 91 start-page: 92 year: 2010 ident: 10.1016/j.exer.2020.108089_bib2 article-title: Corneal myofibroblast generation from bone marrow-derived cells publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2010.04.007 – volume: 59 start-page: 5589 year: 2018 ident: 10.1016/j.exer.2020.108089_bib63 article-title: IL-1 and TGFβ modulation of epithelial basement membrane components perlecan and nidogen production by corneal stromal cells publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-25202 – volume: 63 start-page: 15 year: 2019 ident: 10.1016/j.exer.2020.108089_bib66 article-title: Corneal neovascularization: updates on pathophysiology, investigations & management publication-title: Rom. J. Ophthalmol. doi: 10.22336/rjo.2019.4 – volume: 104 start-page: 369 year: 1997 ident: 10.1016/j.exer.2020.108089_bib43 article-title: Late onset corneal haze after photorefractive keratectomy for moderate and high myopia publication-title: Ophthalmology doi: 10.1016/S0161-6420(97)30306-6 – volume: 287 start-page: 18700 year: 2012 ident: 10.1016/j.exer.2020.108089_bib5 article-title: The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.336073 – volume: 50 start-page: 3688 year: 2009 ident: 10.1016/j.exer.2020.108089_bib53 article-title: Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.08-2699 – volume: 33 start-page: 1756 year: 1992 ident: 10.1016/j.exer.2020.108089_bib83 article-title: EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 172 start-page: 361 year: 1997 ident: 10.1016/j.exer.2020.108089_bib41 article-title: Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(199709)172:3<361::AID-JCP10>3.0.CO;2-9 – volume: 255 start-page: 60 year: 1998 ident: 10.1016/j.exer.2020.108089_bib19 article-title: Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2550060.x – volume: 89 start-page: 133 year: 2009 ident: 10.1016/j.exer.2020.108089_bib9 article-title: Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2009.02.022 – volume: 36 start-page: 21 year: 1996 ident: 10.1016/j.exer.2020.108089_bib38 article-title: Corneal nerve recovery after photorefractive keratectomy and laser in situ keratomileusis publication-title: Int. Ophthalmol. Clin. doi: 10.1097/00004397-199603640-00005 – volume: 34 start-page: 59 year: 2018 ident: 10.1016/j.exer.2020.108089_bib93 article-title: Pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries publication-title: J. Refract. Surg. doi: 10.3928/1081597X-20171128-01 – volume: 228 start-page: 925 year: 2013 ident: 10.1016/j.exer.2020.108089_bib10 article-title: New insights in wound response and repair of epithelium publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24268 – start-page: 3 year: 1989 ident: 10.1016/j.exer.2020.108089_bib12 article-title: Cellular changes following epithelial abrasion – volume: 16 start-page: 19 year: 1997 ident: 10.1016/j.exer.2020.108089_bib79 article-title: Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy publication-title: Curr. Eye Res. doi: 10.1076/ceyr.16.1.19.5119 – volume: 8 start-page: 4438 year: 2018 ident: 10.1016/j.exer.2020.108089_bib39 article-title: TGF-β1 promotes cell barrier function upon maturation of corneal endothelial cells publication-title: Sci. Rep. doi: 10.1038/s41598-018-22821-9 – volume: 54 start-page: 6390 year: 2013 ident: 10.1016/j.exer.2020.108089_bib78 article-title: The corneal epithelial basement membrane: structure, function and disease publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-12547 – volume: 111 start-page: 3323 year: 1998 ident: 10.1016/j.exer.2020.108089_bib13 article-title: Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement publication-title: J. Cell Sci. doi: 10.1242/jcs.111.22.3323 – volume: 32 start-page: 113 year: 1988 ident: 10.1016/j.exer.2020.108089_bib59 article-title: Stromal changes following removal of epithelium in rat cornea publication-title: Jpn. J. Ophthalmol. – volume: 37 start-page: 727 year: 1996 ident: 10.1016/j.exer.2020.108089_bib42 article-title: Hepatocyte growth factor and hepatocyte growth factor receptor in the lacrimal gland, tears, and cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 32 start-page: 2441 year: 1991 ident: 10.1016/j.exer.2020.108089_bib18 article-title: Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 91 start-page: 456 year: 2010 ident: 10.1016/j.exer.2020.108089_bib3 article-title: Stromal interleukin-1 expression in the cornea after haze-associated injury publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2010.06.023 – volume: 45 start-page: 3991 year: 2004 ident: 10.1016/j.exer.2020.108089_bib7 article-title: Corneal reinnervation after LASIK: prospective 3-year longitudinal study publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.04-0561 – volume: 60 start-page: 1010 year: 2019 ident: 10.1016/j.exer.2020.108089_bib52 article-title: Descemet's membrane modulation of posterior corneal fibrosis publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-26451 – volume: 120 start-page: 152 year: 2014 ident: 10.1016/j.exer.2020.108089_bib69 article-title: Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2014.01.003 – volume: 59 start-page: 665 year: 1994 ident: 10.1016/j.exer.2020.108089_bib86 article-title: Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells publication-title: Exp. Eye Res. doi: 10.1006/exer.1994.1152 – volume: 93 start-page: 4219 year: 1996 ident: 10.1016/j.exer.2020.108089_bib49 article-title: Myofibroblasts differentiate from fibroblasts when plated at low density publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.9.4219 – volume: 44 start-page: 4237 year: 2003 ident: 10.1016/j.exer.2020.108089_bib72 article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-1188 – volume: 72 start-page: 33 year: 2001 ident: 10.1016/j.exer.2020.108089_bib100 article-title: Kinetics of keratocyte proliferation in response to epithelial debridement publication-title: Exp. Eye Res. doi: 10.1006/exer.2000.0926 – volume: 62 start-page: 325 year: 1996 ident: 10.1016/j.exer.2020.108089_bib84 article-title: Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing publication-title: Exp. Eye Res. doi: 10.1006/exer.1996.0038 – volume: 64 start-page: 501 year: 1997 ident: 10.1016/j.exer.2020.108089_bib73 article-title: Tear hepatocyte growth factor (HGF) availability increases markedly after excimer laser surface ablation publication-title: Exp. Eye Res. doi: 10.1006/exer.1996.0226 – volume: 34 start-page: 2544 year: 1993 ident: 10.1016/j.exer.2020.108089_bib97 article-title: Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 89 start-page: 597 year: 2009 ident: 10.1016/j.exer.2020.108089_bib1 article-title: Early keratocyte apoptosis after epithelial scrape injury in the human cornea publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2009.06.003 – volume: 89 start-page: 152 year: 2009 ident: 10.1016/j.exer.2020.108089_bib32 article-title: Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta-1 publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2009.03.001 – volume: 112 start-page: 254 year: 1994 ident: 10.1016/j.exer.2020.108089_bib8 article-title: Keratocyte loss after corneal de-epithelialization in primates and rabbits publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.1994.01090140130034 – volume: 141 start-page: 564 year: 2006 ident: 10.1016/j.exer.2020.108089_bib36 article-title: Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2005.09.021 – volume: 33 start-page: 1987 year: 1992 ident: 10.1016/j.exer.2020.108089_bib91 article-title: EGF, basic FGF, and TGF beta-1 messenger RNA production in rabbit corneal epithelial cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 93 start-page: 810 year: 2011 ident: 10.1016/j.exer.2020.108089_bib70 article-title: Effect of TGFβ and PDGF-B blockade on corneal myofibroblast development in mice publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2011.09.012 – volume: 274 start-page: 5236 year: 1999 ident: 10.1016/j.exer.2020.108089_bib15 article-title: Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.8.5236 |
| SSID | ssj0003474 |
| Score | 2.6393352 |
| SecondaryResourceType | review_article |
| Snippet | The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108089 |
| SubjectTerms | Animals Apoptosis Cornea Cornea - pathology Corneal fibroblasts Corneal Injuries - metabolism Corneal Injuries - pathology Extracellular Matrix - metabolism Fibrocytes Fibrosis Humans Infection Injury Interleukin-1 Keratocyte apoptosis Myofibroblasts Myofibroblasts - pathology PDGF Regeneration Scarring. corneal Stromal-epithelial interactions TGF beta Wound healing Wound Healing - physiology |
| Title | Corneal wound healing |
| URI | https://dx.doi.org/10.1016/j.exer.2020.108089 https://www.ncbi.nlm.nih.gov/pubmed/32553485 https://www.proquest.com/docview/2415294627 https://pubmed.ncbi.nlm.nih.gov/PMC7483425 |
| Volume | 197 |
| WOSCitedRecordID | wos000565674000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003474 issn: 0014-4835 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD5iG0J7QbANKJcpSGgvKFUuvuWxmjqxqRQeOpQ3K7EdbRWkXdvB9u_xLWm7m8YDL1HiOnF6vuTk2D7-PoBPmImoLGQU0ipKQ1TGOMykPmQiUYSKQiJLVv1jQIdDlufZd68xOrdyArSu2dVVNv2vUOsyDbZZOvsPcLcX1QV6X4Outxp2vX0U8IeTWW3Ygv8YwSQbCDZfp3Gbdrck9VfXRjdlZUirWKVwdJpnfrWCHxtIlplpjTuLTIpx5HRlu-qOssYHuiRZ78VM3qET9rnlYF1ff9w1glBd02R3WXmdzXr4jR-dDgZ81M9HB9OL0Ah9mQlxr3qyAVsJxZl2RFu9435-0n4-U2Sps9vb9CudXFLezWbviyZu9xZuJr2uRBGjF_Dch_9Bz8H2Ep6oegd2e3WxmPy6Dg4Cm5BrZzp24NlXn_ewC3se1MCCGnhQ9-D0qD86_BJ6QYtQIIwXYYWJ_nM0TTJZSsIURkS_EWUpK4mQFKisIhQLwZhgZVxISqRCQlW4LKhELBLpK9isJ7V6A4GIk0KxklQ6wEAkSzOUCFIRpAhjRSVEB-LGMFx4tncjOvKTN2l9Y26MyY0xuTNmBz6350wd18mDtXFjb-6jNReFcf2sPHjexwYcrl2ZmZ8qajW5nHMbTGbaJrQDrx1Y7X2kuuubIoY7QNdgbCsYmvT1X-rzM0uXTs14eYLfPqLdd7C9fI3ew-Zidqk-wFPxe3E-n-3DBs3Zvn9e_wKQPoYd |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corneal+wound+healing&rft.jtitle=Experimental+eye+research&rft.au=Wilson%2C+Steven+E&rft.date=2020-08-01&rft.issn=1096-0007&rft.eissn=1096-0007&rft.volume=197&rft.spage=108089&rft_id=info:doi/10.1016%2Fj.exer.2020.108089&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon |