Corneal wound healing

The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental eye research Jg. 197; S. 108089
1. Verfasser: Wilson, Steven E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.08.2020
Schlagworte:
ISSN:0014-4835, 1096-0007, 1096-0007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. •Keratocyte apoptosis is the first observable stromal event after anterior corneal injury.•Normal or defective regeneration of the EBM controls regenerative vs. fibrotic healing.•Descemet's membrane modulates regenerative vs. fibrotic healing for posterior injuries.•Fibrosis is dynamic with ongoing mitosis, development and apoptosis of myofibroblasts.
AbstractList The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet’s basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA+ myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.
The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis. •Keratocyte apoptosis is the first observable stromal event after anterior corneal injury.•Normal or defective regeneration of the EBM controls regenerative vs. fibrotic healing.•Descemet's membrane modulates regenerative vs. fibrotic healing for posterior injuries.•Fibrosis is dynamic with ongoing mitosis, development and apoptosis of myofibroblasts.
The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.
The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.
ArticleNumber 108089
Author Wilson, Steven E.
Author_xml – sequence: 1
  givenname: Steven E.
  surname: Wilson
  fullname: Wilson, Steven E.
  email: wilsons4@ccf.org, wilsons4@ccf.org
  organization: Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32553485$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PwyAYx4nR6Hw5evFgPHrpBAotTYyJWXxLTLzomVB4urF0oNBN_fbSdDPqwRPkef4v8NtH2847QOiE4DHBpLiYj-EDwphi2g8EFtUWGhFcFRnGuNxGI4wJy5jI-R7aj3Gepjkr2S7ayynnORN8hI4nPjhQ7dm7XzpzNktX66aHaKdRbYSj9XmAXm5vnif32ePT3cPk-jHTjPMua3iR8sqcVqY2hQDOCgpFXZvGMGY0qxvMiNZCaFETZcrCANPQ8FqVhgms8wN0NeS-LusFGA2uC6qVr8EuVPiUXln5e-PsTE79SpbpV4zyFHC-Dgj-bQmxkwsbNbStcuCXUVJGOK3Ss8okPf3Z9V2yYZEEYhDo4GMM0EhtO9VZ31fbVhIse-xyLnvssscuB-zJSv9YN-n_mi4HEyTCK5u2UVtwGowNoDtpvP3P_gWLcJte
CitedBy_id crossref_primary_10_1038_s42003_024_05934_y
crossref_primary_10_3390_app15179794
crossref_primary_10_1016_j_csbj_2025_05_042
crossref_primary_10_1088_2752_5724_adac80
crossref_primary_10_1097_ICO_0000000000003242
crossref_primary_10_31083_j_fbl2705147
crossref_primary_10_1096_fj_202401054R
crossref_primary_10_1002_adbi_202400571
crossref_primary_10_1016_j_ijbiomac_2024_135479
crossref_primary_10_1016_j_exer_2023_109523
crossref_primary_10_2147_OPTH_S548579
crossref_primary_10_1016_j_lssr_2025_05_005
crossref_primary_10_1016_j_jddst_2024_105529
crossref_primary_10_1242_dmm_050090
crossref_primary_10_1038_s41419_022_04963_x
crossref_primary_10_3390_jcm11205991
crossref_primary_10_1111_eos_12956
crossref_primary_10_1016_j_jhazmat_2023_133219
crossref_primary_10_1016_j_cellsig_2023_110755
crossref_primary_10_3389_fimmu_2025_1586039
crossref_primary_10_3390_cells13050458
crossref_primary_10_1038_s41598_021_87910_8
crossref_primary_10_1016_j_exer_2023_109657
crossref_primary_10_1007_s13744_025_01306_1
crossref_primary_10_1038_s41433_025_03619_2
crossref_primary_10_3390_ijms241612615
crossref_primary_10_3389_fcell_2020_00731
crossref_primary_10_3390_gels10100662
crossref_primary_10_1186_s13287_025_04504_1
crossref_primary_10_1016_j_exer_2023_109495
crossref_primary_10_1002_adhm_202402567
crossref_primary_10_1097_ICO_0000000000003378
crossref_primary_10_1016_j_matbio_2024_02_004
crossref_primary_10_1371_journal_pone_0320802
crossref_primary_10_1016_j_exer_2024_110130
crossref_primary_10_3390_ijms24043329
crossref_primary_10_1080_17425247_2024_2391473
crossref_primary_10_3389_fimmu_2023_1050594
crossref_primary_10_1038_s41420_025_02684_6
crossref_primary_10_1177_11206721251333590
crossref_primary_10_1016_j_bioactmat_2024_07_008
crossref_primary_10_1021_acsomega_5c01135
crossref_primary_10_1186_s40662_024_00387_0
crossref_primary_10_1007_s11033_025_10810_x
crossref_primary_10_1016_j_ijbiomac_2025_142695
crossref_primary_10_3390_biomedicines12102289
crossref_primary_10_3390_cells12091294
crossref_primary_10_1167_iovs_63_4_2
crossref_primary_10_1002_adhm_202300192
crossref_primary_10_1016_j_exer_2024_109982
crossref_primary_10_3389_fgene_2023_1114601
crossref_primary_10_1016_j_mtbio_2025_101695
crossref_primary_10_3390_vetsci12080785
crossref_primary_10_7759_cureus_87260
crossref_primary_10_1007_s00417_022_05572_2
crossref_primary_10_4081_ejh_2023_3663
crossref_primary_10_1016_j_ijbiomac_2023_127084
crossref_primary_10_1038_s41598_024_66608_7
crossref_primary_10_1016_j_exer_2024_110027
crossref_primary_10_3389_fmed_2025_1517403
crossref_primary_10_1021_acs_biomac_5c00221
crossref_primary_10_1016_j_ejpb_2023_07_007
crossref_primary_10_1515_jcim_2023_0076
crossref_primary_10_3390_biomedicines12122784
crossref_primary_10_1016_j_lssr_2024_08_007
crossref_primary_10_3390_polym16081118
crossref_primary_10_1016_j_clae_2022_101795
crossref_primary_10_3390_ijms24021461
crossref_primary_10_1016_j_jbc_2023_105233
crossref_primary_10_1016_j_intimp_2024_113023
crossref_primary_10_1016_j_jddst_2025_107271
crossref_primary_10_1016_j_biopha_2023_115206
crossref_primary_10_3390_biomedicines10020339
crossref_primary_10_1016_j_exer_2023_109390
crossref_primary_10_3341_kjo_2023_0019
crossref_primary_10_3390_ijms25084400
crossref_primary_10_1016_j_jtos_2023_05_005
crossref_primary_10_1097_ICO_0000000000003829
crossref_primary_10_3390_pharmaceutics16111424
crossref_primary_10_1016_j_biopha_2025_117857
crossref_primary_10_1016_j_exer_2023_109440
crossref_primary_10_1080_02713683_2022_2129072
crossref_primary_10_2217_epi_2023_0147
crossref_primary_10_47172_ijhmreview_v11i1_405
crossref_primary_10_3390_biology12091263
crossref_primary_10_1186_s12893_025_03023_3
crossref_primary_10_1016_j_exer_2024_110163
crossref_primary_10_1016_j_isci_2022_104200
crossref_primary_10_3389_fbioe_2024_1455027
crossref_primary_10_1080_17460751_2025_2472578
crossref_primary_10_3390_ijms23073630
crossref_primary_10_1016_j_exer_2025_110321
crossref_primary_10_1038_s41598_023_37776_9
crossref_primary_10_1097_j_jcro_0000000000000153
crossref_primary_10_1167_iovs_64_14_1
crossref_primary_10_1093_burnst_tkae071
crossref_primary_10_1038_s41598_021_04086_x
crossref_primary_10_1016_S0246_0343_24_87292_1
crossref_primary_10_1016_j_exer_2021_108647
crossref_primary_10_1016_j_exer_2022_109312
crossref_primary_10_15407_biotech15_02_053
crossref_primary_10_1111_jcmm_18027
crossref_primary_10_3390_gels8070431
crossref_primary_10_1016_j_preteyeres_2022_101090
crossref_primary_10_1080_17435889_2025_2550236
crossref_primary_10_1167_iovs_64_12_13
crossref_primary_10_3390_life13101981
crossref_primary_10_1016_j_jtos_2023_02_003
crossref_primary_10_3390_cells12060876
crossref_primary_10_1080_09273948_2023_2173240
crossref_primary_10_1016_j_jtos_2024_10_005
crossref_primary_10_1371_journal_pone_0296022
crossref_primary_10_1016_j_ajpath_2024_10_017
crossref_primary_10_3390_cells12232730
crossref_primary_10_3390_ijms232315325
crossref_primary_10_1016_j_displa_2023_102507
crossref_primary_10_1016_j_exer_2025_110419
crossref_primary_10_1055_a_2272_6077
crossref_primary_10_11603_mcch_2410_681X_2025_i2_15521
crossref_primary_10_1016_j_exer_2020_108218
crossref_primary_10_1002_pol_20210916
crossref_primary_10_1016_j_exer_2021_108459
crossref_primary_10_1016_j_exer_2021_108579
crossref_primary_10_1016_j_exer_2020_108213
crossref_primary_10_1016_j_ajpath_2024_11_007
crossref_primary_10_1167_iovs_62_4_8
crossref_primary_10_1016_j_addr_2023_114721
crossref_primary_10_1016_j_actbio_2025_02_006
crossref_primary_10_1167_iovs_64_13_9
crossref_primary_10_3390_biom13071028
crossref_primary_10_3390_ijms24087319
crossref_primary_10_3390_pharmaceutics15041167
crossref_primary_10_1167_iovs_66_2_45
crossref_primary_10_3390_cells12111533
crossref_primary_10_1097_ICO_0000000000003637
crossref_primary_10_3389_fmed_2024_1384500
crossref_primary_10_1007_s10792_025_03708_x
crossref_primary_10_3390_ijms24076839
crossref_primary_10_3390_bioengineering9080405
crossref_primary_10_1186_s12886_023_03234_3
crossref_primary_10_3390_ijms23158226
crossref_primary_10_1097_ICO_0000000000003476
crossref_primary_10_1016_j_jtos_2023_04_012
crossref_primary_10_1016_j_exer_2024_110198
crossref_primary_10_1167_iovs_63_2_30
Cites_doi 10.1006/exer.2001.1054
10.1016/0012-1606(91)90081-D
10.1016/j.exer.2008.12.006
10.3928/1081597X-20181112-01
10.1016/j.matbio.2017.06.003
10.1159/000310834
10.1016/j.jdermsci.2005.10.005
10.1016/j.preteyeres.2015.07.002
10.1038/s41598-018-30964-y
10.1006/exer.1997.0371
10.1167/iovs.09-4753
10.1016/j.exer.2018.03.025
10.1056/NEJM199307013290118
10.1177/34.1.3510247
10.1038/nri3070
10.3109/09273949409057079
10.1016/j.exer.2018.02.018
10.3109/02713689609008900
10.1016/j.exer.2008.11.019
10.1167/iovs.13-12106
10.1002/ar.24181
10.1097/00003226-199609000-00011
10.4049/jimmunol.144.8.3021
10.1006/exer.1996.0266
10.1016/j.exer.2011.12.022
10.1073/pnas.92.15.6768
10.1097/00003226-199707000-00015
10.1167/iovs.03-1162
10.1242/jcs.112.5.613
10.1016/j.exer.2017.05.003
10.1189/jlb.0712365
10.1016/j.exer.2015.03.016
10.1006/exer.1994.1081
10.3109/02713689509033520
10.1006/exer.1999.0807
10.1096/fj.02-0935fje
10.1016/S0014-4835(02)00251-8
10.1002/jcp.25623
10.1007/s10059-009-0069-0
10.1016/j.brainresbull.2009.08.024
10.1016/j.exer.2005.09.021
10.3928/1081597X-20170126-02
10.1016/j.exer.2010.06.021
10.1016/bs.pmbts.2015.05.002
10.1006/exer.2002.2066
10.1016/j.exer.2009.02.011
10.1016/j.exer.2010.04.007
10.1167/iovs.18-25202
10.22336/rjo.2019.4
10.1016/S0161-6420(97)30306-6
10.1074/jbc.M111.336073
10.1167/iovs.08-2699
10.1002/(SICI)1097-4652(199709)172:3<361::AID-JCP10>3.0.CO;2-9
10.1046/j.1432-1327.1998.2550060.x
10.1016/j.exer.2009.02.022
10.1097/00004397-199603640-00005
10.3928/1081597X-20171128-01
10.1002/jcp.24268
10.1076/ceyr.16.1.19.5119
10.1038/s41598-018-22821-9
10.1167/iovs.13-12547
10.1242/jcs.111.22.3323
10.1016/j.exer.2010.06.023
10.1167/iovs.04-0561
10.1167/iovs.18-26451
10.1016/j.exer.2014.01.003
10.1006/exer.1994.1152
10.1073/pnas.93.9.4219
10.1167/iovs.02-1188
10.1006/exer.2000.0926
10.1006/exer.1996.0038
10.1006/exer.1996.0226
10.1016/j.exer.2009.06.003
10.1016/j.exer.2009.03.001
10.1001/archopht.1994.01090140130034
10.1016/j.ajo.2005.09.021
10.1016/j.exer.2011.09.012
10.1074/jbc.274.8.5236
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.exer.2020.108089
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-0007
EndPage 108089
ExternalDocumentID PMC7483425
32553485
10_1016_j_exer_2020_108089
S0014483520303481
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY025585
– fundername: NEI NIH HHS
  grantid: R01 EY010056
– fundername: NEI NIH HHS
  grantid: P30 EY001730
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
LCYCR
LG5
LUGTX
LZ2
M29
M2U
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSI
SSN
SSZ
T5K
TEORI
WUQ
X7M
XPP
ZA5
ZGI
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-f564747329dbd68e5462e6bbdfd44dc4bf041cc88c8b1ad76de4cef5ba7d480c3
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565674000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-4835
1096-0007
IngestDate Tue Sep 30 16:02:22 EDT 2025
Sun Sep 28 02:33:25 EDT 2025
Mon Jul 21 06:02:19 EDT 2025
Sat Nov 29 07:33:52 EST 2025
Tue Nov 18 20:35:38 EST 2025
Fri Feb 23 02:46:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cornea
Interleukin-1
Wound healing
Fibrocytes
Injury
Scarring. corneal
Stromal-epithelial interactions
Infection
PDGF
Fibrosis
Corneal fibroblasts
Keratocyte apoptosis
Myofibroblasts
TGF beta
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-f564747329dbd68e5462e6bbdfd44dc4bf041cc88c8b1ad76de4cef5ba7d480c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7483425
PMID 32553485
PQID 2415294627
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483425
proquest_miscellaneous_2415294627
pubmed_primary_32553485
crossref_citationtrail_10_1016_j_exer_2020_108089
crossref_primary_10_1016_j_exer_2020_108089
elsevier_sciencedirect_doi_10_1016_j_exer_2020_108089
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental eye research
PublicationTitleAlternate Exp Eye Res
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wilson, Walker, Chwang, He (bib97) 1993; 34
Cousins, McCabe, Danielpour, Streilein (bib11) 1991; 32
Hassell, Schrecengost, Rada, SundarRaj, Sossi, Thoft (bib23) 1992; 33
Jester, Huang, Petroll, Cavanag (bib30) 2002; 75
Nakayasu (bib59) 1988; 32
Marino, Santhiago, Santhanam, Lassance, Thangavadivel, Medeiros, Torricelli, Wilson (bib47) 2017; 33
Hassell, Birk (bib22) 2010; 91
Stramer, Zieske, Jung, Austin, Fini (bib72) 2003; 44
Girard, Matsubara, Fini (bib18) 1991; 32
Zieske, Guimarães, Hutcheon (bib100) 2001; 72
Wilson, Medeiros, Santhiago (bib93) 2018; 34
Tervo, Vesaluoma, Bennett, Schwall, Helena, Liang, Wilson (bib73) 1997; 64
Jester, Barry-Lane, Cavanagh, Petroll (bib29) 1996; 15
Solomon, Dursun, Liu, Xie, Macri, Pflugfelder (bib71) 2001; 42
Gohring, Sasaki, Heldin, Timpl (bib19) 1998; 255
Medeiros, Marino, Lassance, Thangavadivel, Santhiago, Wilson (bib51) 2018; 34
Nakamura, Kurosaka, Yoshino, Oshima, Kurosaka (bib58) 2002; 43
Wilson, He, Weng, Zieske, Jester, Schultz (bib86) 1994; 59
Kaur, Chaurasia, Agrawal, Wilson (bib32) 2009; 89
Singh, Santhiago, Barbosa, Agrawal, Ambati, Singh, Wilson (bib70) 2011; 93
Iozzo, Zoeller, Nystrom (bib27) 2009; 27
Ko, Yanai, Chikama, Nishida (bib35) 2010; 51
Liu, Kao (bib44) 2015; 134
Wilson, He, Weng, Li, McDowall, Vital, Chwang (bib84) 1996; 62
Li, Tseng (bib41) 1997; 172
Torricelli, Marino, Santhanam, Wu, Singh, Wilson (bib76) 2015; 134
Hong, Liu, Lee, Mohan, Mohan, Woods, He, Wilson (bib24) 2001; 42
Torres, de Vos, van der Gaag, Kijlstra (bib75) 1994; 2
Yu, Yin, Xu, Huang (bib98) 2010; 81
Lecler, Roy, Santerre, Proulx (bib39) 2018; 8
Gupta, Monroy, Ji, Yoshino, Huang, Pflugfelder (bib21) 1996; 15
Koizumi, Yamasaki, Kawasaki, Sotozono, Inatomi, Mochida, Kinoshita (bib36) 2006; 141
Meltendorf, Burbach, Ohrloff, Ghebremedhin, Deller (bib53) 2009; 50
Mastropasqua, Massaro-Giordano, Nubile, Sacchetti (bib48) 2017; 232
Jester, Moller-Pedersen, Huang, Sax, Kays, Cavangh, Petroll, Piatigorsky (bib31) 1999; 112
Torricelli, Singh, Agrawal, Santhiago, Wilson (bib77) 2013; 54
Galligan, Fish (bib17) 2013; 93
Kim, Mohan, Mohan, Wilson (bib34) 1999; 40
Li, Lokeshwar, Solomon, Monroy, Ji, Pflugfelder (bib40) 2001; 73
Shibuya, Okamoto, Fujiwara (bib68) 2006; 41
Sharif, Sharif (bib66) 2019; 63
Dohlman, Gasset, Rose (bib14) 1968; 7
Mohan, Mohan, Kim, Stark, Wilson (bib57) 2000; 70
Torricelli, Singh, Santhiago, Wilson (bib78) 2013; 54
Shi, Pamer (bib67) 2011; 11
Wilson, Schultz, Chegini, Weng, He (bib96) 1994; 59
Wilson, Mohan, Netto, Perez, Possin, Huang, Kwon, Alekseev (bib94) 2004; 45
Barbosa, Chaurasia, Kaur, de Medeiros, Agrawal, Wilson (bib3) 2010; 91
Chaurasia, Kaur, Medeiros, Smith, Wilson (bib9) 2009; 89
Li, Weng, Mohan, Bennett, Schwall, Wang, Tabor, Kim, Hargrave, Cuevas, Wilson (bib42) 1996; 37
Latvala, Linna, Tervo (bib38) 1996; 36
Wilson, Lloyd, He (bib91) 1992; 33
Netto, Mohan, Sinha, Sharma, Dupps, Wilson (bib60) 2006; 82
Wilson, Lloyd (bib90) 1991; 32
Weng, Mohan, Li, Wilson (bib80) 1997; 16
Behrens, Villone, Koch, Brunner, Sorokin, Robenek, Bruckner-Tuderman, Bruckner, Hansen (bib5) 2012; 287
Vesaluoma, Teppo, Gronhangen-Riska, Tervo (bib79) 1997; 16
Yurchenco, Tsilibary, Charonis, Furthmayr (bib99) 1986; 34
Santhanam, Torricelli, Wu, Marino, Wilson (bib65) 2015; 21
Thygeson (bib74) 1947; 51
Lipshitz, Loewenstein, Varssano, Lazar (bib43) 1997; 104
Barbosa, Lin, Santhiago, Singh, Agrawal, Wilson (bib4) 2012; 96
Wilson, Pedroza, Beuerman, Hill (bib95) 1997; 64
Danjo, Gipson (bib13) 1998; 111
Fannon, Forsten-Williams, Dowd, Freedman, Folkman, Nugent (bib16) 2003; 17
Barbosa, Chaurasia, Cutler, Asosingh, Kaur, de Medeiros, Agrawal, Wilson (bib2) 2010; 91
Dowd, Cooney, Nugent (bib15) 1999; 274
Wilson, Li, Weng, Barry-Lane, Jester, Liang, Wordinger (bib88) 1996; 37
Paralkar, Vukicevic, Reddi (bib62) 1991; 143
Marino, Santhiago, Santhanam, Lassance, Thangavadivel, Medeiros, Bose, Tam, Wilson (bib46) 2017; 161
Kaur, Chaurasia, Medeiros, Agrawal, Salomao, Singh, Ambati, Wilson (bib33) 2009; 88
Bilgihan, Gurelik, Okur, Bilgihan, Hasanreisoglu, Imir (bib6) 1997; 211
Wilson, Lee, Murakami, Weng, Moninger (bib87) 1993; 329
Wilson, Liang, Kim (bib89) 1999; 40
Nishida, Sotozono, Adachi, Yamamoto, Yokoi, Kinoshita (bib61) 1995; 14
Saikia, Thangavadivel, Lassance, Medeiros, Wilson (bib63) 2018; 59
Wilson, Marino, Torricelli, Medeiros (bib92) 2017; 64
Ambrósio, Kara-José, Wilson (bib1) 2009; 89
Campos, Szerenyi, Lee, McDonnell, Lopez, McDonnell (bib8) 1994; 112
Mohan, Mohan, Ambrósio, Wilson (bib56) 2002; 43
Jeon, Hindman, Bubel, McDaniel, DeMagistris, Callan, Huxlin (bib28) 2018; 8
Wilson, He, Lloyd (bib83) 1992; 33
Santhanam, Marino, Torricelli, Wilson (bib64) 2017; 23
Wilson, Esposito (bib82) 2009; 89
Lassance, Marino, Medeiros, Thangavadivel, Wilson (bib37) 2018; 170
Mohan, Hutcheon, Choi, Hong, Lee, Mohan, Ambrósio, Zieske, Wilson (bib54) 2003; 76
Masur, Dewal, Dinh, Erenburg, Petridou (bib49) 1996; 93
West-Mays, Strissel, Sadow, Fini (bib81) 1995; 92
Crosson (bib12) 1989
Granstein, Staszewski, Knisely, Zeira, Nazareno, Latina, Albert (bib20) 1990; 144
Wilson, He, Weng, Li, Vital, Chwang (bib85) 1995; 36
Huer, Chaurasia, Wilson (bib25) 2009; 88
Huh, Chang, Jung (bib26) 2009; 24
Chi, Trinkaus-Randall (bib10) 2013; 228
Mohan, Liang, Kim, Helena, Baerveldt, Wilson (bib55) 1997; 65
Medeiros, Saikia, de Oliveira, Lassance, Santhiago, Wilson (bib52) 2019; 60
Medeiros, Lassance, Saikia, Wilson (bib50) 2018; 172
Calvillo, McLaren, Hodge, Bourne (bib7) 2004; 45
Singh, Barbosa, Torricelli, Santhiago, Wilson (bib69) 2014; 120
Zieske, Hutcheon, Guo (bib101) 2020; 303
Ljubimov, Saghizadeh (bib45) 2015; 49
Huer (10.1016/j.exer.2020.108089_bib25) 2009; 88
Ljubimov (10.1016/j.exer.2020.108089_bib45) 2015; 49
Wilson (10.1016/j.exer.2020.108089_bib87) 1993; 329
Cousins (10.1016/j.exer.2020.108089_bib11) 1991; 32
Gupta (10.1016/j.exer.2020.108089_bib21) 1996; 15
Behrens (10.1016/j.exer.2020.108089_bib5) 2012; 287
Lecler (10.1016/j.exer.2020.108089_bib39) 2018; 8
Li (10.1016/j.exer.2020.108089_bib40) 2001; 73
Mohan (10.1016/j.exer.2020.108089_bib56) 2002; 43
Hassell (10.1016/j.exer.2020.108089_bib23) 1992; 33
Meltendorf (10.1016/j.exer.2020.108089_bib53) 2009; 50
Wilson (10.1016/j.exer.2020.108089_bib93) 2018; 34
Zieske (10.1016/j.exer.2020.108089_bib100) 2001; 72
Singh (10.1016/j.exer.2020.108089_bib70) 2011; 93
Weng (10.1016/j.exer.2020.108089_bib80) 1997; 16
Tervo (10.1016/j.exer.2020.108089_bib73) 1997; 64
Li (10.1016/j.exer.2020.108089_bib42) 1996; 37
Saikia (10.1016/j.exer.2020.108089_bib63) 2018; 59
Kaur (10.1016/j.exer.2020.108089_bib33) 2009; 88
Huh (10.1016/j.exer.2020.108089_bib26) 2009; 24
Campos (10.1016/j.exer.2020.108089_bib8) 1994; 112
Ko (10.1016/j.exer.2020.108089_bib35) 2010; 51
Mohan (10.1016/j.exer.2020.108089_bib55) 1997; 65
Torricelli (10.1016/j.exer.2020.108089_bib78) 2013; 54
Wilson (10.1016/j.exer.2020.108089_bib90) 1991; 32
Barbosa (10.1016/j.exer.2020.108089_bib2) 2010; 91
Kaur (10.1016/j.exer.2020.108089_bib32) 2009; 89
Dowd (10.1016/j.exer.2020.108089_bib15) 1999; 274
Jeon (10.1016/j.exer.2020.108089_bib28) 2018; 8
Mastropasqua (10.1016/j.exer.2020.108089_bib48) 2017; 232
Wilson (10.1016/j.exer.2020.108089_bib83) 1992; 33
Danjo (10.1016/j.exer.2020.108089_bib13) 1998; 111
Masur (10.1016/j.exer.2020.108089_bib49) 1996; 93
Stramer (10.1016/j.exer.2020.108089_bib72) 2003; 44
Medeiros (10.1016/j.exer.2020.108089_bib50) 2018; 172
Shibuya (10.1016/j.exer.2020.108089_bib68) 2006; 41
Ambrósio (10.1016/j.exer.2020.108089_bib1) 2009; 89
Bilgihan (10.1016/j.exer.2020.108089_bib6) 1997; 211
Lassance (10.1016/j.exer.2020.108089_bib37) 2018; 170
Santhanam (10.1016/j.exer.2020.108089_bib65) 2015; 21
Wilson (10.1016/j.exer.2020.108089_bib85) 1995; 36
Li (10.1016/j.exer.2020.108089_bib41) 1997; 172
Barbosa (10.1016/j.exer.2020.108089_bib3) 2010; 91
Koizumi (10.1016/j.exer.2020.108089_bib36) 2006; 141
Lipshitz (10.1016/j.exer.2020.108089_bib43) 1997; 104
Wilson (10.1016/j.exer.2020.108089_bib89) 1999; 40
Kim (10.1016/j.exer.2020.108089_bib34) 1999; 40
Liu (10.1016/j.exer.2020.108089_bib44) 2015; 134
Wilson (10.1016/j.exer.2020.108089_bib91) 1992; 33
Granstein (10.1016/j.exer.2020.108089_bib20) 1990; 144
Medeiros (10.1016/j.exer.2020.108089_bib52) 2019; 60
Hassell (10.1016/j.exer.2020.108089_bib22) 2010; 91
Yu (10.1016/j.exer.2020.108089_bib98) 2010; 81
Chi (10.1016/j.exer.2020.108089_bib10) 2013; 228
Solomon (10.1016/j.exer.2020.108089_bib71) 2001; 42
Crosson (10.1016/j.exer.2020.108089_bib12) 1989
Paralkar (10.1016/j.exer.2020.108089_bib62) 1991; 143
Marino (10.1016/j.exer.2020.108089_bib46) 2017; 161
Barbosa (10.1016/j.exer.2020.108089_bib4) 2012; 96
Vesaluoma (10.1016/j.exer.2020.108089_bib79) 1997; 16
Jester (10.1016/j.exer.2020.108089_bib31) 1999; 112
Netto (10.1016/j.exer.2020.108089_bib60) 2006; 82
Thygeson (10.1016/j.exer.2020.108089_bib74) 1947; 51
Iozzo (10.1016/j.exer.2020.108089_bib27) 2009; 27
Singh (10.1016/j.exer.2020.108089_bib69) 2014; 120
Latvala (10.1016/j.exer.2020.108089_bib38) 1996; 36
Mohan (10.1016/j.exer.2020.108089_bib57) 2000; 70
Gohring (10.1016/j.exer.2020.108089_bib19) 1998; 255
Jester (10.1016/j.exer.2020.108089_bib29) 1996; 15
Calvillo (10.1016/j.exer.2020.108089_bib7) 2004; 45
Galligan (10.1016/j.exer.2020.108089_bib17) 2013; 93
Shi (10.1016/j.exer.2020.108089_bib67) 2011; 11
Torricelli (10.1016/j.exer.2020.108089_bib76) 2015; 134
Chaurasia (10.1016/j.exer.2020.108089_bib9) 2009; 89
West-Mays (10.1016/j.exer.2020.108089_bib81) 1995; 92
Nakayasu (10.1016/j.exer.2020.108089_bib59) 1988; 32
Nishida (10.1016/j.exer.2020.108089_bib61) 1995; 14
Yurchenco (10.1016/j.exer.2020.108089_bib99) 1986; 34
Sharif (10.1016/j.exer.2020.108089_bib66) 2019; 63
Torricelli (10.1016/j.exer.2020.108089_bib77) 2013; 54
Marino (10.1016/j.exer.2020.108089_bib47) 2017; 33
Wilson (10.1016/j.exer.2020.108089_bib84) 1996; 62
Wilson (10.1016/j.exer.2020.108089_bib95) 1997; 64
Wilson (10.1016/j.exer.2020.108089_bib88) 1996; 37
Girard (10.1016/j.exer.2020.108089_bib18) 1991; 32
Wilson (10.1016/j.exer.2020.108089_bib97) 1993; 34
Santhanam (10.1016/j.exer.2020.108089_bib64) 2017; 23
Wilson (10.1016/j.exer.2020.108089_bib96) 1994; 59
Hong (10.1016/j.exer.2020.108089_bib24) 2001; 42
Mohan (10.1016/j.exer.2020.108089_bib54) 2003; 76
Fannon (10.1016/j.exer.2020.108089_bib16) 2003; 17
Wilson (10.1016/j.exer.2020.108089_bib94) 2004; 45
Nakamura (10.1016/j.exer.2020.108089_bib58) 2002; 43
Wilson (10.1016/j.exer.2020.108089_bib82) 2009; 89
Zieske (10.1016/j.exer.2020.108089_bib101) 2020; 303
Dohlman (10.1016/j.exer.2020.108089_bib14) 1968; 7
Medeiros (10.1016/j.exer.2020.108089_bib51) 2018; 34
Jester (10.1016/j.exer.2020.108089_bib30) 2002; 75
Torres (10.1016/j.exer.2020.108089_bib75) 1994; 2
Wilson (10.1016/j.exer.2020.108089_bib92) 2017; 64
Wilson (10.1016/j.exer.2020.108089_bib86) 1994; 59
References_xml – volume: 11
  start-page: 762
  year: 2011
  end-page: 774
  ident: bib67
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 32
  start-page: 2201
  year: 1991
  end-page: 2211
  ident: bib11
  article-title: Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 17
  start-page: 902
  year: 2003
  end-page: 904
  ident: bib16
  article-title: Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment
  publication-title: Faseb. J.
– volume: 40
  start-page: 1364
  year: 1999
  end-page: 1372
  ident: bib34
  article-title: Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 45
  start-page: 3991
  year: 2004
  end-page: 3996
  ident: bib7
  article-title: Corneal reinnervation after LASIK: prospective 3-year longitudinal study
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 34
  start-page: 59
  year: 2018
  end-page: 64
  ident: bib93
  article-title: Pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries
  publication-title: J. Refract. Surg.
– volume: 33
  start-page: 1987
  year: 1992
  end-page: 1995
  ident: bib91
  article-title: EGF, basic FGF, and TGF beta-1 messenger RNA production in rabbit corneal epithelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 91
  start-page: 92
  year: 2010
  end-page: 96
  ident: bib2
  article-title: Corneal myofibroblast generation from bone marrow-derived cells
  publication-title: Exp. Eye Res.
– volume: 112
  start-page: 613
  year: 1999
  end-page: 622
  ident: bib31
  article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins'
  publication-title: J. Cell Sci.
– volume: 89
  start-page: 152
  year: 2009
  end-page: 158
  ident: bib32
  article-title: Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta-1
  publication-title: Exp. Eye Res.
– volume: 40
  start-page: 2185
  year: 1999
  end-page: 2190
  ident: bib89
  article-title: Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 16
  start-page: 19
  year: 1997
  end-page: 25
  ident: bib79
  article-title: Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy
  publication-title: Curr. Eye Res.
– volume: 172
  start-page: 361
  year: 1997
  end-page: 372
  ident: bib41
  article-title: Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts
  publication-title: J. Cell. Physiol.
– volume: 24
  start-page: 1405
  year: 2009
  end-page: 1416
  ident: bib26
  article-title: Temporal and spatial distribution of TGF-beta isoforms and signaling intermediates in corneal regenerative wound repair
  publication-title: Histol. Histopathol.
– volume: 72
  start-page: 33
  year: 2001
  end-page: 39
  ident: bib100
  article-title: Kinetics of keratocyte proliferation in response to epithelial debridement
  publication-title: Exp. Eye Res.
– volume: 134
  start-page: 61
  year: 2015
  end-page: 71
  ident: bib44
  article-title: Corneal epithelial wound healing
  publication-title: Prog. Mol. Biol. Transl. Sci.
– volume: 7
  start-page: 520
  year: 1968
  end-page: 534
  ident: bib14
  article-title: The effect of the absence of corneal epithelium or endothelium on stromal keratocytes
  publication-title: Invest. Ophthalmol.
– volume: 44
  start-page: 4237
  year: 2003
  end-page: 4246
  ident: bib72
  article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 15
  start-page: 505
  year: 1996
  end-page: 516
  ident: bib29
  article-title: Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes
  publication-title: Cornea
– volume: 63
  start-page: 15
  year: 2019
  end-page: 22
  ident: bib66
  article-title: Corneal neovascularization: updates on pathophysiology, investigations & management
  publication-title: Rom. J. Ophthalmol.
– volume: 88
  start-page: 992
  year: 2009
  end-page: 994
  ident: bib25
  article-title: Expression of interleukin-1 receptor antagonist in the cornea
  publication-title: Exp. Eye Res.
– volume: 65
  start-page: 575
  year: 1997
  end-page: 589
  ident: bib55
  article-title: Apoptosis in the cornea: further characterization of Fas-Fas ligand system
  publication-title: Exp. Eye Res.
– volume: 104
  start-page: 369
  year: 1997
  end-page: 373
  ident: bib43
  article-title: Late onset corneal haze after photorefractive keratectomy for moderate and high myopia
  publication-title: Ophthalmology
– volume: 15
  start-page: 605
  year: 1996
  end-page: 614
  ident: bib21
  article-title: Transforming growth factor beta-1 and beta-2 in human tear fluid
  publication-title: Curr. Eye Res.
– volume: 8
  start-page: 12945
  year: 2018
  ident: bib28
  article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing
  publication-title: Sci. Rep.
– volume: 32
  start-page: 2441
  year: 1991
  end-page: 2454
  ident: bib18
  article-title: Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 112
  start-page: 254
  year: 1994
  end-page: 260
  ident: bib8
  article-title: Keratocyte loss after corneal de-epithelialization in primates and rabbits
  publication-title: Arch. Ophthalmol.
– volume: 2
  start-page: 217
  year: 1994
  end-page: 222
  ident: bib75
  article-title: Expression of the interleukin 1 receptor antagonist in the normal human cornea
  publication-title: Ocul. Immunol. Inflamm.
– volume: 89
  start-page: 133
  year: 2009
  end-page: 139
  ident: bib9
  article-title: Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury
  publication-title: Exp. Eye Res.
– volume: 120
  start-page: 152
  year: 2014
  end-page: 160
  ident: bib69
  article-title: Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro
  publication-title: Exp. Eye Res.
– volume: 8
  start-page: 4438
  year: 2018
  end-page: 4453
  ident: bib39
  article-title: TGF-β1 promotes cell barrier function upon maturation of corneal endothelial cells
  publication-title: Sci. Rep.
– volume: 172
  start-page: 30
  year: 2018
  end-page: 35
  ident: bib50
  article-title: Posterior stromal keratocyte apoptosis triggered by mechanical endothelial injury and nidogen-1 production in the cornea
  publication-title: Exp. Eye Res.
– volume: 59
  start-page: 5589
  year: 2018
  end-page: 5598
  ident: bib63
  article-title: IL-1 and TGFβ modulation of epithelial basement membrane components perlecan and nidogen production by corneal stromal cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 37
  start-page: 1582
  year: 1996
  end-page: 1592
  ident: bib88
  article-title: The Fas/Fas ligand system and other modulators of apoptosis in the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 287
  start-page: 18700
  year: 2012
  end-page: 18709
  ident: bib5
  article-title: The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: 3688
  year: 2009
  end-page: 3695
  ident: bib53
  article-title: Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 23
  start-page: 39
  year: 2017
  end-page: 51
  ident: bib64
  article-title: Epithelial basement membrane (EBM) regeneration and changes in EBM component mRNA expression in the anterior stroma after corneal injury
  publication-title: Mol. Vis.
– volume: 59
  start-page: 665
  year: 1994
  end-page: 678
  ident: bib86
  article-title: Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells
  publication-title: Exp. Eye Res.
– volume: 27
  start-page: 503
  year: 2009
  end-page: 513
  ident: bib27
  article-title: Basement membrane proteoglycans: modulators par excellence of cancer growth and angiogenesis
  publication-title: Mol. Cell.
– volume: 93
  start-page: 45
  year: 2013
  end-page: 50
  ident: bib17
  article-title: The role of circulating fibrocytes in inflammation and autoimmunity
  publication-title: J. Leukoc. Biol.
– volume: 36
  year: 1995
  ident: bib85
  article-title: Epithelial- and endothelial-derived interleukin-1 (IL-1) modulates corneal tissue organization and wound healing response through induction of keratocyte apoptosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 33
  start-page: 1756
  year: 1992
  end-page: 1765
  ident: bib83
  article-title: EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 170
  start-page: 177
  year: 2018
  end-page: 187
  ident: bib37
  article-title: Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury
  publication-title: Exp. Eye Res.
– volume: 255
  start-page: 60
  year: 1998
  end-page: 66
  ident: bib19
  article-title: Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope
  publication-title: Eur. J. Biochem.
– volume: 51
  start-page: 6286
  year: 2010
  end-page: 6293
  ident: bib35
  article-title: Downregulation of matrix metalloproteinase-2 in corneal fibroblasts by interleukin-1 receptor antagonist released from corneal epithelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 33
  start-page: 337
  year: 2017
  end-page: 346
  ident: bib47
  article-title: Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy
  publication-title: J. Refract. Surg.
– volume: 49
  start-page: 17
  year: 2015
  end-page: 45
  ident: bib45
  article-title: Progress in corneal wound healing
  publication-title: Prog. Retin. Eye Res.
– volume: 91
  start-page: 326
  year: 2010
  end-page: 335
  ident: bib22
  article-title: The molecular basis of corneal transparency
  publication-title: Exp. Eye Res.
– volume: 82
  start-page: 788
  year: 2006
  end-page: 797
  ident: bib60
  article-title: Stromal haze, myofibroblasts, and surface irregularity after PRK
  publication-title: Exp. Eye Res.
– volume: 34
  start-page: 790
  year: 2018
  end-page: 798
  ident: bib51
  article-title: The impact of photorefractive keratectomy (PRK) and mitomycin C (MMC) on corneal nerves and their regeneration
  publication-title: J. Refract. Surg.
– volume: 62
  start-page: 325
  year: 1996
  end-page: 328
  ident: bib84
  article-title: Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing
  publication-title: Exp. Eye Res.
– volume: 144
  start-page: 3021
  year: 1990
  end-page: 3027
  ident: bib20
  article-title: Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation
  publication-title: J. Immunol.
– volume: 33
  start-page: 547
  year: 1992
  end-page: 557
  ident: bib23
  article-title: Biosynthesis of stromal matrix proteoglycans and basement membrane components by human corneal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 89
  start-page: 124
  year: 2009
  end-page: 125
  ident: bib82
  article-title: Interleukin-1: a master regulator of the corneal response to injury
  publication-title: Exp. Eye Res.
– volume: 228
  start-page: 925
  year: 2013
  end-page: 929
  ident: bib10
  article-title: New insights in wound response and repair of epithelium
  publication-title: J. Cell. Physiol.
– volume: 14
  start-page: 235
  year: 1995
  end-page: 241
  ident: bib61
  article-title: Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea
  publication-title: Curr. Eye Res.
– volume: 59
  start-page: 63
  year: 1994
  end-page: 71
  ident: bib96
  article-title: Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea
  publication-title: Exp. Eye Res.
– volume: 161
  start-page: 101
  year: 2017
  end-page: 105
  ident: bib46
  article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits
  publication-title: Exp. Eye Res.
– volume: 111
  start-page: 3323
  year: 1998
  end-page: 3332
  ident: bib13
  article-title: Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement
  publication-title: J. Cell Sci.
– volume: 70
  start-page: 485
  year: 2000
  end-page: 491
  ident: bib57
  article-title: Defective keratocyte apoptosis in response to epithelial injury in STAT1 null mice
  publication-title: Exp. Eye Res.
– volume: 32
  start-page: 113
  year: 1988
  end-page: 125
  ident: bib59
  article-title: Stromal changes following removal of epithelium in rat cornea
  publication-title: Jpn. J. Ophthalmol.
– volume: 51
  start-page: I98
  year: 1947
  end-page: I209
  ident: bib74
  article-title: Marginal corneal infiltrates and ulcers
  publication-title: Trans. Am. Acad. Ophthalmol. Otolaryngol.
– volume: 54
  start-page: 6390
  year: 2013
  end-page: 6400
  ident: bib78
  article-title: The corneal epithelial basement membrane: structure, function and disease
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 64
  start-page: 775
  year: 1997
  end-page: 779
  ident: bib95
  article-title: Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes
  publication-title: Exp. Eye Res.
– volume: 32
  start-page: 2747
  year: 1991
  end-page: 2756
  ident: bib90
  article-title: Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 64
  start-page: 501
  year: 1997
  end-page: 504
  ident: bib73
  article-title: Tear hepatocyte growth factor (HGF) availability increases markedly after excimer laser surface ablation
  publication-title: Exp. Eye Res.
– volume: 21
  start-page: 1318
  year: 2015
  end-page: 1327
  ident: bib65
  article-title: Differential expression of epithelial basement membrane components nidogens-1 and 2 and perlecan in corneal stromal cells in vitro
  publication-title: Mol. Vis.
– volume: 42
  start-page: 2283
  year: 2001
  end-page: 2292
  ident: bib71
  article-title: Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 303
  start-page: 1727
  year: 2020
  end-page: 1734
  ident: bib101
  article-title: Extracellular vesicles and cell-cell communications in the cornea
  publication-title: Anat. Rec.
– volume: 43
  start-page: 2603
  year: 2002
  end-page: 2608
  ident: bib58
  article-title: Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 143
  start-page: 303
  year: 1991
  end-page: 308
  ident: bib62
  article-title: Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development
  publication-title: Dev. Biol.
– volume: 64
  start-page: 17
  year: 2017
  end-page: 26
  ident: bib92
  article-title: Corneal fibrosis: injury and defective regeneration of the epithelial basement membrane. A paradigm for fibrosis in other organs?
  publication-title: Matrix Biol.
– volume: 88
  start-page: 960
  year: 2009
  end-page: 965
  ident: bib33
  article-title: Corneal stroma PDGF blockade and myofibroblast development
  publication-title: Exp. Eye Res.
– volume: 60
  start-page: 1010
  year: 2019
  end-page: 1020
  ident: bib52
  article-title: Descemet's membrane modulation of posterior corneal fibrosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 81
  start-page: 229
  year: 2010
  end-page: 235
  ident: bib98
  article-title: Growth factors and corneal epithelial wound healing
  publication-title: Brain Res. Bull.
– volume: 42
  start-page: 2795
  year: 2001
  end-page: 2803
  ident: bib24
  article-title: Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 211
  start-page: 380
  year: 1997
  end-page: 383
  ident: bib6
  article-title: Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation
  publication-title: Ophthalmologica
– volume: 92
  start-page: 6768
  year: 1995
  end-page: 6772
  ident: bib81
  article-title: Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 37
  start-page: 727
  year: 1996
  end-page: 739
  ident: bib42
  article-title: Hepatocyte growth factor and hepatocyte growth factor receptor in the lacrimal gland, tears, and cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 91
  start-page: 456
  year: 2010
  end-page: 461
  ident: bib3
  article-title: Stromal interleukin-1 expression in the cornea after haze-associated injury
  publication-title: Exp. Eye Res.
– volume: 76
  start-page: 71
  year: 2003
  end-page: 87
  ident: bib54
  article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK
  publication-title: Exp. Eye Res.
– volume: 54
  start-page: 4026
  year: 2013
  end-page: 4033
  ident: bib77
  article-title: Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 34
  start-page: 93
  year: 1986
  end-page: 102
  ident: bib99
  article-title: Models for the self-assembly of basement membrane
  publication-title: J. Histochem. Cytochem.
– volume: 36
  start-page: 21
  year: 1996
  end-page: 27
  ident: bib38
  article-title: Corneal nerve recovery after photorefractive keratectomy and laser in situ keratomileusis
  publication-title: Int. Ophthalmol. Clin.
– volume: 41
  start-page: 187
  year: 2006
  end-page: 195
  ident: bib68
  article-title: The bioactivity of transforming growth factor-beta1 can be regulated via binding to dermal collagens in mink lung epithelial cells
  publication-title: J. Dermatol. Sci.
– volume: 93
  start-page: 810
  year: 2011
  end-page: 817
  ident: bib70
  article-title: Effect of TGFβ and PDGF-B blockade on corneal myofibroblast development in mice
  publication-title: Exp. Eye Res.
– volume: 329
  start-page: 62
  year: 1993
  ident: bib87
  article-title: Mooren's corneal ulcers and hepatitis C virus infection
  publication-title: N. Engl. J. Med.
– volume: 96
  start-page: 65
  year: 2012
  end-page: 69
  ident: bib4
  article-title: Interleukin-1 receptor role in the viability of corneal myofibroblasts
  publication-title: Exp. Eye Res.
– volume: 45
  start-page: 2201
  year: 2004
  end-page: 2211
  ident: bib94
  article-title: RANK, RANKL, OPG, and M-CSF expression in stromal cells during corneal wound healing
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 134
  start-page: 33
  year: 2015
  end-page: 38
  ident: bib76
  article-title: Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas
  publication-title: Exp. Eye Res.
– volume: 89
  start-page: 597
  year: 2009
  end-page: 599
  ident: bib1
  article-title: Early keratocyte apoptosis after epithelial scrape injury in the human cornea
  publication-title: Exp. Eye Res.
– volume: 43
  start-page: 1679
  year: 2002
  ident: bib56
  article-title: Activation of keratocyte apoptosis in response to epithelial scrape injury does not require tears
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 73
  start-page: 449
  year: 2001
  end-page: 459
  ident: bib40
  article-title: Regulation of MMP-9 production by human corneal epithelial cells
  publication-title: Exp. Eye Res.
– volume: 16
  start-page: 465
  year: 1997
  end-page: 471
  ident: bib80
  article-title: IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea
  publication-title: Cornea
– volume: 141
  start-page: 564
  year: 2006
  end-page: 565
  ident: bib36
  article-title: Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis
  publication-title: Am. J. Ophthalmol.
– volume: 232
  start-page: 717
  year: 2017
  end-page: 724
  ident: bib48
  article-title: Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves
  publication-title: J. Cell. Physiol.
– start-page: 3
  year: 1989
  end-page: 14
  ident: bib12
  article-title: Cellular changes following epithelial abrasion
  publication-title: Healing Processes in the Cornea
– volume: 75
  start-page: 645
  year: 2002
  end-page: 657
  ident: bib30
  article-title: TGF beta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGF beta, PDGF and integrin signaling
  publication-title: Exp. Eye Res.
– volume: 274
  start-page: 5236
  year: 1999
  end-page: 5244
  ident: bib15
  article-title: Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 2544
  year: 1993
  end-page: 2561
  ident: bib97
  article-title: Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 93
  start-page: 4219
  year: 1996
  end-page: 4223
  ident: bib49
  article-title: Myofibroblasts differentiate from fibroblasts when plated at low density
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 73
  start-page: 449
  year: 2001
  ident: 10.1016/j.exer.2020.108089_bib40
  article-title: Regulation of MMP-9 production by human corneal epithelial cells
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2001.1054
– volume: 143
  start-page: 303
  year: 1991
  ident: 10.1016/j.exer.2020.108089_bib62
  article-title: Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(91)90081-D
– volume: 88
  start-page: 960
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib33
  article-title: Corneal stroma PDGF blockade and myofibroblast development
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.12.006
– volume: 34
  start-page: 790
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib51
  article-title: The impact of photorefractive keratectomy (PRK) and mitomycin C (MMC) on corneal nerves and their regeneration
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20181112-01
– volume: 64
  start-page: 17
  year: 2017
  ident: 10.1016/j.exer.2020.108089_bib92
  article-title: Corneal fibrosis: injury and defective regeneration of the epithelial basement membrane. A paradigm for fibrosis in other organs?
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2017.06.003
– volume: 42
  start-page: 2283
  year: 2001
  ident: 10.1016/j.exer.2020.108089_bib71
  article-title: Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 211
  start-page: 380
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib6
  article-title: Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation
  publication-title: Ophthalmologica
  doi: 10.1159/000310834
– volume: 32
  start-page: 2201
  year: 1991
  ident: 10.1016/j.exer.2020.108089_bib11
  article-title: Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 33
  start-page: 547
  year: 1992
  ident: 10.1016/j.exer.2020.108089_bib23
  article-title: Biosynthesis of stromal matrix proteoglycans and basement membrane components by human corneal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 41
  start-page: 187
  year: 2006
  ident: 10.1016/j.exer.2020.108089_bib68
  article-title: The bioactivity of transforming growth factor-beta1 can be regulated via binding to dermal collagens in mink lung epithelial cells
  publication-title: J. Dermatol. Sci.
  doi: 10.1016/j.jdermsci.2005.10.005
– volume: 21
  start-page: 1318
  year: 2015
  ident: 10.1016/j.exer.2020.108089_bib65
  article-title: Differential expression of epithelial basement membrane components nidogens-1 and 2 and perlecan in corneal stromal cells in vitro
  publication-title: Mol. Vis.
– volume: 49
  start-page: 17
  year: 2015
  ident: 10.1016/j.exer.2020.108089_bib45
  article-title: Progress in corneal wound healing
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2015.07.002
– volume: 8
  start-page: 12945
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib28
  article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30964-y
– volume: 7
  start-page: 520
  year: 1968
  ident: 10.1016/j.exer.2020.108089_bib14
  article-title: The effect of the absence of corneal epithelium or endothelium on stromal keratocytes
  publication-title: Invest. Ophthalmol.
– volume: 65
  start-page: 575
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib55
  article-title: Apoptosis in the cornea: further characterization of Fas-Fas ligand system
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1997.0371
– volume: 43
  start-page: 1679
  year: 2002
  ident: 10.1016/j.exer.2020.108089_bib56
  article-title: Activation of keratocyte apoptosis in response to epithelial scrape injury does not require tears
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 42
  start-page: 2795
  year: 2001
  ident: 10.1016/j.exer.2020.108089_bib24
  article-title: Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 51
  start-page: 6286
  year: 2010
  ident: 10.1016/j.exer.2020.108089_bib35
  article-title: Downregulation of matrix metalloproteinase-2 in corneal fibroblasts by interleukin-1 receptor antagonist released from corneal epithelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-4753
– volume: 172
  start-page: 30
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib50
  article-title: Posterior stromal keratocyte apoptosis triggered by mechanical endothelial injury and nidogen-1 production in the cornea
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.03.025
– volume: 329
  start-page: 62
  year: 1993
  ident: 10.1016/j.exer.2020.108089_bib87
  article-title: Mooren's corneal ulcers and hepatitis C virus infection
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199307013290118
– volume: 34
  start-page: 93
  year: 1986
  ident: 10.1016/j.exer.2020.108089_bib99
  article-title: Models for the self-assembly of basement membrane
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/34.1.3510247
– volume: 43
  start-page: 2603
  year: 2002
  ident: 10.1016/j.exer.2020.108089_bib58
  article-title: Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 11
  start-page: 762
  year: 2011
  ident: 10.1016/j.exer.2020.108089_bib67
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3070
– volume: 2
  start-page: 217
  year: 1994
  ident: 10.1016/j.exer.2020.108089_bib75
  article-title: Expression of the interleukin 1 receptor antagonist in the normal human cornea
  publication-title: Ocul. Immunol. Inflamm.
  doi: 10.3109/09273949409057079
– volume: 170
  start-page: 177
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib37
  article-title: Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.02.018
– volume: 24
  start-page: 1405
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib26
  article-title: Temporal and spatial distribution of TGF-beta isoforms and signaling intermediates in corneal regenerative wound repair
  publication-title: Histol. Histopathol.
– volume: 15
  start-page: 605
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib21
  article-title: Transforming growth factor beta-1 and beta-2 in human tear fluid
  publication-title: Curr. Eye Res.
  doi: 10.3109/02713689609008900
– volume: 88
  start-page: 992
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib25
  article-title: Expression of interleukin-1 receptor antagonist in the cornea
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.11.019
– volume: 54
  start-page: 4026
  year: 2013
  ident: 10.1016/j.exer.2020.108089_bib77
  article-title: Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-12106
– volume: 303
  start-page: 1727
  year: 2020
  ident: 10.1016/j.exer.2020.108089_bib101
  article-title: Extracellular vesicles and cell-cell communications in the cornea
  publication-title: Anat. Rec.
  doi: 10.1002/ar.24181
– volume: 15
  start-page: 505
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib29
  article-title: Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes
  publication-title: Cornea
  doi: 10.1097/00003226-199609000-00011
– volume: 144
  start-page: 3021
  year: 1990
  ident: 10.1016/j.exer.2020.108089_bib20
  article-title: Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.144.8.3021
– volume: 64
  start-page: 775
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib95
  article-title: Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1996.0266
– volume: 96
  start-page: 65
  year: 2012
  ident: 10.1016/j.exer.2020.108089_bib4
  article-title: Interleukin-1 receptor role in the viability of corneal myofibroblasts
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2011.12.022
– volume: 92
  start-page: 6768
  year: 1995
  ident: 10.1016/j.exer.2020.108089_bib81
  article-title: Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.15.6768
– volume: 16
  start-page: 465
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib80
  article-title: IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea
  publication-title: Cornea
  doi: 10.1097/00003226-199707000-00015
– volume: 45
  start-page: 2201
  year: 2004
  ident: 10.1016/j.exer.2020.108089_bib94
  article-title: RANK, RANKL, OPG, and M-CSF expression in stromal cells during corneal wound healing
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.03-1162
– volume: 37
  start-page: 1582
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib88
  article-title: The Fas/Fas ligand system and other modulators of apoptosis in the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 112
  start-page: 613
  year: 1999
  ident: 10.1016/j.exer.2020.108089_bib31
  article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins'
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.5.613
– volume: 161
  start-page: 101
  year: 2017
  ident: 10.1016/j.exer.2020.108089_bib46
  article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2017.05.003
– volume: 93
  start-page: 45
  year: 2013
  ident: 10.1016/j.exer.2020.108089_bib17
  article-title: The role of circulating fibrocytes in inflammation and autoimmunity
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0712365
– volume: 134
  start-page: 33
  year: 2015
  ident: 10.1016/j.exer.2020.108089_bib76
  article-title: Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2015.03.016
– volume: 59
  start-page: 63
  year: 1994
  ident: 10.1016/j.exer.2020.108089_bib96
  article-title: Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1994.1081
– volume: 14
  start-page: 235
  year: 1995
  ident: 10.1016/j.exer.2020.108089_bib61
  article-title: Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea
  publication-title: Curr. Eye Res.
  doi: 10.3109/02713689509033520
– volume: 32
  start-page: 2747
  year: 1991
  ident: 10.1016/j.exer.2020.108089_bib90
  article-title: Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 70
  start-page: 485
  year: 2000
  ident: 10.1016/j.exer.2020.108089_bib57
  article-title: Defective keratocyte apoptosis in response to epithelial injury in STAT1 null mice
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1999.0807
– volume: 17
  start-page: 902
  year: 2003
  ident: 10.1016/j.exer.2020.108089_bib16
  article-title: Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment
  publication-title: Faseb. J.
  doi: 10.1096/fj.02-0935fje
– volume: 76
  start-page: 71
  year: 2003
  ident: 10.1016/j.exer.2020.108089_bib54
  article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK
  publication-title: Exp. Eye Res.
  doi: 10.1016/S0014-4835(02)00251-8
– volume: 232
  start-page: 717
  year: 2017
  ident: 10.1016/j.exer.2020.108089_bib48
  article-title: Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25623
– volume: 27
  start-page: 503
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib27
  article-title: Basement membrane proteoglycans: modulators par excellence of cancer growth and angiogenesis
  publication-title: Mol. Cell.
  doi: 10.1007/s10059-009-0069-0
– volume: 81
  start-page: 229
  year: 2010
  ident: 10.1016/j.exer.2020.108089_bib98
  article-title: Growth factors and corneal epithelial wound healing
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2009.08.024
– volume: 82
  start-page: 788
  year: 2006
  ident: 10.1016/j.exer.2020.108089_bib60
  article-title: Stromal haze, myofibroblasts, and surface irregularity after PRK
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.09.021
– volume: 33
  start-page: 337
  year: 2017
  ident: 10.1016/j.exer.2020.108089_bib47
  article-title: Regeneration of defective epithelial basement membrane and restoration of corneal transparency after photorefractive keratectomy
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20170126-02
– volume: 36
  year: 1995
  ident: 10.1016/j.exer.2020.108089_bib85
  article-title: Epithelial- and endothelial-derived interleukin-1 (IL-1) modulates corneal tissue organization and wound healing response through induction of keratocyte apoptosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 91
  start-page: 326
  year: 2010
  ident: 10.1016/j.exer.2020.108089_bib22
  article-title: The molecular basis of corneal transparency
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2010.06.021
– volume: 134
  start-page: 61
  year: 2015
  ident: 10.1016/j.exer.2020.108089_bib44
  article-title: Corneal epithelial wound healing
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/bs.pmbts.2015.05.002
– volume: 40
  start-page: 2185
  year: 1999
  ident: 10.1016/j.exer.2020.108089_bib89
  article-title: Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 75
  start-page: 645
  year: 2002
  ident: 10.1016/j.exer.2020.108089_bib30
  article-title: TGF beta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGF beta, PDGF and integrin signaling
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2002.2066
– volume: 89
  start-page: 124
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib82
  article-title: Interleukin-1: a master regulator of the corneal response to injury
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.02.011
– volume: 23
  start-page: 39
  year: 2017
  ident: 10.1016/j.exer.2020.108089_bib64
  article-title: Epithelial basement membrane (EBM) regeneration and changes in EBM component mRNA expression in the anterior stroma after corneal injury
  publication-title: Mol. Vis.
– volume: 40
  start-page: 1364
  year: 1999
  ident: 10.1016/j.exer.2020.108089_bib34
  article-title: Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 51
  start-page: I98
  year: 1947
  ident: 10.1016/j.exer.2020.108089_bib74
  article-title: Marginal corneal infiltrates and ulcers
  publication-title: Trans. Am. Acad. Ophthalmol. Otolaryngol.
– volume: 91
  start-page: 92
  year: 2010
  ident: 10.1016/j.exer.2020.108089_bib2
  article-title: Corneal myofibroblast generation from bone marrow-derived cells
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2010.04.007
– volume: 59
  start-page: 5589
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib63
  article-title: IL-1 and TGFβ modulation of epithelial basement membrane components perlecan and nidogen production by corneal stromal cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-25202
– volume: 63
  start-page: 15
  year: 2019
  ident: 10.1016/j.exer.2020.108089_bib66
  article-title: Corneal neovascularization: updates on pathophysiology, investigations & management
  publication-title: Rom. J. Ophthalmol.
  doi: 10.22336/rjo.2019.4
– volume: 104
  start-page: 369
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib43
  article-title: Late onset corneal haze after photorefractive keratectomy for moderate and high myopia
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(97)30306-6
– volume: 287
  start-page: 18700
  year: 2012
  ident: 10.1016/j.exer.2020.108089_bib5
  article-title: The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.336073
– volume: 50
  start-page: 3688
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib53
  article-title: Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-2699
– volume: 33
  start-page: 1756
  year: 1992
  ident: 10.1016/j.exer.2020.108089_bib83
  article-title: EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 172
  start-page: 361
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib41
  article-title: Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(199709)172:3<361::AID-JCP10>3.0.CO;2-9
– volume: 255
  start-page: 60
  year: 1998
  ident: 10.1016/j.exer.2020.108089_bib19
  article-title: Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1998.2550060.x
– volume: 89
  start-page: 133
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib9
  article-title: Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.02.022
– volume: 36
  start-page: 21
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib38
  article-title: Corneal nerve recovery after photorefractive keratectomy and laser in situ keratomileusis
  publication-title: Int. Ophthalmol. Clin.
  doi: 10.1097/00004397-199603640-00005
– volume: 34
  start-page: 59
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib93
  article-title: Pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20171128-01
– volume: 228
  start-page: 925
  year: 2013
  ident: 10.1016/j.exer.2020.108089_bib10
  article-title: New insights in wound response and repair of epithelium
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24268
– start-page: 3
  year: 1989
  ident: 10.1016/j.exer.2020.108089_bib12
  article-title: Cellular changes following epithelial abrasion
– volume: 16
  start-page: 19
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib79
  article-title: Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy
  publication-title: Curr. Eye Res.
  doi: 10.1076/ceyr.16.1.19.5119
– volume: 8
  start-page: 4438
  year: 2018
  ident: 10.1016/j.exer.2020.108089_bib39
  article-title: TGF-β1 promotes cell barrier function upon maturation of corneal endothelial cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22821-9
– volume: 54
  start-page: 6390
  year: 2013
  ident: 10.1016/j.exer.2020.108089_bib78
  article-title: The corneal epithelial basement membrane: structure, function and disease
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-12547
– volume: 111
  start-page: 3323
  year: 1998
  ident: 10.1016/j.exer.2020.108089_bib13
  article-title: Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111.22.3323
– volume: 32
  start-page: 113
  year: 1988
  ident: 10.1016/j.exer.2020.108089_bib59
  article-title: Stromal changes following removal of epithelium in rat cornea
  publication-title: Jpn. J. Ophthalmol.
– volume: 37
  start-page: 727
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib42
  article-title: Hepatocyte growth factor and hepatocyte growth factor receptor in the lacrimal gland, tears, and cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 32
  start-page: 2441
  year: 1991
  ident: 10.1016/j.exer.2020.108089_bib18
  article-title: Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 91
  start-page: 456
  year: 2010
  ident: 10.1016/j.exer.2020.108089_bib3
  article-title: Stromal interleukin-1 expression in the cornea after haze-associated injury
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2010.06.023
– volume: 45
  start-page: 3991
  year: 2004
  ident: 10.1016/j.exer.2020.108089_bib7
  article-title: Corneal reinnervation after LASIK: prospective 3-year longitudinal study
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.04-0561
– volume: 60
  start-page: 1010
  year: 2019
  ident: 10.1016/j.exer.2020.108089_bib52
  article-title: Descemet's membrane modulation of posterior corneal fibrosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-26451
– volume: 120
  start-page: 152
  year: 2014
  ident: 10.1016/j.exer.2020.108089_bib69
  article-title: Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2014.01.003
– volume: 59
  start-page: 665
  year: 1994
  ident: 10.1016/j.exer.2020.108089_bib86
  article-title: Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1994.1152
– volume: 93
  start-page: 4219
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib49
  article-title: Myofibroblasts differentiate from fibroblasts when plated at low density
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.9.4219
– volume: 44
  start-page: 4237
  year: 2003
  ident: 10.1016/j.exer.2020.108089_bib72
  article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-1188
– volume: 72
  start-page: 33
  year: 2001
  ident: 10.1016/j.exer.2020.108089_bib100
  article-title: Kinetics of keratocyte proliferation in response to epithelial debridement
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2000.0926
– volume: 62
  start-page: 325
  year: 1996
  ident: 10.1016/j.exer.2020.108089_bib84
  article-title: Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1996.0038
– volume: 64
  start-page: 501
  year: 1997
  ident: 10.1016/j.exer.2020.108089_bib73
  article-title: Tear hepatocyte growth factor (HGF) availability increases markedly after excimer laser surface ablation
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1996.0226
– volume: 34
  start-page: 2544
  year: 1993
  ident: 10.1016/j.exer.2020.108089_bib97
  article-title: Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 89
  start-page: 597
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib1
  article-title: Early keratocyte apoptosis after epithelial scrape injury in the human cornea
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.06.003
– volume: 89
  start-page: 152
  year: 2009
  ident: 10.1016/j.exer.2020.108089_bib32
  article-title: Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta-1
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.03.001
– volume: 112
  start-page: 254
  year: 1994
  ident: 10.1016/j.exer.2020.108089_bib8
  article-title: Keratocyte loss after corneal de-epithelialization in primates and rabbits
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1994.01090140130034
– volume: 141
  start-page: 564
  year: 2006
  ident: 10.1016/j.exer.2020.108089_bib36
  article-title: Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2005.09.021
– volume: 33
  start-page: 1987
  year: 1992
  ident: 10.1016/j.exer.2020.108089_bib91
  article-title: EGF, basic FGF, and TGF beta-1 messenger RNA production in rabbit corneal epithelial cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 93
  start-page: 810
  year: 2011
  ident: 10.1016/j.exer.2020.108089_bib70
  article-title: Effect of TGFβ and PDGF-B blockade on corneal myofibroblast development in mice
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2011.09.012
– volume: 274
  start-page: 5236
  year: 1999
  ident: 10.1016/j.exer.2020.108089_bib15
  article-title: Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.8.5236
SSID ssj0003474
Score 2.6393352
SecondaryResourceType review_article
Snippet The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108089
SubjectTerms Animals
Apoptosis
Cornea
Cornea - pathology
Corneal fibroblasts
Corneal Injuries - metabolism
Corneal Injuries - pathology
Extracellular Matrix - metabolism
Fibrocytes
Fibrosis
Humans
Infection
Injury
Interleukin-1
Keratocyte apoptosis
Myofibroblasts
Myofibroblasts - pathology
PDGF
Regeneration
Scarring. corneal
Stromal-epithelial interactions
TGF beta
Wound healing
Wound Healing - physiology
Title Corneal wound healing
URI https://dx.doi.org/10.1016/j.exer.2020.108089
https://www.ncbi.nlm.nih.gov/pubmed/32553485
https://www.proquest.com/docview/2415294627
https://pubmed.ncbi.nlm.nih.gov/PMC7483425
Volume 197
WOSCitedRecordID wos000565674000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003474
  issn: 0014-4835
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD5iG0J7QbANKJcpSGgvKFUuvuWxmjqxqRQeOpQ3K7EdbRWkXdvB9u_xLWm7m8YDL1HiOnF6vuTk2D7-PoBPmImoLGQU0ipKQ1TGOMykPmQiUYSKQiJLVv1jQIdDlufZd68xOrdyArSu2dVVNv2vUOsyDbZZOvsPcLcX1QV6X4Outxp2vX0U8IeTWW3Ygv8YwSQbCDZfp3Gbdrck9VfXRjdlZUirWKVwdJpnfrWCHxtIlplpjTuLTIpx5HRlu-qOssYHuiRZ78VM3qET9rnlYF1ff9w1glBd02R3WXmdzXr4jR-dDgZ81M9HB9OL0Ah9mQlxr3qyAVsJxZl2RFu9435-0n4-U2Sps9vb9CudXFLezWbviyZu9xZuJr2uRBGjF_Dch_9Bz8H2Ep6oegd2e3WxmPy6Dg4Cm5BrZzp24NlXn_ewC3se1MCCGnhQ9-D0qD86_BJ6QYtQIIwXYYWJ_nM0TTJZSsIURkS_EWUpK4mQFKisIhQLwZhgZVxISqRCQlW4LKhELBLpK9isJ7V6A4GIk0KxklQ6wEAkSzOUCFIRpAhjRSVEB-LGMFx4tncjOvKTN2l9Y26MyY0xuTNmBz6350wd18mDtXFjb-6jNReFcf2sPHjexwYcrl2ZmZ8qajW5nHMbTGbaJrQDrx1Y7X2kuuubIoY7QNdgbCsYmvT1X-rzM0uXTs14eYLfPqLdd7C9fI3ew-Zidqk-wFPxe3E-n-3DBs3Zvn9e_wKQPoYd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corneal+wound+healing&rft.jtitle=Experimental+eye+research&rft.au=Wilson%2C+Steven+E&rft.date=2020-08-01&rft.issn=1096-0007&rft.eissn=1096-0007&rft.volume=197&rft.spage=108089&rft_id=info:doi/10.1016%2Fj.exer.2020.108089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon