Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction

Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PeerJ. Computer science Ročník 10; s. e2520
Hlavní autori: Hajim, Wesam Ibrahim, Zainudin, Suhaila, Daud, Kauthar Mohd, Alheeti, Khattab
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States PeerJ. Ltd 23.12.2024
PeerJ Inc
Predmet:
ISSN:2376-5992, 2376-5992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem.
AbstractList Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem.
Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem.Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem.
ArticleNumber e2520
Audience Academic
Author Zainudin, Suhaila
Hajim, Wesam Ibrahim
Alheeti, Khattab
Daud, Kauthar Mohd
Author_xml – sequence: 1
  givenname: Wesam Ibrahim
  orcidid: 0000-0003-3011-9072
  surname: Hajim
  fullname: Hajim, Wesam Ibrahim
  organization: Department of Applied Geology, College of Sciences, University of Tikrit, Tikrit, Salah ad Din, Iraq, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 2
  givenname: Suhaila
  surname: Zainudin
  fullname: Zainudin, Suhaila
  organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 3
  givenname: Kauthar Mohd
  surname: Daud
  fullname: Daud, Kauthar Mohd
  organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 4
  givenname: Khattab
  orcidid: 0000-0002-6393-7410
  surname: Alheeti
  fullname: Alheeti, Khattab
  organization: Department of Computer Networking Systems College of Computer Sciences and Information Technology, University of Anbar, Ramadi, Al Anbar, Iraq
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39896419$$D View this record in MEDLINE/PubMed
BookMark eNptkk9vFCEYxiemxtbao1dD4kUPszIwzAzHZqN1k9UmtnolDLxM2MzACIyxfhG_ruxubWwiHIAnv-fh3_u8OHHeQVG8rPCqbav23QwQdqWKK8IIflKcEdo2JeOcnPwzPy0uYtxhjCtW5cafFaeUd7ypK35W_L7yowaHQA4jID8nO9lfoNH6-vO3cntz-wlJp1HetnQwyGR_2HRXKu9iCtK6DMoleXDKawgoeRSXefYhoThnWI4Hd4Ipa3lhQKYlQETWISWdyhYdlgFlac6RgOYA2qpkvXtRPDVyjHBxP54XXz-8v11_LLfXV5v15bZUNWOpNDVwhjvcU6CmwZJqVRvgmrdaS-A97ztDOjCcsx6rSjaa9RLrWnYa90Ypel5sjrnay52Yg51kuBNeWnEQfBiEDMmqEUTPeN8SQzUQWWtdd7QxEtPOMABd8yZnvTlmzcF_XyAmMdmoYBylA79EQauGdAxTxjP6-ogOMidbZ3x-T7XHxWVHKkIaTGimVv-hctcw2fwJYGzWHxnePjJkJsHPNMglRrG5-fKYfXV_2qWfQD_c_W9tZKA8Air4GAOYB6TCYl9-4lB-QkWxLz_6B31C0EU
Cites_doi 10.1109/ICEEI59426.2023.10346837
10.1109/TNNLS.2017.2747861
10.1109/TNNLS.2015.2479223
10.1109/ICEEI59426.2023.10346720
10.1016/j.gpb.2023.01.006
10.1186/s12864-021-07524-2
10.1016/j.eswa.2017.08.026
10.1155/2017/4827171
10.1016/j.ymeth.2023.11.018
10.3332/ecancer.2019.961
10.1093/bib/bbz171
10.3389/fgene.2019.00233
10.1002/int.22389
10.14569/IJACSA.2023.01410115
10.1016/j.jksuci.2020.10.004
10.1016/j.physd.2019.132306
10.1186/s12920-018-0460-9
10.1007/s00521-021-05798-x
10.3390/genes12060844
10.3390/cancers12061606
10.1007/s10489-022-03721-y
10.1007/978-1-0716-2095-3_7
10.1016/j.compbiolchem.2015.04.012
10.1093/bib/bbac100
10.1007/s12559-020-09813-6
10.1007/978-1-0716-0849-4_12
10.7717/peerj-cs.1903
10.1016/j.bbadis.2022.166561
10.1002/advs.202201501
10.1016/j.neucom.2023.127168
10.1093/jrr/rrz051
10.1186/s12967-023-04841-w
10.3322/caac.21731
10.3390/app11219783
10.1186/s12864-024-10361-8
10.1007/s11785-020-01035-w
10.1016/j.cie.2020.107050
10.1177/20503121211034366
10.1038/s41591-022-02134-1
10.3389/fmed.2023.1086097
10.1093/bioinformatics/btz318
10.3389/fbinf.2021.639349
10.7717/peerj-cs.2082
10.1093/nar/gkaa407
10.3390/app122312011
10.1007/s10489-022-03294-w
10.48550/arXiv.2211.10442
10.1093/bib/bbab356
10.1016/j.ymeth.2020.08.006
10.1016/j.ymeth.2022.11.002
10.1093/bioinformatics/btab650
10.17576/jsm-2017-4602-10
10.1016/j.ygeno.2018.12.007
10.1016/j.inffus.2023.102077
ContentType Journal Article
Copyright 2024 Hajim et al.
COPYRIGHT 2024 PeerJ. Ltd.
Copyright_xml – notice: 2024 Hajim et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
DOA
DOI 10.7717/peerj-cs.2520
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496
A821226023
39896419
10_7717_peerj_cs_2520
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
7X8
ID FETCH-LOGICAL-c455t-f4e95080b3e3f60a3dc4fe9d97ddae9b9b8f28ef995b0c1a6d5ba0d4a8d0bfcc3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415620300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Tue Oct 14 19:04:36 EDT 2025
Sun Nov 09 10:18:19 EST 2025
Tue Nov 11 10:49:08 EST 2025
Tue Nov 04 18:25:53 EST 2025
Thu Nov 13 15:57:40 EST 2025
Mon Jul 21 05:47:38 EDT 2025
Sat Nov 29 03:22:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Golden eagle optimization
Spatial and temporal features
Convolutional long short-term memory
Non-negativity-constrained autoencoder
Drug response prediction
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Hajim et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-f4e95080b3e3f60a3dc4fe9d97ddae9b9b8f28ef995b0c1a6d5ba0d4a8d0bfcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3011-9072
0000-0002-6393-7410
OpenAccessLink https://doaj.org/article/b59b72f3de2a4dd4836fa038f5eed496
PMID 39896419
PQID 3162850359
PQPubID 23479
PageCount e2520
ParticipantIDs doaj_primary_oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496
proquest_miscellaneous_3162850359
gale_infotracmisc_A821226023
gale_infotracacademiconefile_A821226023
gale_incontextgauss_ISR_A821226023
pubmed_primary_39896419
crossref_primary_10_7717_peerj_cs_2520
PublicationCentury 2000
PublicationDate 2024-12-23
PublicationDateYYYYMMDD 2024-12-23
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Karapetyants (10.7717/peerj-cs.2520/ref-21) 2020; 14
Pucci (10.7717/peerj-cs.2520/ref-36) 2019; 13
Jiang (10.7717/peerj-cs.2520/ref-17) 2022; 23
Pepe (10.7717/peerj-cs.2520/ref-35) 2022; 2449
Ayinde (10.7717/peerj-cs.2520/ref-2) 2018; 29
Cao (10.7717/peerj-cs.2520/ref-4) 2024; 25
Wu (10.7717/peerj-cs.2520/ref-46) 2023
Zhou (10.7717/peerj-cs.2520/ref-53) 2024; 572
Habib (10.7717/peerj-cs.2520/ref-12) 2022; 34
Chen (10.7717/peerj-cs.2520/ref-6) 2023; 209
Castillo (10.7717/peerj-cs.2520/ref-5) 2020; 12
Miller (10.7717/peerj-cs.2520/ref-28) 2022; 72
Kajikawa (10.7717/peerj-cs.2520/ref-19) 2019; 60
Singh (10.7717/peerj-cs.2520/ref-42) 2021; 33
Chugh (10.7717/peerj-cs.2520/ref-8) 2021; 13
Qian (10.7717/peerj-cs.2520/ref-37) 2023; 53
Ogunleye (10.7717/peerj-cs.2520/ref-33) 2022; 9
Foersch (10.7717/peerj-cs.2520/ref-11) 2023; 29
Li (10.7717/peerj-cs.2520/ref-24) 2020; 48
Debela (10.7717/peerj-cs.2520/ref-10) 2021; 9
Ananda (10.7717/peerj-cs.2520/ref-1) 2023
Yu (10.7717/peerj-cs.2520/ref-49) 2021; 192
Sharifi-Noghabi (10.7717/peerj-cs.2520/ref-39) 2019; 35
Mohammadi-Balani (10.7717/peerj-cs.2520/ref-31) 2021; 152
Sherstinsky (10.7717/peerj-cs.2520/ref-40) 2020; 404
Zhu (10.7717/peerj-cs.2520/ref-54) 2022; 38
Majumdar (10.7717/peerj-cs.2520/ref-26) 2021; 12
Teoh (10.7717/peerj-cs.2520/ref-43) 2024; 10
Zhang (10.7717/peerj-cs.2520/ref-50) 2021; 1
Mohamed Salleh (10.7717/peerj-cs.2520/ref-29) 2015; 59
Hostallero (10.7717/peerj-cs.2520/ref-15) 2023; 21
Zhang (10.7717/peerj-cs.2520/ref-51) 2021; 2194
Hosseini-Asl (10.7717/peerj-cs.2520/ref-14) 2016; 27
Naqvi (10.7717/peerj-cs.2520/ref-32) 2023; 1869
Kamal (10.7717/peerj-cs.2520/ref-20) 2022; 12
Husam (10.7717/peerj-cs.2520/ref-16) 2017; 46
Liu (10.7717/peerj-cs.2520/ref-25) 2024; 222
Malik (10.7717/peerj-cs.2520/ref-27) 2021; 22
Shi (10.7717/peerj-cs.2520/ref-41) 2019; 111
Xia (10.7717/peerj-cs.2520/ref-47) 2022; 23
Hajim (10.7717/peerj-cs.2520/ref-13) 2024; 10
Kato (10.7717/peerj-cs.2520/ref-22) 2023; 10
Lee (10.7717/peerj-cs.2520/ref-23) 2021; 36
Partin (10.7717/peerj-cs.2520/ref-34) 2022
Chiu (10.7717/peerj-cs.2520/ref-7) 2019; 12
Zheng (10.7717/peerj-cs.2520/ref-52) 2024; 102
Salleh (10.7717/peerj-cs.2520/ref-38) 2017; 2017
Tufail (10.7717/peerj-cs.2520/ref-44) 2024; 22
Baptista (10.7717/peerj-cs.2520/ref-3) 2021; 22
Kafunah (10.7717/peerj-cs.2520/ref-18) 2021; 11
Daud (10.7717/peerj-cs.2520/ref-9) 2023; 14
Xu (10.7717/peerj-cs.2520/ref-48) 2019; 10
Mohamed (10.7717/peerj-cs.2520/ref-30) 2017; 90
Wang (10.7717/peerj-cs.2520/ref-45) 2022; 52
References_xml – start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-1
  article-title: Non-dominated sorting differential search algorithm for optimizing regulatory-metabolic networks by using probabilistic approach
  doi: 10.1109/ICEEI59426.2023.10346837
– volume: 29
  start-page: 3969
  issue: 9
  year: 2018
  ident: 10.7717/peerj-cs.2520/ref-2
  article-title: Deep learning of constrained autoencoders for enhanced understanding of data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2747861
– volume: 27
  start-page: 2486
  issue: 12
  year: 2016
  ident: 10.7717/peerj-cs.2520/ref-14
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2479223
– start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-46
  article-title: Exploiting heterogeneous graphs with GCN for drug repositioning
  doi: 10.1109/ICEEI59426.2023.10346720
– volume: 21
  start-page: 535
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-15
  article-title: Preclinical-to-clinical anti-cancer drug response prediction and biomarker identification using TINDL
  publication-title: Genomics, Proteomics and Bioinformatics
  doi: 10.1016/j.gpb.2023.01.006
– volume: 22
  start-page: E359
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-27
  article-title: Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
  publication-title: BMC Genomics
  doi: 10.1186/s12864-021-07524-2
– volume: 90
  start-page: 224
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.2520/ref-30
  article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.026
– volume: 2017
  start-page: 4827171
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.2520/ref-38
  article-title: Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems
  publication-title: Advances in Bioinformatics
  doi: 10.1155/2017/4827171
– volume: 222
  start-page: 41
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-25
  article-title: Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks
  publication-title: Methods
  doi: 10.1016/j.ymeth.2023.11.018
– volume: 13
  start-page: 961
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-36
  article-title: Innovative approaches for cancer treatment: current perspectives and new challenges
  publication-title: ecancer
  doi: 10.3332/ecancer.2019.961
– volume: 22
  start-page: 360
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-3
  article-title: Deep learning for drug response prediction in cancer
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbz171
– volume: 10
  start-page: i455
  issue: MAR
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-48
  article-title: Autoencoder based feature selection method for classification of anticancer drug response
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2019.00233
– volume: 36
  start-page: 2491
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-23
  article-title: Descriptive prediction of drug side-effects using a hybrid deep learning model
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.22389
– volume: 14
  start-page: 1091
  issue: 10
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-9
  article-title: Optimizing the production of valuable metabolites using a hybrid of constraint-based model and machine learning algorithms: a review
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2023.01410115
– volume: 34
  start-page: 4244
  issue: 7
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-12
  article-title: Optimization and acceleration of convolutional neural networks: a survey
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2020.10.004
– volume: 404
  start-page: 132306
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.2520/ref-40
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2019.132306
– volume: 12
  start-page: 18
  issue: S1
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-7
  article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks
  publication-title: BMC Medical Genomics
  doi: 10.1186/s12920-018-0460-9
– volume: 33
  start-page: 10403
  issue: 16
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-42
  article-title: Multi-disease big data analysis using beetle swarm optimization and an adaptive neuro-fuzzy inference system
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-05798-x
– volume: 12
  start-page: 844
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-26
  article-title: KESVR: an ensemble model for drug response prediction in precision medicine using cancer cell lines gene expression
  publication-title: Genes
  doi: 10.3390/genes12060844
– volume: 12
  start-page: 1606
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.2520/ref-5
  article-title: Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications
  publication-title: Cancers
  doi: 10.3390/cancers12061606
– volume: 53
  start-page: 4875
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-37
  article-title: An attentive LSTM based approach for adverse drug reactions prediction
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-022-03721-y
– volume: 2449
  start-page: 187
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-35
  article-title: Dissecting the genome for drug response prediction
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-0716-2095-3_7
– volume: 59
  start-page: 3
  issue: Suppl. 6
  year: 2015
  ident: 10.7717/peerj-cs.2520/ref-29
  article-title: Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient
  publication-title: Computational Biology and Chemistry
  doi: 10.1016/j.compbiolchem.2015.04.012
– volume: 23
  start-page: bbac100
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-17
  article-title: DeepTTA: a transformer-based model for predicting cancer drug response
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbac100
– volume: 13
  start-page: 1451
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-8
  article-title: Survey on machine learning and deep learning applications in breast cancer diagnosis
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-020-09813-6
– volume: 2194
  start-page: 223
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-51
  article-title: Synergistic drug combination prediction by integrating multiomics data in deep learning models
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-0716-0849-4_12
– volume: 10
  start-page: e1903
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-13
  article-title: Optimized models and deep learning methods for drug response prediction in cancer treatments: a review
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.1903
– volume: 1869
  start-page: 166561
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-32
  article-title: Pan-cancer analysis of Chromobox (CBX) genes for prognostic significance and cancer classification
  publication-title: Biochimica et Biophysica Acta - Molecular Basis of Disease
  doi: 10.1016/j.bbadis.2022.166561
– volume: 9
  issue: 24
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-33
  article-title: Interpretable machine learning models to predict the resistance of breast cancer patients to doxorubicin from their microRNA profiles
  publication-title: Advanced Science
  doi: 10.1002/advs.202201501
– volume: 572
  start-page: 127168
  issue: 10
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-53
  article-title: Multi-omics fusion based on attention mechanism for survival and drug response prediction in digestive system tumors
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127168
– volume: 60
  start-page: 685
  issue: 5
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-19
  article-title: A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients
  publication-title: Journal of Radiation Research
  doi: 10.1093/jrr/rrz051
– volume: 22
  start-page: 689562
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-44
  article-title: Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway
  publication-title: Journal of Translational Medicine
  doi: 10.1186/s12967-023-04841-w
– volume: 72
  start-page: 409
  issue: 5
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-28
  article-title: Cancer treatment and survivorship statistics, 2022
  publication-title: CA: A Cancer Journal for Clinicians
  doi: 10.3322/caac.21731
– volume: 11
  start-page: 9783
  issue: 21
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-18
  article-title: Handling imbalanced datasets for robust deep neural network-based fault detection in manufacturing systems
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app11219783
– volume: 25
  start-page: 466
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-4
  article-title: Protein features fusion using attributed network embedding for predicting protein-protein interaction
  publication-title: BMC Genomics
  doi: 10.1186/s12864-024-10361-8
– volume: 14
  start-page: 1
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.2520/ref-21
  article-title: Hadamard-Bergman convolution operators
  publication-title: Complex Analysis and Operator Theory
  doi: 10.1007/s11785-020-01035-w
– volume: 152
  start-page: 107050
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-31
  article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2020.107050
– volume: 9
  start-page: 20503121211034366
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-10
  article-title: New approaches and procedures for cancer treatment: current perspectives
  publication-title: SAGE Open Medicine
  doi: 10.1177/20503121211034366
– volume: 29
  start-page: 430
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-11
  article-title: Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer
  publication-title: Nature Medicine
  doi: 10.1038/s41591-022-02134-1
– volume: 10
  start-page: 86097
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-22
  article-title: Deep learning methods for drug response prediction in cancer: predominant and emerging trends
  publication-title: Frontiers in Medicine
  doi: 10.3389/fmed.2023.1086097
– volume: 35
  start-page: i501
  issue: 14
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-39
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– volume: 1
  start-page: 25
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-50
  article-title: Predicting anticancer drug response with deep learning constrained by signaling pathways
  publication-title: Frontiers in Bioinformatics
  doi: 10.3389/fbinf.2021.639349
– volume: 10
  start-page: e2082
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-43
  article-title: Enhancing early breast cancer diagnosis through automated microcalcification detection using an optimized ensemble deep learning framework
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.2082
– volume: 48
  start-page: W509
  issue: W1
  year: 2020
  ident: 10.7717/peerj-cs.2520/ref-24
  article-title: TIMER2.0 for analysis of tumor-infiltrating immune cells
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkaa407
– volume: 12
  start-page: 12011
  issue: 23
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-20
  article-title: Optimization of discrete wavelet transform feature representation and hierarchical classification of G-protein coupled receptor using firefly algorithm and particle swarm optimization
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app122312011
– volume: 52
  start-page: 14639
  issue: 13
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-45
  article-title: A multi-view multi-omics model for cancer drug response prediction
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-022-03294-w
– year: 2022
  ident: 10.7717/peerj-cs.2520/ref-34
  article-title: Deep learning methods for drug response prediction in cancer: predominant and emerging trends
  doi: 10.48550/arXiv.2211.10442
– volume: 23
  start-page: 813
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-47
  article-title: A cross-study analysis of drug response prediction in cancer cell lines
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbab356
– volume: 192
  start-page: 85
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.2520/ref-49
  article-title: Prediction of drug response in multilayer networks based on fusion of multiomics data
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.08.006
– volume: 209
  start-page: 1
  issue: 15
  year: 2023
  ident: 10.7717/peerj-cs.2520/ref-6
  article-title: DNN-PNN: a parallel deep neural network model to improve anticancer drug sensitivity
  publication-title: Methods
  doi: 10.1016/j.ymeth.2022.11.002
– volume: 38
  start-page: 461
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2520/ref-54
  article-title: TGSA: Protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab650
– volume: 46
  start-page: 255
  issue: 2
  year: 2017
  ident: 10.7717/peerj-cs.2520/ref-16
  article-title: Feature selection algorithms for Malaysian dengue outbreak detection model
  publication-title: Sains Malaysiana
  doi: 10.17576/jsm-2017-4602-10
– volume: 111
  start-page: 1839
  issue: 6
  year: 2019
  ident: 10.7717/peerj-cs.2520/ref-41
  article-title: Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.12.007
– volume: 102
  start-page: 102077
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2520/ref-52
  article-title: Global and cross-modal feature aggregation for multi-omics data classification and application on drug response prediction
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.102077
SSID ssj0001511119
Score 2.2844903
Snippet Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e2520
SubjectTerms Algorithms
Convolutional long short-term memory
Deep learning
Drug response prediction
Forecasts and trends
Golden eagle optimization
Machine learning
Neural networks
Non-negativity-constrained autoencoder
Spatial and temporal features
Title Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/39896419
https://www.proquest.com/docview/3162850359
https://doaj.org/article/b59b72f3de2a4dd4836fa038f5eed496
Volume 10
WOSCitedRecordID wos001415620300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cCF9yOlRAtCcFrqeP3aY1ulUNGEqC0o9LLaZxSU2pEdc-DA3-DvMmM7VQIHLlxWsndseXZmZ2fkmW8IeS1cwDU4riyyqWYRXDElEs18rHQaGQiLgqZQ-DQdj7PpVEw2Wn1hTlgLD9wu3L6OhU5Dz60LVWRtlPHEq4BnPgbrHokGbDtIxUYw1dYHoykQLahmCiHL_tK58hsz1bswxt7eG4dQg9X_t0X-w89szpvj--Ru5yjSg_YDH5AbLn9I7q2bMNBuTz4iv94XC7Ad1KnZwtECLMDV_Iez9OjT-As7Pb8YUZVbCkE-y92s6xXBDHqF2BwCCFW9KhDN0sJbVwWt6iW65LTCVGv4AHy6w69aUO8aHNCKznNqUF9Kast6Rss209bRZYk_flDYj8nn4-HF0QfWdVtgJorjFfORw46wgeaO-yRQ3JrIO2FFaq1yQgud-TBzXohYB2agEhtrFdhIZTbQ3hj-hOwAM-4ZoWnirPDYxhgEZrIYKLwIlEdnJFGx6pE36-WXyxZUQ0IwgnKSjZykqSTKqUcOUTjXRIiF3dwADZGdhsh_aUiPvELRSkS7yDGdZqbqqpIn52fyIIOTGyK6kPfI247IF7D-RnXVCcAQAmRtUe5tUcJ2NFvTL9caJHEKc9hyV9SV5AMsV0XIxB552qrWNWNcZCKJBmL3fzD8nNwJwfXCpJuQ75GdVVm7F-S2-b6aV2Wf3EynWZ_cOhyOJ2f9ZtvA-DFlMI5-DmGcxJcwPzkZTb7-BmXAJUk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golden+eagle+optimized+CONV-LSTM+and+non-negativity-constrained+autoencoder+to+support+spatial+and+temporal+features+in+cancer+drug+response+prediction&rft.jtitle=PeerJ.+Computer+science&rft.au=Wesam+Ibrahim+Hajim&rft.au=Suhaila+Zainudin&rft.au=Kauthar+Mohd+Daud&rft.au=Khattab+Alheeti&rft.date=2024-12-23&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2520&rft_id=info:doi/10.7717%2Fpeerj-cs.2520&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon