Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction
Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based...
Uložené v:
| Vydané v: | PeerJ. Computer science Ročník 10; s. e2520 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
PeerJ. Ltd
23.12.2024
PeerJ Inc |
| Predmet: | |
| ISSN: | 2376-5992, 2376-5992 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem. |
|---|---|
| AbstractList | Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem. Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem.Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details from genomic profiles, such as extensive drug screening data and cell line data, to predict the response of drugs. Comparatively, the DL-based prediction approaches provided better learning of such features. However, prior knowledge, like pathway data, is sometimes discarded as irrelevant since the drug response datasets are multidimensional and noisy. Optimized feature learning and extraction processes are suggested to handle this problem. First, the noise and class imbalance problems must be tackled to avoid low identification accuracy, long prediction times, and poor applicability. This article aims to apply the Non-Negativity-Constrained Auto Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for the optimal size of sliding windows, and ensure that deep network architectures are adept at learning the vital hidden features. NNCAE methodology is used after performing the standard pre-processing procedures to handle the noise and class imbalance problem. This class balanced and noise-removed input data features are learned to train the proposed hybrid classifier. The classification model, Golden Eagle Optimization-based Convolutional Long Short-Term Memory neural networks (GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network CNN and LSTM models, with parameter tuning performed by the GEO algorithm. Evaluations are conducted on two large datasets from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively, with reduced processing time and error rate for the DRP problem. |
| ArticleNumber | e2520 |
| Audience | Academic |
| Author | Zainudin, Suhaila Hajim, Wesam Ibrahim Alheeti, Khattab Daud, Kauthar Mohd |
| Author_xml | – sequence: 1 givenname: Wesam Ibrahim orcidid: 0000-0003-3011-9072 surname: Hajim fullname: Hajim, Wesam Ibrahim organization: Department of Applied Geology, College of Sciences, University of Tikrit, Tikrit, Salah ad Din, Iraq, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 2 givenname: Suhaila surname: Zainudin fullname: Zainudin, Suhaila organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 3 givenname: Kauthar Mohd surname: Daud fullname: Daud, Kauthar Mohd organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 4 givenname: Khattab orcidid: 0000-0002-6393-7410 surname: Alheeti fullname: Alheeti, Khattab organization: Department of Computer Networking Systems College of Computer Sciences and Information Technology, University of Anbar, Ramadi, Al Anbar, Iraq |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39896419$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk9vFCEYxiemxtbao1dD4kUPszIwzAzHZqN1k9UmtnolDLxM2MzACIyxfhG_ruxubWwiHIAnv-fh3_u8OHHeQVG8rPCqbav23QwQdqWKK8IIflKcEdo2JeOcnPwzPy0uYtxhjCtW5cafFaeUd7ypK35W_L7yowaHQA4jID8nO9lfoNH6-vO3cntz-wlJp1HetnQwyGR_2HRXKu9iCtK6DMoleXDKawgoeRSXefYhoThnWI4Hd4Ipa3lhQKYlQETWISWdyhYdlgFlac6RgOYA2qpkvXtRPDVyjHBxP54XXz-8v11_LLfXV5v15bZUNWOpNDVwhjvcU6CmwZJqVRvgmrdaS-A97ztDOjCcsx6rSjaa9RLrWnYa90Ypel5sjrnay52Yg51kuBNeWnEQfBiEDMmqEUTPeN8SQzUQWWtdd7QxEtPOMABd8yZnvTlmzcF_XyAmMdmoYBylA79EQauGdAxTxjP6-ogOMidbZ3x-T7XHxWVHKkIaTGimVv-hctcw2fwJYGzWHxnePjJkJsHPNMglRrG5-fKYfXV_2qWfQD_c_W9tZKA8Air4GAOYB6TCYl9-4lB-QkWxLz_6B31C0EU |
| Cites_doi | 10.1109/ICEEI59426.2023.10346837 10.1109/TNNLS.2017.2747861 10.1109/TNNLS.2015.2479223 10.1109/ICEEI59426.2023.10346720 10.1016/j.gpb.2023.01.006 10.1186/s12864-021-07524-2 10.1016/j.eswa.2017.08.026 10.1155/2017/4827171 10.1016/j.ymeth.2023.11.018 10.3332/ecancer.2019.961 10.1093/bib/bbz171 10.3389/fgene.2019.00233 10.1002/int.22389 10.14569/IJACSA.2023.01410115 10.1016/j.jksuci.2020.10.004 10.1016/j.physd.2019.132306 10.1186/s12920-018-0460-9 10.1007/s00521-021-05798-x 10.3390/genes12060844 10.3390/cancers12061606 10.1007/s10489-022-03721-y 10.1007/978-1-0716-2095-3_7 10.1016/j.compbiolchem.2015.04.012 10.1093/bib/bbac100 10.1007/s12559-020-09813-6 10.1007/978-1-0716-0849-4_12 10.7717/peerj-cs.1903 10.1016/j.bbadis.2022.166561 10.1002/advs.202201501 10.1016/j.neucom.2023.127168 10.1093/jrr/rrz051 10.1186/s12967-023-04841-w 10.3322/caac.21731 10.3390/app11219783 10.1186/s12864-024-10361-8 10.1007/s11785-020-01035-w 10.1016/j.cie.2020.107050 10.1177/20503121211034366 10.1038/s41591-022-02134-1 10.3389/fmed.2023.1086097 10.1093/bioinformatics/btz318 10.3389/fbinf.2021.639349 10.7717/peerj-cs.2082 10.1093/nar/gkaa407 10.3390/app122312011 10.1007/s10489-022-03294-w 10.48550/arXiv.2211.10442 10.1093/bib/bbab356 10.1016/j.ymeth.2020.08.006 10.1016/j.ymeth.2022.11.002 10.1093/bioinformatics/btab650 10.17576/jsm-2017-4602-10 10.1016/j.ygeno.2018.12.007 10.1016/j.inffus.2023.102077 |
| ContentType | Journal Article |
| Copyright | 2024 Hajim et al. COPYRIGHT 2024 PeerJ. Ltd. |
| Copyright_xml | – notice: 2024 Hajim et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. |
| DBID | AAYXX CITATION NPM ISR 7X8 DOA |
| DOI | 10.7717/peerj-cs.2520 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic DOAJ Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496 A821226023 39896419 10_7717_peerj_cs_2520 |
| Genre | Journal Article |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM H13 NPM 7X8 |
| ID | FETCH-LOGICAL-c455t-f4e95080b3e3f60a3dc4fe9d97ddae9b9b8f28ef995b0c1a6d5ba0d4a8d0bfcc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415620300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Tue Oct 14 19:04:36 EDT 2025 Sun Nov 09 10:18:19 EST 2025 Tue Nov 11 10:49:08 EST 2025 Tue Nov 04 18:25:53 EST 2025 Thu Nov 13 15:57:40 EST 2025 Mon Jul 21 05:47:38 EDT 2025 Sat Nov 29 03:22:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Golden eagle optimization Spatial and temporal features Convolutional long short-term memory Non-negativity-constrained autoencoder Drug response prediction |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2024 Hajim et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-f4e95080b3e3f60a3dc4fe9d97ddae9b9b8f28ef995b0c1a6d5ba0d4a8d0bfcc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3011-9072 0000-0002-6393-7410 |
| OpenAccessLink | https://doaj.org/article/b59b72f3de2a4dd4836fa038f5eed496 |
| PMID | 39896419 |
| PQID | 3162850359 |
| PQPubID | 23479 |
| PageCount | e2520 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496 proquest_miscellaneous_3162850359 gale_infotracmisc_A821226023 gale_infotracacademiconefile_A821226023 gale_incontextgauss_ISR_A821226023 pubmed_primary_39896419 crossref_primary_10_7717_peerj_cs_2520 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-23 |
| PublicationDateYYYYMMDD | 2024-12-23 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2024 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Karapetyants (10.7717/peerj-cs.2520/ref-21) 2020; 14 Pucci (10.7717/peerj-cs.2520/ref-36) 2019; 13 Jiang (10.7717/peerj-cs.2520/ref-17) 2022; 23 Pepe (10.7717/peerj-cs.2520/ref-35) 2022; 2449 Ayinde (10.7717/peerj-cs.2520/ref-2) 2018; 29 Cao (10.7717/peerj-cs.2520/ref-4) 2024; 25 Wu (10.7717/peerj-cs.2520/ref-46) 2023 Zhou (10.7717/peerj-cs.2520/ref-53) 2024; 572 Habib (10.7717/peerj-cs.2520/ref-12) 2022; 34 Chen (10.7717/peerj-cs.2520/ref-6) 2023; 209 Castillo (10.7717/peerj-cs.2520/ref-5) 2020; 12 Miller (10.7717/peerj-cs.2520/ref-28) 2022; 72 Kajikawa (10.7717/peerj-cs.2520/ref-19) 2019; 60 Singh (10.7717/peerj-cs.2520/ref-42) 2021; 33 Chugh (10.7717/peerj-cs.2520/ref-8) 2021; 13 Qian (10.7717/peerj-cs.2520/ref-37) 2023; 53 Ogunleye (10.7717/peerj-cs.2520/ref-33) 2022; 9 Foersch (10.7717/peerj-cs.2520/ref-11) 2023; 29 Li (10.7717/peerj-cs.2520/ref-24) 2020; 48 Debela (10.7717/peerj-cs.2520/ref-10) 2021; 9 Ananda (10.7717/peerj-cs.2520/ref-1) 2023 Yu (10.7717/peerj-cs.2520/ref-49) 2021; 192 Sharifi-Noghabi (10.7717/peerj-cs.2520/ref-39) 2019; 35 Mohammadi-Balani (10.7717/peerj-cs.2520/ref-31) 2021; 152 Sherstinsky (10.7717/peerj-cs.2520/ref-40) 2020; 404 Zhu (10.7717/peerj-cs.2520/ref-54) 2022; 38 Majumdar (10.7717/peerj-cs.2520/ref-26) 2021; 12 Teoh (10.7717/peerj-cs.2520/ref-43) 2024; 10 Zhang (10.7717/peerj-cs.2520/ref-50) 2021; 1 Mohamed Salleh (10.7717/peerj-cs.2520/ref-29) 2015; 59 Hostallero (10.7717/peerj-cs.2520/ref-15) 2023; 21 Zhang (10.7717/peerj-cs.2520/ref-51) 2021; 2194 Hosseini-Asl (10.7717/peerj-cs.2520/ref-14) 2016; 27 Naqvi (10.7717/peerj-cs.2520/ref-32) 2023; 1869 Kamal (10.7717/peerj-cs.2520/ref-20) 2022; 12 Husam (10.7717/peerj-cs.2520/ref-16) 2017; 46 Liu (10.7717/peerj-cs.2520/ref-25) 2024; 222 Malik (10.7717/peerj-cs.2520/ref-27) 2021; 22 Shi (10.7717/peerj-cs.2520/ref-41) 2019; 111 Xia (10.7717/peerj-cs.2520/ref-47) 2022; 23 Hajim (10.7717/peerj-cs.2520/ref-13) 2024; 10 Kato (10.7717/peerj-cs.2520/ref-22) 2023; 10 Lee (10.7717/peerj-cs.2520/ref-23) 2021; 36 Partin (10.7717/peerj-cs.2520/ref-34) 2022 Chiu (10.7717/peerj-cs.2520/ref-7) 2019; 12 Zheng (10.7717/peerj-cs.2520/ref-52) 2024; 102 Salleh (10.7717/peerj-cs.2520/ref-38) 2017; 2017 Tufail (10.7717/peerj-cs.2520/ref-44) 2024; 22 Baptista (10.7717/peerj-cs.2520/ref-3) 2021; 22 Kafunah (10.7717/peerj-cs.2520/ref-18) 2021; 11 Daud (10.7717/peerj-cs.2520/ref-9) 2023; 14 Xu (10.7717/peerj-cs.2520/ref-48) 2019; 10 Mohamed (10.7717/peerj-cs.2520/ref-30) 2017; 90 Wang (10.7717/peerj-cs.2520/ref-45) 2022; 52 |
| References_xml | – start-page: 1 year: 2023 ident: 10.7717/peerj-cs.2520/ref-1 article-title: Non-dominated sorting differential search algorithm for optimizing regulatory-metabolic networks by using probabilistic approach doi: 10.1109/ICEEI59426.2023.10346837 – volume: 29 start-page: 3969 issue: 9 year: 2018 ident: 10.7717/peerj-cs.2520/ref-2 article-title: Deep learning of constrained autoencoders for enhanced understanding of data publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2747861 – volume: 27 start-page: 2486 issue: 12 year: 2016 ident: 10.7717/peerj-cs.2520/ref-14 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2479223 – start-page: 1 year: 2023 ident: 10.7717/peerj-cs.2520/ref-46 article-title: Exploiting heterogeneous graphs with GCN for drug repositioning doi: 10.1109/ICEEI59426.2023.10346720 – volume: 21 start-page: 535 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2520/ref-15 article-title: Preclinical-to-clinical anti-cancer drug response prediction and biomarker identification using TINDL publication-title: Genomics, Proteomics and Bioinformatics doi: 10.1016/j.gpb.2023.01.006 – volume: 22 start-page: E359 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2520/ref-27 article-title: Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer publication-title: BMC Genomics doi: 10.1186/s12864-021-07524-2 – volume: 90 start-page: 224 issue: 3 year: 2017 ident: 10.7717/peerj-cs.2520/ref-30 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.026 – volume: 2017 start-page: 4827171 issue: 3 year: 2017 ident: 10.7717/peerj-cs.2520/ref-38 article-title: Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems publication-title: Advances in Bioinformatics doi: 10.1155/2017/4827171 – volume: 222 start-page: 41 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2520/ref-25 article-title: Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks publication-title: Methods doi: 10.1016/j.ymeth.2023.11.018 – volume: 13 start-page: 961 year: 2019 ident: 10.7717/peerj-cs.2520/ref-36 article-title: Innovative approaches for cancer treatment: current perspectives and new challenges publication-title: ecancer doi: 10.3332/ecancer.2019.961 – volume: 22 start-page: 360 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2520/ref-3 article-title: Deep learning for drug response prediction in cancer publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbz171 – volume: 10 start-page: i455 issue: MAR year: 2019 ident: 10.7717/peerj-cs.2520/ref-48 article-title: Autoencoder based feature selection method for classification of anticancer drug response publication-title: Frontiers in Genetics doi: 10.3389/fgene.2019.00233 – volume: 36 start-page: 2491 issue: 6 year: 2021 ident: 10.7717/peerj-cs.2520/ref-23 article-title: Descriptive prediction of drug side-effects using a hybrid deep learning model publication-title: International Journal of Intelligent Systems doi: 10.1002/int.22389 – volume: 14 start-page: 1091 issue: 10 year: 2023 ident: 10.7717/peerj-cs.2520/ref-9 article-title: Optimizing the production of valuable metabolites using a hybrid of constraint-based model and machine learning algorithms: a review publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2023.01410115 – volume: 34 start-page: 4244 issue: 7 year: 2022 ident: 10.7717/peerj-cs.2520/ref-12 article-title: Optimization and acceleration of convolutional neural networks: a survey publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2020.10.004 – volume: 404 start-page: 132306 issue: 8 year: 2020 ident: 10.7717/peerj-cs.2520/ref-40 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2019.132306 – volume: 12 start-page: 18 issue: S1 year: 2019 ident: 10.7717/peerj-cs.2520/ref-7 article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks publication-title: BMC Medical Genomics doi: 10.1186/s12920-018-0460-9 – volume: 33 start-page: 10403 issue: 16 year: 2021 ident: 10.7717/peerj-cs.2520/ref-42 article-title: Multi-disease big data analysis using beetle swarm optimization and an adaptive neuro-fuzzy inference system publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-05798-x – volume: 12 start-page: 844 issue: 6 year: 2021 ident: 10.7717/peerj-cs.2520/ref-26 article-title: KESVR: an ensemble model for drug response prediction in precision medicine using cancer cell lines gene expression publication-title: Genes doi: 10.3390/genes12060844 – volume: 12 start-page: 1606 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2520/ref-5 article-title: Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications publication-title: Cancers doi: 10.3390/cancers12061606 – volume: 53 start-page: 4875 issue: 5 year: 2023 ident: 10.7717/peerj-cs.2520/ref-37 article-title: An attentive LSTM based approach for adverse drug reactions prediction publication-title: Applied Intelligence doi: 10.1007/s10489-022-03721-y – volume: 2449 start-page: 187 year: 2022 ident: 10.7717/peerj-cs.2520/ref-35 article-title: Dissecting the genome for drug response prediction publication-title: Methods in Molecular Biology doi: 10.1007/978-1-0716-2095-3_7 – volume: 59 start-page: 3 issue: Suppl. 6 year: 2015 ident: 10.7717/peerj-cs.2520/ref-29 article-title: Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient publication-title: Computational Biology and Chemistry doi: 10.1016/j.compbiolchem.2015.04.012 – volume: 23 start-page: bbac100 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2520/ref-17 article-title: DeepTTA: a transformer-based model for predicting cancer drug response publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbac100 – volume: 13 start-page: 1451 issue: 6 year: 2021 ident: 10.7717/peerj-cs.2520/ref-8 article-title: Survey on machine learning and deep learning applications in breast cancer diagnosis publication-title: Cognitive Computation doi: 10.1007/s12559-020-09813-6 – volume: 2194 start-page: 223 year: 2021 ident: 10.7717/peerj-cs.2520/ref-51 article-title: Synergistic drug combination prediction by integrating multiomics data in deep learning models publication-title: Methods in Molecular Biology doi: 10.1007/978-1-0716-0849-4_12 – volume: 10 start-page: e1903 year: 2024 ident: 10.7717/peerj-cs.2520/ref-13 article-title: Optimized models and deep learning methods for drug response prediction in cancer treatments: a review publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.1903 – volume: 1869 start-page: 166561 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2520/ref-32 article-title: Pan-cancer analysis of Chromobox (CBX) genes for prognostic significance and cancer classification publication-title: Biochimica et Biophysica Acta - Molecular Basis of Disease doi: 10.1016/j.bbadis.2022.166561 – volume: 9 issue: 24 year: 2022 ident: 10.7717/peerj-cs.2520/ref-33 article-title: Interpretable machine learning models to predict the resistance of breast cancer patients to doxorubicin from their microRNA profiles publication-title: Advanced Science doi: 10.1002/advs.202201501 – volume: 572 start-page: 127168 issue: 10 year: 2024 ident: 10.7717/peerj-cs.2520/ref-53 article-title: Multi-omics fusion based on attention mechanism for survival and drug response prediction in digestive system tumors publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127168 – volume: 60 start-page: 685 issue: 5 year: 2019 ident: 10.7717/peerj-cs.2520/ref-19 article-title: A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients publication-title: Journal of Radiation Research doi: 10.1093/jrr/rrz051 – volume: 22 start-page: 689562 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2520/ref-44 article-title: Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway publication-title: Journal of Translational Medicine doi: 10.1186/s12967-023-04841-w – volume: 72 start-page: 409 issue: 5 year: 2022 ident: 10.7717/peerj-cs.2520/ref-28 article-title: Cancer treatment and survivorship statistics, 2022 publication-title: CA: A Cancer Journal for Clinicians doi: 10.3322/caac.21731 – volume: 11 start-page: 9783 issue: 21 year: 2021 ident: 10.7717/peerj-cs.2520/ref-18 article-title: Handling imbalanced datasets for robust deep neural network-based fault detection in manufacturing systems publication-title: Applied Sciences (Switzerland) doi: 10.3390/app11219783 – volume: 25 start-page: 466 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2520/ref-4 article-title: Protein features fusion using attributed network embedding for predicting protein-protein interaction publication-title: BMC Genomics doi: 10.1186/s12864-024-10361-8 – volume: 14 start-page: 1 issue: 8 year: 2020 ident: 10.7717/peerj-cs.2520/ref-21 article-title: Hadamard-Bergman convolution operators publication-title: Complex Analysis and Operator Theory doi: 10.1007/s11785-020-01035-w – volume: 152 start-page: 107050 year: 2021 ident: 10.7717/peerj-cs.2520/ref-31 article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2020.107050 – volume: 9 start-page: 20503121211034366 year: 2021 ident: 10.7717/peerj-cs.2520/ref-10 article-title: New approaches and procedures for cancer treatment: current perspectives publication-title: SAGE Open Medicine doi: 10.1177/20503121211034366 – volume: 29 start-page: 430 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2520/ref-11 article-title: Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer publication-title: Nature Medicine doi: 10.1038/s41591-022-02134-1 – volume: 10 start-page: 86097 year: 2023 ident: 10.7717/peerj-cs.2520/ref-22 article-title: Deep learning methods for drug response prediction in cancer: predominant and emerging trends publication-title: Frontiers in Medicine doi: 10.3389/fmed.2023.1086097 – volume: 35 start-page: i501 issue: 14 year: 2019 ident: 10.7717/peerj-cs.2520/ref-39 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – volume: 1 start-page: 25 year: 2021 ident: 10.7717/peerj-cs.2520/ref-50 article-title: Predicting anticancer drug response with deep learning constrained by signaling pathways publication-title: Frontiers in Bioinformatics doi: 10.3389/fbinf.2021.639349 – volume: 10 start-page: e2082 year: 2024 ident: 10.7717/peerj-cs.2520/ref-43 article-title: Enhancing early breast cancer diagnosis through automated microcalcification detection using an optimized ensemble deep learning framework publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.2082 – volume: 48 start-page: W509 issue: W1 year: 2020 ident: 10.7717/peerj-cs.2520/ref-24 article-title: TIMER2.0 for analysis of tumor-infiltrating immune cells publication-title: Nucleic Acids Research doi: 10.1093/nar/gkaa407 – volume: 12 start-page: 12011 issue: 23 year: 2022 ident: 10.7717/peerj-cs.2520/ref-20 article-title: Optimization of discrete wavelet transform feature representation and hierarchical classification of G-protein coupled receptor using firefly algorithm and particle swarm optimization publication-title: Applied Sciences (Switzerland) doi: 10.3390/app122312011 – volume: 52 start-page: 14639 issue: 13 year: 2022 ident: 10.7717/peerj-cs.2520/ref-45 article-title: A multi-view multi-omics model for cancer drug response prediction publication-title: Applied Intelligence doi: 10.1007/s10489-022-03294-w – year: 2022 ident: 10.7717/peerj-cs.2520/ref-34 article-title: Deep learning methods for drug response prediction in cancer: predominant and emerging trends doi: 10.48550/arXiv.2211.10442 – volume: 23 start-page: 813 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2520/ref-47 article-title: A cross-study analysis of drug response prediction in cancer cell lines publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbab356 – volume: 192 start-page: 85 issue: 6 year: 2021 ident: 10.7717/peerj-cs.2520/ref-49 article-title: Prediction of drug response in multilayer networks based on fusion of multiomics data publication-title: Methods doi: 10.1016/j.ymeth.2020.08.006 – volume: 209 start-page: 1 issue: 15 year: 2023 ident: 10.7717/peerj-cs.2520/ref-6 article-title: DNN-PNN: a parallel deep neural network model to improve anticancer drug sensitivity publication-title: Methods doi: 10.1016/j.ymeth.2022.11.002 – volume: 38 start-page: 461 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2520/ref-54 article-title: TGSA: Protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab650 – volume: 46 start-page: 255 issue: 2 year: 2017 ident: 10.7717/peerj-cs.2520/ref-16 article-title: Feature selection algorithms for Malaysian dengue outbreak detection model publication-title: Sains Malaysiana doi: 10.17576/jsm-2017-4602-10 – volume: 111 start-page: 1839 issue: 6 year: 2019 ident: 10.7717/peerj-cs.2520/ref-41 article-title: Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure publication-title: Genomics doi: 10.1016/j.ygeno.2018.12.007 – volume: 102 start-page: 102077 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2520/ref-52 article-title: Global and cross-modal feature aggregation for multi-omics data classification and application on drug response prediction publication-title: Information Fusion doi: 10.1016/j.inffus.2023.102077 |
| SSID | ssj0001511119 |
| Score | 2.2844903 |
| Snippet | Advanced machine learning (ML) and deep learning (DL) methods have recently been utilized in Drug Response Prediction (DRP), and these models use the details... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e2520 |
| SubjectTerms | Algorithms Convolutional long short-term memory Deep learning Drug response prediction Forecasts and trends Golden eagle optimization Machine learning Neural networks Non-negativity-constrained autoencoder Spatial and temporal features |
| Title | Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39896419 https://www.proquest.com/docview/3162850359 https://doaj.org/article/b59b72f3de2a4dd4836fa038f5eed496 |
| Volume | 10 |
| WOSCitedRecordID | wos001415620300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4cCF9yOlRAtCcFrqeP3aY1ulUNGEqC0o9LLaZxSU2pEdc-DA3-DvMmM7VQIHLlxWsndseXZmZ2fkmW8IeS1cwDU4riyyqWYRXDElEs18rHQaGQiLgqZQ-DQdj7PpVEw2Wn1hTlgLD9wu3L6OhU5Dz60LVWRtlPHEq4BnPgbrHokGbDtIxUYw1dYHoykQLahmCiHL_tK58hsz1bswxt7eG4dQg9X_t0X-w89szpvj--Ru5yjSg_YDH5AbLn9I7q2bMNBuTz4iv94XC7Ad1KnZwtECLMDV_Iez9OjT-As7Pb8YUZVbCkE-y92s6xXBDHqF2BwCCFW9KhDN0sJbVwWt6iW65LTCVGv4AHy6w69aUO8aHNCKznNqUF9Kast6Rss209bRZYk_flDYj8nn4-HF0QfWdVtgJorjFfORw46wgeaO-yRQ3JrIO2FFaq1yQgud-TBzXohYB2agEhtrFdhIZTbQ3hj-hOwAM-4ZoWnirPDYxhgEZrIYKLwIlEdnJFGx6pE36-WXyxZUQ0IwgnKSjZykqSTKqUcOUTjXRIiF3dwADZGdhsh_aUiPvELRSkS7yDGdZqbqqpIn52fyIIOTGyK6kPfI247IF7D-RnXVCcAQAmRtUe5tUcJ2NFvTL9caJHEKc9hyV9SV5AMsV0XIxB552qrWNWNcZCKJBmL3fzD8nNwJwfXCpJuQ75GdVVm7F-S2-b6aV2Wf3EynWZ_cOhyOJ2f9ZtvA-DFlMI5-DmGcxJcwPzkZTb7-BmXAJUk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golden+eagle+optimized+CONV-LSTM+and+non-negativity-constrained+autoencoder+to+support+spatial+and+temporal+features+in+cancer+drug+response+prediction&rft.jtitle=PeerJ.+Computer+science&rft.au=Wesam+Ibrahim+Hajim&rft.au=Suhaila+Zainudin&rft.au=Kauthar+Mohd+Daud&rft.au=Khattab+Alheeti&rft.date=2024-12-23&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2520&rft_id=info:doi/10.7717%2Fpeerj-cs.2520&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b59b72f3de2a4dd4836fa038f5eed496 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |