Slow Feature Analysis for Change Detection in Multispectral Imagery
Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practi...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 52; číslo 5; s. 2858 - 2874 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.05.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practice, the temporal spectral variance makes it difficult to separate changes and nonchanges. In this paper, we propose a novel slow feature analysis (SFA) algorithm for change detection. Compared with changed pixels, the unchanged ones should be spectrally invariant and varying slowly across the multitemporal images. SFA extracts the most temporally invariant component from the multitemporal images to transform the data into a new feature space. In this feature space, the differences in the unchanged pixels are suppressed so that the changed pixels can be better separated. Three SFA change detection approaches, comprising unsupervised SFA, supervised SFA, and iterative SFA, are constructed. Experiments on two groups of real Enhanced Thematic Mapper data sets show that our proposed method performs better in detecting changes than the other state-of-the-art change detection methods. |
|---|---|
| AbstractList | Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practice, the temporal spectral variance makes it difficult to separate changes and nonchanges. In this paper, we propose a novel slow feature analysis (SFA) algorithm for change detection. Compared with changed pixels, the unchanged ones should be spectrally invariant and varying slowly across the multitemporal images. SFA extracts the most temporally invariant component from the multitemporal images to transform the data into a new feature space. In this feature space, the differences in the unchanged pixels are suppressed so that the changed pixels can be better separated. Three SFA change detection approaches, comprising unsupervised SFA, supervised SFA, and iterative SFA, are constructed. Experiments on two groups of real Enhanced Thematic Mapper data sets show that our proposed method performs better in detecting changes than the other state-of-the-art change detection methods. |
| Author | Du, Bo Zhang, Liangpei Wu, Chen |
| Author_xml | – sequence: 1 givenname: Chen surname: Wu fullname: Wu, Chen email: chen.wu@ whu.edu.cn organization: State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China – sequence: 2 givenname: Bo surname: Du fullname: Du, Bo email: remoteking@whu.edu.cn organization: Sch. of Comput. Sci., Wuhan Univ., Wuhan, China – sequence: 3 givenname: Liangpei surname: Zhang fullname: Zhang, Liangpei email: zlp62@whu.edu.cn organization: State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496119$$DView record in Pascal Francis |
| BookMark | eNqFkU1r3DAQhkVJoZu0P6D0YiiFXLzV6NM6hm2SBlICSXo2s95RqqC1t5JN2X9fmV1yyKE9DQzPOwPvc8pO-qEnxj4CXwJw9_Xx-v5hKTjIpRDGGCvfsAVo3dTcKHXCFhycqUXjxDt2mvMz56A02AVbPcThT3VFOE6Jqose4z6HXPkhVatf2D9R9Y1G6sYw9FXoqx9THEPelUXCWN1s8YnS_j176zFm-nCcZ-zn1eXj6nt9e3d9s7q4rTul9VgT8rV0XLuNEWvu18J5zcFKiVqB9wqV7xwQBxINOtqgXfPGuA0qoxtBJM_Y-eHuLg2_J8pjuw25oxixp2HKLVgjuNJSN_9Hy0vFtRS2oJ9foc_DlEoRMwVCAVirC_XlSGHuMPqEfRdyu0thi2nfikY5A-AKBweuS0POifwLArydTbWzqXY21R5NlYx9lenCiHPlpeUQ_5n8dEgGInr5ZLSWRa_8C40noGU |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3353267 crossref_primary_10_1109_TGRS_2022_3169479 crossref_primary_10_1109_LGRS_2018_2789404 crossref_primary_10_5772_acrt_02 crossref_primary_10_1109_TGRS_2024_3403971 crossref_primary_10_1109_JSTARS_2023_3241157 crossref_primary_10_1016_j_isprsjprs_2017_05_001 crossref_primary_10_3390_rs14122834 crossref_primary_10_1016_j_measurement_2021_110137 crossref_primary_10_1021_acsomega_5c01880 crossref_primary_10_1109_JSTARS_2024_3468949 crossref_primary_10_1016_j_eswa_2023_122125 crossref_primary_10_1109_LGRS_2016_2645742 crossref_primary_10_1109_LGRS_2018_2843385 crossref_primary_10_1109_TGRS_2021_3139077 crossref_primary_10_3390_rs14122838 crossref_primary_10_1109_TGRS_2020_3018591 crossref_primary_10_1109_ACCESS_2017_2672780 crossref_primary_10_1109_TGRS_2022_3228776 crossref_primary_10_1016_j_isprsjprs_2023_11_004 crossref_primary_10_3390_rs15051194 crossref_primary_10_1080_22797254_2022_2047795 crossref_primary_10_1109_JSTARS_2021_3101511 crossref_primary_10_1016_j_isprsjprs_2024_04_002 crossref_primary_10_3390_rs16030572 crossref_primary_10_1109_TCSVT_2025_3526960 crossref_primary_10_3390_rs11232740 crossref_primary_10_1109_JSTARS_2022_3224987 crossref_primary_10_1109_TGRS_2019_2956756 crossref_primary_10_3390_rs13152969 crossref_primary_10_1109_TGRS_2024_3363886 crossref_primary_10_1109_LGRS_2014_2386878 crossref_primary_10_3233_JIFS_211432 crossref_primary_10_1080_01431161_2024_2379516 crossref_primary_10_1109_JSTARS_2023_3270498 crossref_primary_10_1109_JSTARS_2023_3339238 crossref_primary_10_1109_TGRS_2024_3412118 crossref_primary_10_1109_TGRS_2022_3190504 crossref_primary_10_3390_rs12030536 crossref_primary_10_1364_AO_479955 crossref_primary_10_1109_TGRS_2023_3304681 crossref_primary_10_1109_TGRS_2016_2594952 crossref_primary_10_1109_TNNLS_2022_3201621 crossref_primary_10_1109_TGRS_2024_3445930 crossref_primary_10_1109_TGRS_2021_3102034 crossref_primary_10_1016_j_asoc_2025_112725 crossref_primary_10_1109_JSTARS_2020_2964409 crossref_primary_10_1109_TGRS_2024_3419790 crossref_primary_10_1109_JSTARS_2021_3066508 crossref_primary_10_1109_TGRS_2024_3490703 crossref_primary_10_1109_ACCESS_2025_3605984 crossref_primary_10_1016_j_isprsjprs_2024_09_002 crossref_primary_10_1016_j_rse_2017_07_009 crossref_primary_10_1109_JSTARS_2023_3298097 crossref_primary_10_1016_j_jag_2025_104415 crossref_primary_10_1109_JSTARS_2024_3495217 crossref_primary_10_1109_JSTARS_2021_3124491 crossref_primary_10_1016_j_isprsjprs_2019_12_002 crossref_primary_10_1109_JSTARS_2022_3166234 crossref_primary_10_1080_10106049_2021_2017018 crossref_primary_10_1109_TGRS_2023_3336791 crossref_primary_10_1186_s13638_020_01666_9 crossref_primary_10_1109_LGRS_2021_3074423 crossref_primary_10_1109_TCYB_2016_2531179 crossref_primary_10_1080_01431161_2023_2258563 crossref_primary_10_1109_JSTARS_2022_3150571 crossref_primary_10_1117_1_JRS_18_048502 crossref_primary_10_1109_JSTARS_2022_3174780 crossref_primary_10_3390_electronics8101112 crossref_primary_10_3390_rs10070980 crossref_primary_10_1109_TGRS_2022_3161386 crossref_primary_10_3390_rs12111781 crossref_primary_10_3390_rs10091425 crossref_primary_10_1080_2150704X_2021_1895448 crossref_primary_10_1016_j_neucom_2014_06_024 crossref_primary_10_1080_2150704X_2014_963732 crossref_primary_10_1109_TGRS_2024_3370236 crossref_primary_10_3390_rs16050844 crossref_primary_10_3390_rs13234918 crossref_primary_10_1109_JSTARS_2024_3408604 crossref_primary_10_1016_j_jag_2021_102615 crossref_primary_10_1109_TGRS_2022_3171067 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_3390_rs16193559 crossref_primary_10_1109_JSTARS_2020_3037893 crossref_primary_10_3390_rs13163125 crossref_primary_10_1109_TIP_2024_3438100 crossref_primary_10_1109_JSTARS_2023_3310208 crossref_primary_10_1109_TGRS_2022_3189188 crossref_primary_10_1080_01431161_2021_1906982 crossref_primary_10_1109_JSTARS_2021_3070368 crossref_primary_10_1109_ACCESS_2022_3201129 crossref_primary_10_1109_TGRS_2020_2986239 crossref_primary_10_1109_TGRS_2024_3403237 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TGRS_2022_3218795 crossref_primary_10_3390_rs14040871 crossref_primary_10_1002_aic_14937 crossref_primary_10_1109_TGRS_2013_2295263 crossref_primary_10_1109_TGRS_2024_3424929 crossref_primary_10_1109_TIP_2020_3031173 crossref_primary_10_1109_TIP_2019_2933747 crossref_primary_10_1109_LGRS_2024_3366981 crossref_primary_10_1109_TGRS_2017_2748160 crossref_primary_10_1080_01431161_2019_1648905 crossref_primary_10_1109_TIP_2021_3093766 crossref_primary_10_1080_01431161_2024_2398225 crossref_primary_10_1080_10106049_2016_1222632 crossref_primary_10_1109_LGRS_2024_3454629 crossref_primary_10_1109_TGRS_2022_3197334 crossref_primary_10_3390_rs13224597 crossref_primary_10_1109_TGRS_2018_2802785 crossref_primary_10_1088_1361_6501_ab5f1b crossref_primary_10_1080_2150704X_2019_1576949 crossref_primary_10_1109_JSTARS_2021_3088438 crossref_primary_10_1109_JSTARS_2023_3327573 crossref_primary_10_1109_TGRS_2025_3602498 crossref_primary_10_1109_TGRS_2025_3564996 crossref_primary_10_1109_ACCESS_2021_3087206 crossref_primary_10_1109_TGRS_2020_3009483 crossref_primary_10_1109_TGRS_2021_3139121 crossref_primary_10_1109_TGRS_2023_3241097 crossref_primary_10_1109_LGRS_2023_3266091 crossref_primary_10_1177_14759217251324103 crossref_primary_10_1109_TGRS_2023_3286440 crossref_primary_10_1016_j_simpa_2025_100750 crossref_primary_10_1080_17480930_2022_2072102 crossref_primary_10_3390_rs12122010 crossref_primary_10_1007_s12518_021_00385_0 crossref_primary_10_1109_TGRS_2016_2642125 crossref_primary_10_1109_TGRS_2023_3235401 crossref_primary_10_1109_TGRS_2025_3599611 crossref_primary_10_1109_JSTARS_2024_3485687 crossref_primary_10_1016_j_isprsjprs_2024_11_019 crossref_primary_10_3390_rs12152460 crossref_primary_10_1109_TGRS_2023_3325220 crossref_primary_10_1109_TGRS_2015_2488285 crossref_primary_10_1109_TPAMI_2025_3557581 crossref_primary_10_1016_j_neucom_2019_08_067 crossref_primary_10_1109_TGRS_2024_3386334 crossref_primary_10_1109_TGRS_2021_3106697 crossref_primary_10_1109_TGRS_2019_2930682 crossref_primary_10_1016_j_ijleo_2021_167155 crossref_primary_10_3390_rs12101662 crossref_primary_10_1109_TGRS_2022_3228016 crossref_primary_10_1111_tgis_13256 crossref_primary_10_1109_TGRS_2016_2636241 crossref_primary_10_1016_j_ifacol_2015_09_593 crossref_primary_10_1109_TGRS_2024_3460105 crossref_primary_10_1109_JSTARS_2022_3228261 crossref_primary_10_1109_ACCESS_2022_3192967 crossref_primary_10_1109_TGRS_2018_2863224 crossref_primary_10_1109_TGRS_2021_3086841 crossref_primary_10_3390_rs15071868 crossref_primary_10_3390_rs13183750 crossref_primary_10_1016_j_jag_2025_104792 crossref_primary_10_1109_TGRS_2023_3262928 crossref_primary_10_3390_rs14041000 crossref_primary_10_1109_TGRS_2024_3442156 crossref_primary_10_1016_j_jag_2024_103663 crossref_primary_10_3390_rs16214020 crossref_primary_10_1016_j_isprsjprs_2021_08_026 crossref_primary_10_1109_JSTARS_2024_3349775 crossref_primary_10_1016_j_cageo_2023_105390 crossref_primary_10_1007_s10044_020_00954_w crossref_primary_10_1109_TGRS_2025_3602225 crossref_primary_10_1109_TGRS_2020_3033009 crossref_primary_10_1016_j_sigpro_2015_09_020 crossref_primary_10_1109_JSTARS_2024_3392917 crossref_primary_10_1109_TGRS_2025_3604400 crossref_primary_10_3390_rs11111292 crossref_primary_10_1109_TGRS_2019_2953879 crossref_primary_10_1117_1_JRS_19_026503 crossref_primary_10_1007_s10916_019_1347_9 crossref_primary_10_3390_rs14174225 crossref_primary_10_1016_j_isprsjprs_2023_05_033 crossref_primary_10_1109_TGRS_2021_3135567 crossref_primary_10_1109_TGRS_2021_3089453 crossref_primary_10_3390_rs15030694 crossref_primary_10_1109_LGRS_2021_3111040 crossref_primary_10_1109_TCYB_2021_3086884 crossref_primary_10_3390_rs8060506 crossref_primary_10_1109_LGRS_2017_2665167 crossref_primary_10_3390_rs14143464 crossref_primary_10_1109_ACCESS_2018_2883254 crossref_primary_10_1109_TGRS_2025_3586102 crossref_primary_10_3390_rs12233907 crossref_primary_10_1007_s41870_022_01075_9 crossref_primary_10_3390_rs16050799 crossref_primary_10_1109_JSTARS_2023_3268601 crossref_primary_10_1016_j_jag_2022_102749 crossref_primary_10_3390_rs13030440 crossref_primary_10_1109_TGRS_2021_3097717 crossref_primary_10_1109_JSTARS_2019_2934602 crossref_primary_10_3390_rs14143297 crossref_primary_10_3390_rs11030240 crossref_primary_10_3390_rs15010045 crossref_primary_10_1016_j_jag_2021_102348 crossref_primary_10_1109_JSTARS_2023_3264802 crossref_primary_10_1109_TGRS_2020_3043766 crossref_primary_10_1109_JSTARS_2022_3184298 crossref_primary_10_1007_s11430_024_1551_1 crossref_primary_10_1109_LGRS_2023_3319695 crossref_primary_10_1360_SSTe_2024_0159 crossref_primary_10_1109_TGRS_2022_3229027 crossref_primary_10_3390_rs17030523 crossref_primary_10_1109_TGRS_2025_3582784 crossref_primary_10_1109_LGRS_2020_3041530 crossref_primary_10_1109_TGRS_2022_3200985 crossref_primary_10_3390_rs14215368 crossref_primary_10_1007_s11063_019_10174_x crossref_primary_10_3390_rs14133100 crossref_primary_10_1016_j_dsp_2025_105594 crossref_primary_10_1109_TGRS_2021_3067096 crossref_primary_10_1109_JSTARS_2018_2869549 crossref_primary_10_1109_TGRS_2021_3130122 crossref_primary_10_1117_1_JRS_18_024516 crossref_primary_10_1109_TIM_2025_3571110 crossref_primary_10_1007_s10666_021_09758_6 crossref_primary_10_1109_TGRS_2021_3106381 crossref_primary_10_1109_TGRS_2017_2758359 crossref_primary_10_1109_LGRS_2021_3098774 crossref_primary_10_1109_TGRS_2024_3410131 crossref_primary_10_3390_rs15225268 crossref_primary_10_1109_TGRS_2023_3272006 crossref_primary_10_3724_j_issn_1007_2802_20240157 crossref_primary_10_1109_TGRS_2023_3305334 crossref_primary_10_1109_TPAMI_2023_3237896 crossref_primary_10_1109_TGRS_2023_3344583 crossref_primary_10_3390_rs11030223 crossref_primary_10_3390_rs15215106 crossref_primary_10_1080_22797254_2023_2196641 crossref_primary_10_3390_rs16132353 crossref_primary_10_1117_1_JRS_19_016504 crossref_primary_10_1109_TNNLS_2021_3089332 crossref_primary_10_1080_01431161_2023_2208711 crossref_primary_10_1109_TGRS_2024_3523541 crossref_primary_10_1002_aic_14888 crossref_primary_10_1109_JSTARS_2023_3323372 |
| Cites_doi | 10.1109/TGRS.2008.916643 10.1016/0034-4257(95)00233-2 10.4249/scholarpedia.5282 10.1109/36.843009 10.1080/02757259609532305 10.1080/01431160903475399 10.1109/TGRS.2011.2168534 10.1109/TGRS.2011.2154336 10.1080/0143116031000101675 10.1016/j.rse.2010.02.018 10.1109/TGRS.2006.885408 10.1007/3-540-29711-1 10.1109/TGRS.2011.2109726 10.1167/5.6.9 10.1109/TGRS.2012.2197860 10.1016/j.rse.2009.02.004 10.1109/TGRS.2010.2066979 10.1109/LGRS.2012.2189092 10.1080/01431168908903939 10.1162/neco.2006.18.10.2495 10.1016/j.neucom.2012.08.056 10.1109/LGRS.2011.2109697 10.1016/j.rse.2008.07.018 10.1109/JSTARS.2010.2046627 10.1080/0143116031000139863 10.1080/014311699213659 10.1109/TPAMI.2011.157 10.1016/j.rse.2007.06.013 10.1016/0034-4257(94)90076-0 10.1016/j.rse.2005.08.006 10.1162/NECO_a_00171 10.1016/j.rse.2007.10.002 10.1016/j.rse.2007.10.004 10.1080/014311698215315 10.1016/j.rse.2011.12.004 10.1016/j.rse.2006.09.005 10.1109/JSTARS.2013.2241396 10.1109/TGRS.2011.2141999 10.1162/089976602317318938 10.1016/j.rse.2007.08.012 10.1109/TGRS.2012.2186305 10.1016/j.rse.2008.07.007 10.1162/neco.2007.19.4.1022 10.1109/LGRS.2010.2101045 10.1109/JSTARS.2010.2060316 10.1016/S0034-4257(97)00162-4 10.1016/S0034-4257(97)00112-0 10.1080/01431160801950162 10.1109/TIP.2006.888195 10.1109/TIP.2004.838698 10.1109/TGRS.2011.2168230 10.1109/LGRS.2009.2025059 10.1162/neco.2007.19.4.994 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
| DOI | 10.1109/TGRS.2013.2266673 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database Aerospace Database Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 2874 |
| ExternalDocumentID | 3264824651 28496119 10_1109_TGRS_2013_2266673 6553145 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2012619020211 – fundername: National Basic Research Program of China (973 Program) grantid: 2011CB707105; 2012CB719905 – fundername: National Natural Science Foundation of China grantid: 41061130553; 61102128 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION AAYOK IQODW RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
| ID | FETCH-LOGICAL-c455t-ea0b39059d62b0fb29f501733a541ff4a4fc91e01e28a9eda7b0869da46582ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 279 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332484700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Thu Oct 02 09:45:08 EDT 2025 Thu Oct 02 06:33:35 EDT 2025 Mon Jun 30 08:27:25 EDT 2025 Wed Apr 02 07:17:45 EDT 2025 Sat Nov 29 02:49:39 EST 2025 Tue Nov 18 22:43:34 EST 2025 Wed Aug 27 06:26:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | image transformation Change detection slow feature analysis (SFA) experimental studies algorithms Thematic Mapper imagery transformations remote sensing technology Pixel |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-ea0b39059d62b0fb29f501733a541ff4a4fc91e01e28a9eda7b0869da46582ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1512411775 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2013_2266673 crossref_citationtrail_10_1109_TGRS_2013_2266673 proquest_journals_1512411775 pascalfrancis_primary_28496119 proquest_miscellaneous_1762045358 proquest_miscellaneous_1541405327 ieee_primary_6553145 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2014 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 ref14 ref53 ref55 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 richards (ref54) 2006 du (ref3) 2012; 14 ref24 ref23 ref26 berkes (ref52) 2005; 4104 ref25 ref20 ref22 ref21 ref28 ref27 ref29 lyon (ref30) 1998; 64 |
| References_xml | – ident: ref24 doi: 10.1109/TGRS.2008.916643 – ident: ref23 doi: 10.1016/0034-4257(95)00233-2 – ident: ref45 doi: 10.4249/scholarpedia.5282 – ident: ref20 doi: 10.1109/36.843009 – ident: ref9 doi: 10.1080/02757259609532305 – ident: ref25 doi: 10.1080/01431160903475399 – volume: 4104 year: 2005 ident: ref52 article-title: Pattern recognition with slow feature analysis publication-title: Cognitive Sciences EPrint Archives (CogPrints) – ident: ref26 doi: 10.1109/TGRS.2011.2168534 – ident: ref19 doi: 10.1109/TGRS.2011.2154336 – volume: 64 start-page: 143 year: 1998 ident: ref30 article-title: A change detection experiment using vegetation indices publication-title: Photogramm Eng Remote Sens – ident: ref17 doi: 10.1080/0143116031000101675 – volume: 14 start-page: 272 year: 2012 ident: ref3 article-title: A discriminative manifold learning based dimension reduction method publication-title: Int J Fuzzy Syst – ident: ref6 doi: 10.1016/j.rse.2010.02.018 – ident: ref21 doi: 10.1109/TGRS.2006.885408 – year: 2006 ident: ref54 publication-title: Remote Sensing Digital Image Analysis An Introduction doi: 10.1007/3-540-29711-1 – ident: ref36 doi: 10.1109/TGRS.2011.2109726 – ident: ref46 doi: 10.1167/5.6.9 – ident: ref2 doi: 10.1109/TGRS.2012.2197860 – ident: ref7 doi: 10.1016/j.rse.2009.02.004 – ident: ref33 doi: 10.1109/TGRS.2010.2066979 – ident: ref55 doi: 10.1109/LGRS.2012.2189092 – ident: ref1 doi: 10.1080/01431168908903939 – ident: ref51 doi: 10.1162/neco.2006.18.10.2495 – ident: ref4 doi: 10.1016/j.neucom.2012.08.056 – ident: ref53 doi: 10.1109/LGRS.2011.2109697 – ident: ref10 doi: 10.1016/j.rse.2008.07.018 – ident: ref13 doi: 10.1109/JSTARS.2010.2046627 – ident: ref16 doi: 10.1080/0143116031000139863 – ident: ref18 doi: 10.1080/014311699213659 – ident: ref47 doi: 10.1109/TPAMI.2011.157 – ident: ref12 doi: 10.1016/j.rse.2007.06.013 – ident: ref43 doi: 10.1016/0034-4257(94)90076-0 – ident: ref8 doi: 10.1016/j.rse.2005.08.006 – ident: ref48 doi: 10.1162/NECO_a_00171 – ident: ref34 doi: 10.1016/j.rse.2007.10.002 – ident: ref32 doi: 10.1016/j.rse.2007.10.004 – ident: ref42 doi: 10.1080/014311698215315 – ident: ref5 doi: 10.1016/j.rse.2011.12.004 – ident: ref28 doi: 10.1016/j.rse.2006.09.005 – ident: ref31 doi: 10.1109/JSTARS.2013.2241396 – ident: ref38 doi: 10.1109/TGRS.2011.2141999 – ident: ref44 doi: 10.1162/089976602317318938 – ident: ref27 doi: 10.1016/j.rse.2007.08.012 – ident: ref35 doi: 10.1109/TGRS.2012.2186305 – ident: ref29 doi: 10.1016/j.rse.2008.07.007 – ident: ref50 doi: 10.1162/neco.2007.19.4.1022 – ident: ref14 doi: 10.1109/LGRS.2010.2101045 – ident: ref11 doi: 10.1109/JSTARS.2010.2060316 – ident: ref40 doi: 10.1016/S0034-4257(97)00162-4 – ident: ref22 doi: 10.1016/S0034-4257(97)00112-0 – ident: ref39 doi: 10.1080/01431160801950162 – ident: ref56 doi: 10.1109/TIP.2006.888195 – ident: ref15 doi: 10.1109/TIP.2004.838698 – ident: ref37 doi: 10.1109/TGRS.2011.2168230 – ident: ref41 doi: 10.1109/LGRS.2009.2025059 – ident: ref49 doi: 10.1162/neco.2007.19.4.994 |
| SSID | ssj0014517 |
| Score | 2.5840278 |
| Snippet | Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2858 |
| SubjectTerms | Applied geophysics Change detection Change detection algorithms Covariance matrices Detection algorithms Earth sciences Earth, ocean, space Eigenvalues and eigenfunctions Exact sciences and technology Feature extraction Image detection image transformation Internal geophysics Invariants Pixels Principal component analysis Remote sensing slow feature analysis (SFA) Spectra Spectral bands |
| Title | Slow Feature Analysis for Change Detection in Multispectral Imagery |
| URI | https://ieeexplore.ieee.org/document/6553145 https://www.proquest.com/docview/1512411775 https://www.proquest.com/docview/1541405327 https://www.proquest.com/docview/1762045358 |
| Volume | 52 |
| WOSCitedRecordID | wos000332484700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aomAfqt4pvbYeK_gkps1-3WYfpXoqSBF7Qt_CZjMLhZor91Hxv-_sJhc8lIIvYWFnSTKzm_lN5gvgDZkEpBUqmUlNFxW4yGxOoxqNrzjm2vlUXf-rubgorq7stx141-fCIGIKPsPTOEy-_Hru1_FX2dlE045Rehd2jTFtrlbvMVCad6nRk4yMCNF5MHluz2afvl_GIC55Slgjtrnc0kGpqUoMiXRL4kpo21n89WVO6mb69P8e9BkcdLCSvW_3wXPYwWYA-38UGxzA4xTs6ZdDOL-8mf9iEfytF8g2ZUkYwVfWJhuwD7hKIVoNu25YytFNGZkLusWXn7Hqxe8X8GP6cXb-OeuaKWReab3K0JEILIGpeiKqPFTCBk2nUUqnFQ9BORW8JeFwFIWzWDtTkbVja6cIowhE-RL2mnmDh8CkDEoGXyByS3gObS1EVahKC1NgVeQjyDfsLX1XaTw2vLgpk8WR2zJKpIwSKTuJjOBtv-S2LbPxEPEwsrwn7Lg9gvGWDPt50sB2wrkdwclGqGV3UpdlRDwqeq5p_et-ms5YdJy4BufrSKPIDtVSmAdoTKrsL3Vx9O_HO4Yn9BKqDZY8gb3VYo2v4JG_IxEuxmkz3wNJd-_t |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-stmgftNUWr7W6hT6VRrNfl-xj8aOK51HqFXwLm80sFDRX7qPF_97ZTS5UFKEvYWFnSTKzm_lN5gvgE5kEpBVKmUhNF-W5SExKowozV3JMtXWxuv4gGw7zqyvzfQm-dLkwiBiDz3A_DKMvvxq7efhVdtDXtGOUfgYrWinBm2ytzmegNG-To_sJmRGi9WHy1ByMvv24DGFccp_QRmh0eU8LxbYqISjSTokvvmlo8eDbHBXOycb_PeorWG-BJfva7ITXsIT1Jrz8p9zgJryI4Z5uugWHl9fjvyzAv_kE2aIwCSMAy5p0A3aEsxikVbNfNYtZujEnc0K3OLsJdS9u38DPk-PR4WnStlNInNJ6lqAlIRiCU1VflKkvhfGazqOUVivuvbLKO0Pi4Shya7CyWUn2jqmsIpQiEOVbWK7HNW4Dk9Ir6V2OyA0hOjSVEGWuSi2yHMs87UG6YG_h2lrjoeXFdRFtjtQUQSJFkEjRSqQHn7slv5tCG08RbwWWd4Qtt3uwe0-G3TzpYNPn3PRgZyHUoj2r0yJgHhV817T-YzdNpyy4TmyN43mgUWSJaimyJ2iyWNtf6vzd44-3B6uno4tBMTgbnr-HNXoh1YRO7sDybDLHD_Dc_SFxTnbjxr4D53TzNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slow+Feature+Analysis+for+Change+Detection+in+Multispectral+Imagery&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=CHEN+WU&rft.au=BO+DU&rft.au=LIANGPEI+ZHANG&rft.date=2014-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=52&rft.issue=5&rft.spage=2858&rft.epage=2874&rft_id=info:doi/10.1109%2FTGRS.2013.2266673&rft.externalDBID=n%2Fa&rft.externalDocID=28496119 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |