Slow Feature Analysis for Change Detection in Multispectral Imagery

Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 52; číslo 5; s. 2858 - 2874
Hlavní autori: Wu, Chen, Du, Bo, Zhang, Liangpei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.05.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practice, the temporal spectral variance makes it difficult to separate changes and nonchanges. In this paper, we propose a novel slow feature analysis (SFA) algorithm for change detection. Compared with changed pixels, the unchanged ones should be spectrally invariant and varying slowly across the multitemporal images. SFA extracts the most temporally invariant component from the multitemporal images to transform the data into a new feature space. In this feature space, the differences in the unchanged pixels are suppressed so that the changed pixels can be better separated. Three SFA change detection approaches, comprising unsupervised SFA, supervised SFA, and iterative SFA, are constructed. Experiments on two groups of real Enhanced Thematic Mapper data sets show that our proposed method performs better in detecting changes than the other state-of-the-art change detection methods.
AbstractList Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an effective solution for the change detection problem is to exploit all the available spectral bands to detect the spectral changes. However, in practice, the temporal spectral variance makes it difficult to separate changes and nonchanges. In this paper, we propose a novel slow feature analysis (SFA) algorithm for change detection. Compared with changed pixels, the unchanged ones should be spectrally invariant and varying slowly across the multitemporal images. SFA extracts the most temporally invariant component from the multitemporal images to transform the data into a new feature space. In this feature space, the differences in the unchanged pixels are suppressed so that the changed pixels can be better separated. Three SFA change detection approaches, comprising unsupervised SFA, supervised SFA, and iterative SFA, are constructed. Experiments on two groups of real Enhanced Thematic Mapper data sets show that our proposed method performs better in detecting changes than the other state-of-the-art change detection methods.
Author Du, Bo
Zhang, Liangpei
Wu, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Wu
  fullname: Wu, Chen
  email: chen.wu@ whu.edu.cn
  organization: State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China
– sequence: 2
  givenname: Bo
  surname: Du
  fullname: Du, Bo
  email: remoteking@whu.edu.cn
  organization: Sch. of Comput. Sci., Wuhan Univ., Wuhan, China
– sequence: 3
  givenname: Liangpei
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496119$$DView record in Pascal Francis
BookMark eNqFkU1r3DAQhkVJoZu0P6D0YiiFXLzV6NM6hm2SBlICSXo2s95RqqC1t5JN2X9fmV1yyKE9DQzPOwPvc8pO-qEnxj4CXwJw9_Xx-v5hKTjIpRDGGCvfsAVo3dTcKHXCFhycqUXjxDt2mvMz56A02AVbPcThT3VFOE6Jqose4z6HXPkhVatf2D9R9Y1G6sYw9FXoqx9THEPelUXCWN1s8YnS_j176zFm-nCcZ-zn1eXj6nt9e3d9s7q4rTul9VgT8rV0XLuNEWvu18J5zcFKiVqB9wqV7xwQBxINOtqgXfPGuA0qoxtBJM_Y-eHuLg2_J8pjuw25oxixp2HKLVgjuNJSN_9Hy0vFtRS2oJ9foc_DlEoRMwVCAVirC_XlSGHuMPqEfRdyu0thi2nfikY5A-AKBweuS0POifwLArydTbWzqXY21R5NlYx9lenCiHPlpeUQ_5n8dEgGInr5ZLSWRa_8C40noGU
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TIM_2024_3353267
crossref_primary_10_1109_TGRS_2022_3169479
crossref_primary_10_1109_LGRS_2018_2789404
crossref_primary_10_5772_acrt_02
crossref_primary_10_1109_TGRS_2024_3403971
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1016_j_isprsjprs_2017_05_001
crossref_primary_10_3390_rs14122834
crossref_primary_10_1016_j_measurement_2021_110137
crossref_primary_10_1021_acsomega_5c01880
crossref_primary_10_1109_JSTARS_2024_3468949
crossref_primary_10_1016_j_eswa_2023_122125
crossref_primary_10_1109_LGRS_2016_2645742
crossref_primary_10_1109_LGRS_2018_2843385
crossref_primary_10_1109_TGRS_2021_3139077
crossref_primary_10_3390_rs14122838
crossref_primary_10_1109_TGRS_2020_3018591
crossref_primary_10_1109_ACCESS_2017_2672780
crossref_primary_10_1109_TGRS_2022_3228776
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_3390_rs15051194
crossref_primary_10_1080_22797254_2022_2047795
crossref_primary_10_1109_JSTARS_2021_3101511
crossref_primary_10_1016_j_isprsjprs_2024_04_002
crossref_primary_10_3390_rs16030572
crossref_primary_10_1109_TCSVT_2025_3526960
crossref_primary_10_3390_rs11232740
crossref_primary_10_1109_JSTARS_2022_3224987
crossref_primary_10_1109_TGRS_2019_2956756
crossref_primary_10_3390_rs13152969
crossref_primary_10_1109_TGRS_2024_3363886
crossref_primary_10_1109_LGRS_2014_2386878
crossref_primary_10_3233_JIFS_211432
crossref_primary_10_1080_01431161_2024_2379516
crossref_primary_10_1109_JSTARS_2023_3270498
crossref_primary_10_1109_JSTARS_2023_3339238
crossref_primary_10_1109_TGRS_2024_3412118
crossref_primary_10_1109_TGRS_2022_3190504
crossref_primary_10_3390_rs12030536
crossref_primary_10_1364_AO_479955
crossref_primary_10_1109_TGRS_2023_3304681
crossref_primary_10_1109_TGRS_2016_2594952
crossref_primary_10_1109_TNNLS_2022_3201621
crossref_primary_10_1109_TGRS_2024_3445930
crossref_primary_10_1109_TGRS_2021_3102034
crossref_primary_10_1016_j_asoc_2025_112725
crossref_primary_10_1109_JSTARS_2020_2964409
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1109_JSTARS_2021_3066508
crossref_primary_10_1109_TGRS_2024_3490703
crossref_primary_10_1109_ACCESS_2025_3605984
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1016_j_rse_2017_07_009
crossref_primary_10_1109_JSTARS_2023_3298097
crossref_primary_10_1016_j_jag_2025_104415
crossref_primary_10_1109_JSTARS_2024_3495217
crossref_primary_10_1109_JSTARS_2021_3124491
crossref_primary_10_1016_j_isprsjprs_2019_12_002
crossref_primary_10_1109_JSTARS_2022_3166234
crossref_primary_10_1080_10106049_2021_2017018
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_1186_s13638_020_01666_9
crossref_primary_10_1109_LGRS_2021_3074423
crossref_primary_10_1109_TCYB_2016_2531179
crossref_primary_10_1080_01431161_2023_2258563
crossref_primary_10_1109_JSTARS_2022_3150571
crossref_primary_10_1117_1_JRS_18_048502
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_3390_electronics8101112
crossref_primary_10_3390_rs10070980
crossref_primary_10_1109_TGRS_2022_3161386
crossref_primary_10_3390_rs12111781
crossref_primary_10_3390_rs10091425
crossref_primary_10_1080_2150704X_2021_1895448
crossref_primary_10_1016_j_neucom_2014_06_024
crossref_primary_10_1080_2150704X_2014_963732
crossref_primary_10_1109_TGRS_2024_3370236
crossref_primary_10_3390_rs16050844
crossref_primary_10_3390_rs13234918
crossref_primary_10_1109_JSTARS_2024_3408604
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_3390_rs16193559
crossref_primary_10_1109_JSTARS_2020_3037893
crossref_primary_10_3390_rs13163125
crossref_primary_10_1109_TIP_2024_3438100
crossref_primary_10_1109_JSTARS_2023_3310208
crossref_primary_10_1109_TGRS_2022_3189188
crossref_primary_10_1080_01431161_2021_1906982
crossref_primary_10_1109_JSTARS_2021_3070368
crossref_primary_10_1109_ACCESS_2022_3201129
crossref_primary_10_1109_TGRS_2020_2986239
crossref_primary_10_1109_TGRS_2024_3403237
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2022_3218795
crossref_primary_10_3390_rs14040871
crossref_primary_10_1002_aic_14937
crossref_primary_10_1109_TGRS_2013_2295263
crossref_primary_10_1109_TGRS_2024_3424929
crossref_primary_10_1109_TIP_2020_3031173
crossref_primary_10_1109_TIP_2019_2933747
crossref_primary_10_1109_LGRS_2024_3366981
crossref_primary_10_1109_TGRS_2017_2748160
crossref_primary_10_1080_01431161_2019_1648905
crossref_primary_10_1109_TIP_2021_3093766
crossref_primary_10_1080_01431161_2024_2398225
crossref_primary_10_1080_10106049_2016_1222632
crossref_primary_10_1109_LGRS_2024_3454629
crossref_primary_10_1109_TGRS_2022_3197334
crossref_primary_10_3390_rs13224597
crossref_primary_10_1109_TGRS_2018_2802785
crossref_primary_10_1088_1361_6501_ab5f1b
crossref_primary_10_1080_2150704X_2019_1576949
crossref_primary_10_1109_JSTARS_2021_3088438
crossref_primary_10_1109_JSTARS_2023_3327573
crossref_primary_10_1109_TGRS_2025_3602498
crossref_primary_10_1109_TGRS_2025_3564996
crossref_primary_10_1109_ACCESS_2021_3087206
crossref_primary_10_1109_TGRS_2020_3009483
crossref_primary_10_1109_TGRS_2021_3139121
crossref_primary_10_1109_TGRS_2023_3241097
crossref_primary_10_1109_LGRS_2023_3266091
crossref_primary_10_1177_14759217251324103
crossref_primary_10_1109_TGRS_2023_3286440
crossref_primary_10_1016_j_simpa_2025_100750
crossref_primary_10_1080_17480930_2022_2072102
crossref_primary_10_3390_rs12122010
crossref_primary_10_1007_s12518_021_00385_0
crossref_primary_10_1109_TGRS_2016_2642125
crossref_primary_10_1109_TGRS_2023_3235401
crossref_primary_10_1109_TGRS_2025_3599611
crossref_primary_10_1109_JSTARS_2024_3485687
crossref_primary_10_1016_j_isprsjprs_2024_11_019
crossref_primary_10_3390_rs12152460
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_1109_TGRS_2015_2488285
crossref_primary_10_1109_TPAMI_2025_3557581
crossref_primary_10_1016_j_neucom_2019_08_067
crossref_primary_10_1109_TGRS_2024_3386334
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_1109_TGRS_2019_2930682
crossref_primary_10_1016_j_ijleo_2021_167155
crossref_primary_10_3390_rs12101662
crossref_primary_10_1109_TGRS_2022_3228016
crossref_primary_10_1111_tgis_13256
crossref_primary_10_1109_TGRS_2016_2636241
crossref_primary_10_1016_j_ifacol_2015_09_593
crossref_primary_10_1109_TGRS_2024_3460105
crossref_primary_10_1109_JSTARS_2022_3228261
crossref_primary_10_1109_ACCESS_2022_3192967
crossref_primary_10_1109_TGRS_2018_2863224
crossref_primary_10_1109_TGRS_2021_3086841
crossref_primary_10_3390_rs15071868
crossref_primary_10_3390_rs13183750
crossref_primary_10_1016_j_jag_2025_104792
crossref_primary_10_1109_TGRS_2023_3262928
crossref_primary_10_3390_rs14041000
crossref_primary_10_1109_TGRS_2024_3442156
crossref_primary_10_1016_j_jag_2024_103663
crossref_primary_10_3390_rs16214020
crossref_primary_10_1016_j_isprsjprs_2021_08_026
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1016_j_cageo_2023_105390
crossref_primary_10_1007_s10044_020_00954_w
crossref_primary_10_1109_TGRS_2025_3602225
crossref_primary_10_1109_TGRS_2020_3033009
crossref_primary_10_1016_j_sigpro_2015_09_020
crossref_primary_10_1109_JSTARS_2024_3392917
crossref_primary_10_1109_TGRS_2025_3604400
crossref_primary_10_3390_rs11111292
crossref_primary_10_1109_TGRS_2019_2953879
crossref_primary_10_1117_1_JRS_19_026503
crossref_primary_10_1007_s10916_019_1347_9
crossref_primary_10_3390_rs14174225
crossref_primary_10_1016_j_isprsjprs_2023_05_033
crossref_primary_10_1109_TGRS_2021_3135567
crossref_primary_10_1109_TGRS_2021_3089453
crossref_primary_10_3390_rs15030694
crossref_primary_10_1109_LGRS_2021_3111040
crossref_primary_10_1109_TCYB_2021_3086884
crossref_primary_10_3390_rs8060506
crossref_primary_10_1109_LGRS_2017_2665167
crossref_primary_10_3390_rs14143464
crossref_primary_10_1109_ACCESS_2018_2883254
crossref_primary_10_1109_TGRS_2025_3586102
crossref_primary_10_3390_rs12233907
crossref_primary_10_1007_s41870_022_01075_9
crossref_primary_10_3390_rs16050799
crossref_primary_10_1109_JSTARS_2023_3268601
crossref_primary_10_1016_j_jag_2022_102749
crossref_primary_10_3390_rs13030440
crossref_primary_10_1109_TGRS_2021_3097717
crossref_primary_10_1109_JSTARS_2019_2934602
crossref_primary_10_3390_rs14143297
crossref_primary_10_3390_rs11030240
crossref_primary_10_3390_rs15010045
crossref_primary_10_1016_j_jag_2021_102348
crossref_primary_10_1109_JSTARS_2023_3264802
crossref_primary_10_1109_TGRS_2020_3043766
crossref_primary_10_1109_JSTARS_2022_3184298
crossref_primary_10_1007_s11430_024_1551_1
crossref_primary_10_1109_LGRS_2023_3319695
crossref_primary_10_1360_SSTe_2024_0159
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_3390_rs17030523
crossref_primary_10_1109_TGRS_2025_3582784
crossref_primary_10_1109_LGRS_2020_3041530
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_3390_rs14215368
crossref_primary_10_1007_s11063_019_10174_x
crossref_primary_10_3390_rs14133100
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_1109_JSTARS_2018_2869549
crossref_primary_10_1109_TGRS_2021_3130122
crossref_primary_10_1117_1_JRS_18_024516
crossref_primary_10_1109_TIM_2025_3571110
crossref_primary_10_1007_s10666_021_09758_6
crossref_primary_10_1109_TGRS_2021_3106381
crossref_primary_10_1109_TGRS_2017_2758359
crossref_primary_10_1109_LGRS_2021_3098774
crossref_primary_10_1109_TGRS_2024_3410131
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_3724_j_issn_1007_2802_20240157
crossref_primary_10_1109_TGRS_2023_3305334
crossref_primary_10_1109_TPAMI_2023_3237896
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_3390_rs11030223
crossref_primary_10_3390_rs15215106
crossref_primary_10_1080_22797254_2023_2196641
crossref_primary_10_3390_rs16132353
crossref_primary_10_1117_1_JRS_19_016504
crossref_primary_10_1109_TNNLS_2021_3089332
crossref_primary_10_1080_01431161_2023_2208711
crossref_primary_10_1109_TGRS_2024_3523541
crossref_primary_10_1002_aic_14888
crossref_primary_10_1109_JSTARS_2023_3323372
Cites_doi 10.1109/TGRS.2008.916643
10.1016/0034-4257(95)00233-2
10.4249/scholarpedia.5282
10.1109/36.843009
10.1080/02757259609532305
10.1080/01431160903475399
10.1109/TGRS.2011.2168534
10.1109/TGRS.2011.2154336
10.1080/0143116031000101675
10.1016/j.rse.2010.02.018
10.1109/TGRS.2006.885408
10.1007/3-540-29711-1
10.1109/TGRS.2011.2109726
10.1167/5.6.9
10.1109/TGRS.2012.2197860
10.1016/j.rse.2009.02.004
10.1109/TGRS.2010.2066979
10.1109/LGRS.2012.2189092
10.1080/01431168908903939
10.1162/neco.2006.18.10.2495
10.1016/j.neucom.2012.08.056
10.1109/LGRS.2011.2109697
10.1016/j.rse.2008.07.018
10.1109/JSTARS.2010.2046627
10.1080/0143116031000139863
10.1080/014311699213659
10.1109/TPAMI.2011.157
10.1016/j.rse.2007.06.013
10.1016/0034-4257(94)90076-0
10.1016/j.rse.2005.08.006
10.1162/NECO_a_00171
10.1016/j.rse.2007.10.002
10.1016/j.rse.2007.10.004
10.1080/014311698215315
10.1016/j.rse.2011.12.004
10.1016/j.rse.2006.09.005
10.1109/JSTARS.2013.2241396
10.1109/TGRS.2011.2141999
10.1162/089976602317318938
10.1016/j.rse.2007.08.012
10.1109/TGRS.2012.2186305
10.1016/j.rse.2008.07.007
10.1162/neco.2007.19.4.1022
10.1109/LGRS.2010.2101045
10.1109/JSTARS.2010.2060316
10.1016/S0034-4257(97)00162-4
10.1016/S0034-4257(97)00112-0
10.1080/01431160801950162
10.1109/TIP.2006.888195
10.1109/TIP.2004.838698
10.1109/TGRS.2011.2168230
10.1109/LGRS.2009.2025059
10.1162/neco.2007.19.4.994
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2013.2266673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Aerospace Database
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 2874
ExternalDocumentID 3264824651
28496119
10_1109_TGRS_2013_2266673
6553145
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2012619020211
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2011CB707105; 2012CB719905
– fundername: National Natural Science Foundation of China
  grantid: 41061130553; 61102128
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
AAYOK
IQODW
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c455t-ea0b39059d62b0fb29f501733a541ff4a4fc91e01e28a9eda7b0869da46582ee3
IEDL.DBID RIE
ISICitedReferencesCount 279
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332484700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Thu Oct 02 09:45:08 EDT 2025
Thu Oct 02 06:33:35 EDT 2025
Mon Jun 30 08:27:25 EDT 2025
Wed Apr 02 07:17:45 EDT 2025
Sat Nov 29 02:49:39 EST 2025
Tue Nov 18 22:43:34 EST 2025
Wed Aug 27 06:26:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords image transformation
Change detection
slow feature analysis (SFA)
experimental studies
algorithms
Thematic Mapper
imagery
transformations
remote sensing
technology
Pixel
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-ea0b39059d62b0fb29f501733a541ff4a4fc91e01e28a9eda7b0869da46582ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1512411775
PQPubID 23500
PageCount 17
ParticipantIDs crossref_primary_10_1109_TGRS_2013_2266673
crossref_citationtrail_10_1109_TGRS_2013_2266673
proquest_journals_1512411775
pascalfrancis_primary_28496119
proquest_miscellaneous_1762045358
proquest_miscellaneous_1541405327
ieee_primary_6553145
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref55
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
richards (ref54) 2006
du (ref3) 2012; 14
ref24
ref23
ref26
berkes (ref52) 2005; 4104
ref25
ref20
ref22
ref21
ref28
ref27
ref29
lyon (ref30) 1998; 64
References_xml – ident: ref24
  doi: 10.1109/TGRS.2008.916643
– ident: ref23
  doi: 10.1016/0034-4257(95)00233-2
– ident: ref45
  doi: 10.4249/scholarpedia.5282
– ident: ref20
  doi: 10.1109/36.843009
– ident: ref9
  doi: 10.1080/02757259609532305
– ident: ref25
  doi: 10.1080/01431160903475399
– volume: 4104
  year: 2005
  ident: ref52
  article-title: Pattern recognition with slow feature analysis
  publication-title: Cognitive Sciences EPrint Archives (CogPrints)
– ident: ref26
  doi: 10.1109/TGRS.2011.2168534
– ident: ref19
  doi: 10.1109/TGRS.2011.2154336
– volume: 64
  start-page: 143
  year: 1998
  ident: ref30
  article-title: A change detection experiment using vegetation indices
  publication-title: Photogramm Eng Remote Sens
– ident: ref17
  doi: 10.1080/0143116031000101675
– volume: 14
  start-page: 272
  year: 2012
  ident: ref3
  article-title: A discriminative manifold learning based dimension reduction method
  publication-title: Int J Fuzzy Syst
– ident: ref6
  doi: 10.1016/j.rse.2010.02.018
– ident: ref21
  doi: 10.1109/TGRS.2006.885408
– year: 2006
  ident: ref54
  publication-title: Remote Sensing Digital Image Analysis An Introduction
  doi: 10.1007/3-540-29711-1
– ident: ref36
  doi: 10.1109/TGRS.2011.2109726
– ident: ref46
  doi: 10.1167/5.6.9
– ident: ref2
  doi: 10.1109/TGRS.2012.2197860
– ident: ref7
  doi: 10.1016/j.rse.2009.02.004
– ident: ref33
  doi: 10.1109/TGRS.2010.2066979
– ident: ref55
  doi: 10.1109/LGRS.2012.2189092
– ident: ref1
  doi: 10.1080/01431168908903939
– ident: ref51
  doi: 10.1162/neco.2006.18.10.2495
– ident: ref4
  doi: 10.1016/j.neucom.2012.08.056
– ident: ref53
  doi: 10.1109/LGRS.2011.2109697
– ident: ref10
  doi: 10.1016/j.rse.2008.07.018
– ident: ref13
  doi: 10.1109/JSTARS.2010.2046627
– ident: ref16
  doi: 10.1080/0143116031000139863
– ident: ref18
  doi: 10.1080/014311699213659
– ident: ref47
  doi: 10.1109/TPAMI.2011.157
– ident: ref12
  doi: 10.1016/j.rse.2007.06.013
– ident: ref43
  doi: 10.1016/0034-4257(94)90076-0
– ident: ref8
  doi: 10.1016/j.rse.2005.08.006
– ident: ref48
  doi: 10.1162/NECO_a_00171
– ident: ref34
  doi: 10.1016/j.rse.2007.10.002
– ident: ref32
  doi: 10.1016/j.rse.2007.10.004
– ident: ref42
  doi: 10.1080/014311698215315
– ident: ref5
  doi: 10.1016/j.rse.2011.12.004
– ident: ref28
  doi: 10.1016/j.rse.2006.09.005
– ident: ref31
  doi: 10.1109/JSTARS.2013.2241396
– ident: ref38
  doi: 10.1109/TGRS.2011.2141999
– ident: ref44
  doi: 10.1162/089976602317318938
– ident: ref27
  doi: 10.1016/j.rse.2007.08.012
– ident: ref35
  doi: 10.1109/TGRS.2012.2186305
– ident: ref29
  doi: 10.1016/j.rse.2008.07.007
– ident: ref50
  doi: 10.1162/neco.2007.19.4.1022
– ident: ref14
  doi: 10.1109/LGRS.2010.2101045
– ident: ref11
  doi: 10.1109/JSTARS.2010.2060316
– ident: ref40
  doi: 10.1016/S0034-4257(97)00162-4
– ident: ref22
  doi: 10.1016/S0034-4257(97)00112-0
– ident: ref39
  doi: 10.1080/01431160801950162
– ident: ref56
  doi: 10.1109/TIP.2006.888195
– ident: ref15
  doi: 10.1109/TIP.2004.838698
– ident: ref37
  doi: 10.1109/TGRS.2011.2168230
– ident: ref41
  doi: 10.1109/LGRS.2009.2025059
– ident: ref49
  doi: 10.1162/neco.2007.19.4.994
SSID ssj0014517
Score 2.5840278
Snippet Change detection was one of the earliest and is also one of the most important applications of remote sensing technology. For multispectral images, an...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2858
SubjectTerms Applied geophysics
Change detection
Change detection algorithms
Covariance matrices
Detection algorithms
Earth sciences
Earth, ocean, space
Eigenvalues and eigenfunctions
Exact sciences and technology
Feature extraction
Image detection
image transformation
Internal geophysics
Invariants
Pixels
Principal component analysis
Remote sensing
slow feature analysis (SFA)
Spectra
Spectral bands
Title Slow Feature Analysis for Change Detection in Multispectral Imagery
URI https://ieeexplore.ieee.org/document/6553145
https://www.proquest.com/docview/1512411775
https://www.proquest.com/docview/1541405327
https://www.proquest.com/docview/1762045358
Volume 52
WOSCitedRecordID wos000332484700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aomAfqt4pvbYeK_gkps1-3WYfpXoqSBF7Qt_CZjMLhZor91Hxv-_sJhc8lIIvYWFnSTKzm_lN5gvgDZkEpBUqmUlNFxW4yGxOoxqNrzjm2vlUXf-rubgorq7stx141-fCIGIKPsPTOEy-_Hru1_FX2dlE045Rehd2jTFtrlbvMVCad6nRk4yMCNF5MHluz2afvl_GIC55Slgjtrnc0kGpqUoMiXRL4kpo21n89WVO6mb69P8e9BkcdLCSvW_3wXPYwWYA-38UGxzA4xTs6ZdDOL-8mf9iEfytF8g2ZUkYwVfWJhuwD7hKIVoNu25YytFNGZkLusWXn7Hqxe8X8GP6cXb-OeuaKWReab3K0JEILIGpeiKqPFTCBk2nUUqnFQ9BORW8JeFwFIWzWDtTkbVja6cIowhE-RL2mnmDh8CkDEoGXyByS3gObS1EVahKC1NgVeQjyDfsLX1XaTw2vLgpk8WR2zJKpIwSKTuJjOBtv-S2LbPxEPEwsrwn7Lg9gvGWDPt50sB2wrkdwclGqGV3UpdlRDwqeq5p_et-ms5YdJy4BufrSKPIDtVSmAdoTKrsL3Vx9O_HO4Yn9BKqDZY8gb3VYo2v4JG_IxEuxmkz3wNJd-_t
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-stmgftNUWr7W6hT6VRrNfl-xj8aOK51HqFXwLm80sFDRX7qPF_97ZTS5UFKEvYWFnSTKzm_lN5gvgE5kEpBVKmUhNF-W5SExKowozV3JMtXWxuv4gGw7zqyvzfQm-dLkwiBiDz3A_DKMvvxq7efhVdtDXtGOUfgYrWinBm2ytzmegNG-To_sJmRGi9WHy1ByMvv24DGFccp_QRmh0eU8LxbYqISjSTokvvmlo8eDbHBXOycb_PeorWG-BJfva7ITXsIT1Jrz8p9zgJryI4Z5uugWHl9fjvyzAv_kE2aIwCSMAy5p0A3aEsxikVbNfNYtZujEnc0K3OLsJdS9u38DPk-PR4WnStlNInNJ6lqAlIRiCU1VflKkvhfGazqOUVivuvbLKO0Pi4Shya7CyWUn2jqmsIpQiEOVbWK7HNW4Dk9Ir6V2OyA0hOjSVEGWuSi2yHMs87UG6YG_h2lrjoeXFdRFtjtQUQSJFkEjRSqQHn7slv5tCG08RbwWWd4Qtt3uwe0-G3TzpYNPn3PRgZyHUoj2r0yJgHhV817T-YzdNpyy4TmyN43mgUWSJaimyJ2iyWNtf6vzd44-3B6uno4tBMTgbnr-HNXoh1YRO7sDybDLHD_Dc_SFxTnbjxr4D53TzNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slow+Feature+Analysis+for+Change+Detection+in+Multispectral+Imagery&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=CHEN+WU&rft.au=BO+DU&rft.au=LIANGPEI+ZHANG&rft.date=2014-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=52&rft.issue=5&rft.spage=2858&rft.epage=2874&rft_id=info:doi/10.1109%2FTGRS.2013.2266673&rft.externalDBID=n%2Fa&rft.externalDocID=28496119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon