Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search

We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discover...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer vision Ročník 100; číslo 2; s. 134 - 153
Hlavní autori: Hwang, Sung Ju, Grauman, Kristen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.11.2012
Springer
Springer Nature B.V
Predmet:
ISSN:0920-5691, 1573-1405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discovers the relationship between how humans tag images (e.g., the order in which words are mentioned) and the relative importance of objects and their layout in the scene. Using this discovered connection, we show how to boost accuracy for novel queries, such that the search results better preserve the aspects a human may find most worth mentioning. We evaluate our approach on three datasets using either keyword tags or natural language descriptions, and quantify results with both ground truth parameters as well as direct tests with human subjects. Our results show clear improvements over approaches that either rely on image features alone, or that use words and image features but ignore the implied importance cues. Overall, our work provides a novel way to incorporate high-level human perception of scenes into visual representations for enhanced image search.
AbstractList We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discovers the relationship between how humans tag images (e.g., the order in which words are mentioned) and the relative importance of objects and their layout in the scene. Using this discovered connection, we show how to boost accuracy for novel queries, such that the search results better preserve the aspects a human may find most worth mentioning. We evaluate our approach on three datasets using either keyword tags or natural language descriptions, and quantify results with both ground truth parameters as well as direct tests with human subjects. Our results show clear improvements over approaches that either rely on image features alone, or that use words and image features but ignore the implied importance cues. Overall, our work provides a novel way to incorporate high-level human perception of scenes into visual representations for enhanced image search.
We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discovers the relationship between how humans tag images (e.g., the order in which words are mentioned) and the relative importance of objects and their layout in the scene. Using this discovered connection, we show how to boost accuracy for novel queries, such that the search results better preserve the aspects a human may find most worth mentioning. We evaluate our approach on three datasets using either keyword tags or natural language descriptions, and quantify results with both ground truth parameters as well as direct tests with human subjects. Our results show clear improvements over approaches that either rely on image features alone, or that use words and image features but ignore the implied importance cues. Overall, our work provides a novel way to incorporate high-level human perception of scenes into visual representations for enhanced image search.
We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discovers the relationship between how humans tag images (e.g., the order in which words are mentioned) and the relative importance of objects and their layout in the scene. Using this discovered connection, we show how to boost accuracy for novel queries, such that the search results better preserve the aspects a human may find most worth mentioning. We evaluate our approach on three datasets using either keyword tags or natural language descriptions, and quantify results with both ground truth parameters as well as direct tests with human subjects. Our results show clear improvements over approaches that either rely on image features alone, or that use words and image features but ignore the implied importance cues. Overall, our work provides a novel way to incorporate high-level human perception of scenes into visual representations for enhanced image search.[PUBLICATION ABSTRACT]
We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword tags a person supplies for an image. We propose an unsupervised learning procedure based on Kernel Canonical Correlation Analysis that discovers the relationship between how humans tag images (e.g., the order in which words are mentioned) and the relative importance of objects and their layout in the scene. Using this discovered connection, we show how to boost accuracy for novel queries, such that the search results better preserve the aspects a human may find most worth mentioning. We evaluate our approach on three datasets using either keyword tags or natural language descriptions, and quantify results with both ground truth parameters as well as direct tests with human subjects. Our results show clear improvements over approaches that either rely on image features alone, or that use words and image features but ignore the implied importance cues. Overall, our work provides a novel way to incorporate high-level human perception of scenes into visual representations for enhanced image search. Keywords Image retrieval * Image tags * Multi-modal retrieval * Cross-modal retrieval * Image search * Object recognition * Auto annotation * Kernelized canonical correlation analysis
Audience Academic
Author Grauman, Kristen
Hwang, Sung Ju
Author_xml – sequence: 1
  givenname: Sung Ju
  surname: Hwang
  fullname: Hwang, Sung Ju
  email: sjhwang@cs.utexas.edu
  organization: Department of Computer Science, University of Texas at Austin
– sequence: 2
  givenname: Kristen
  surname: Grauman
  fullname: Grauman, Kristen
  organization: Department of Computer Science, University of Texas at Austin
BookMark eNp9kU1r3DAQhkVJoZu0P6A3Q089OJmRLH8cw9KPhS2BZO9ClkeOF6-0lbSh-ffV4h6SQosOQsPzzKB5L9mF844Y-4hwjQDNTUTktSgBsYSqq0rxhq1QNqLECuQFW0HHoZR1h-_YZYx7AOAtFytmtqSDm9xYpEcq7mnWaXqiYnM4-pC0M1R4W9z1ezIpFjb4Q7HT40hDJvRIueRDtlKY6EnPhXZDsQ4-xvKHH_L7ITc3j-_ZW6vnSB_-3Fds9_XLbv293N5926xvt6WppEylaSU2vYFewNAB9i3qoQFdDVRZrlvQDdfGUFdX1Fq0HXLR9mg6C1KIwYgr9mlpewz-54liUnt_Ci5PVFhh1_KKyzpT1ws16pnU5KxPQZt8BjpMJi_VTrl-K5pWyhZryMLnV0JmEv1Koz7FqDYP969ZXFhzXkIgq45hOujwrBDUOSe15KRyTuqckxLZaf5yzJRyCnlM0NP8X5MvZsxT3EjhxYf_Kf0Gtg-nVg
CitedBy_id crossref_primary_10_1109_TPAMI_2019_2942028
crossref_primary_10_1007_s11263_015_0862_5
crossref_primary_10_1016_j_patcog_2019_04_017
crossref_primary_10_1016_j_patcog_2017_05_019
crossref_primary_10_1016_j_sigpro_2015_10_010
crossref_primary_10_1109_TCYB_2016_2519449
crossref_primary_10_1109_TPAMI_2015_2408354
crossref_primary_10_1109_TIP_2017_2676345
crossref_primary_10_1109_TVCG_2016_2515614
crossref_primary_10_1016_j_knosys_2021_108014
crossref_primary_10_1016_j_neucom_2020_01_017
crossref_primary_10_1109_ACCESS_2020_2992063
crossref_primary_10_1109_TETC_2021_3115625
crossref_primary_10_3233_IDA_205162
crossref_primary_10_1007_s11042_019_08312_7
crossref_primary_10_1109_TCYB_2017_2712798
crossref_primary_10_1109_ACCESS_2024_3444817
crossref_primary_10_1007_s11036_014_0511_1
crossref_primary_10_1007_s11042_018_5719_9
crossref_primary_10_1109_TASLP_2024_3358048
crossref_primary_10_1016_j_jvcir_2018_12_028
crossref_primary_10_1016_j_artint_2017_05_002
crossref_primary_10_1109_TMM_2017_2723841
crossref_primary_10_1016_j_eswa_2022_118375
crossref_primary_10_1109_TKDE_2018_2872063
crossref_primary_10_1109_TPAMI_2018_2852750
crossref_primary_10_1016_j_cviu_2016_10_001
crossref_primary_10_1109_TPAMI_2017_2651818
crossref_primary_10_1109_TCYB_2014_2327960
crossref_primary_10_1007_s11704_017_6377_1
crossref_primary_10_1007_s00500_019_03973_w
crossref_primary_10_1109_TIP_2015_2395816
crossref_primary_10_1007_s00530_014_0397_6
crossref_primary_10_1109_TMM_2016_2646180
crossref_primary_10_1007_s11042_020_09983_3
crossref_primary_10_1109_TMM_2020_3004963
crossref_primary_10_1016_j_jvcir_2018_10_006
crossref_primary_10_1016_j_neucom_2022_02_007
crossref_primary_10_1109_TPAMI_2014_2366143
crossref_primary_10_1016_j_cviu_2017_05_017
crossref_primary_10_1016_j_neucom_2017_09_059
crossref_primary_10_1109_TCSVT_2017_2771247
crossref_primary_10_1016_j_neucom_2015_11_133
crossref_primary_10_1109_TMM_2021_3060955
crossref_primary_10_1109_TAFFC_2020_3026095
crossref_primary_10_1007_s12559_021_09822_z
crossref_primary_10_1007_s11280_024_01249_4
crossref_primary_10_1016_j_cosrev_2020_100336
crossref_primary_10_1016_j_patcog_2018_03_033
crossref_primary_10_1007_s11042_018_5767_1
crossref_primary_10_7233_jksc_2024_74_4_092
crossref_primary_10_1007_s11045_017_0505_9
crossref_primary_10_1007_s11042_021_11701_6
crossref_primary_10_3390_s22010285
crossref_primary_10_1109_TCSVT_2016_2606648
Cites_doi 10.1109/34.895972
10.1167/8.14.18
10.1023/A:1023052124951
10.1023/A:1012460413855
10.1037/h0031619
10.1145/1348246.1348248
10.1145/582415.582418
10.1016/j.visres.2004.09.017
10.1167/8.3.3
10.1167/8.14.1
10.1093/biomet/28.3-4.321
10.1162/0899766042321814
10.1167/8.3.1
10.1023/B:VISI.0000029664.99615.94
10.1007/s10844-006-1627-y
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2011
COPYRIGHT 2012 Springer
Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2011
– notice: COPYRIGHT 2012 Springer
– notice: Springer Science+Business Media, LLC 2012
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-011-0494-3
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 153
ExternalDocumentID 3043238201
A378558160
10_1007_s11263_011_0494_3
Genre Feature
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
AGGLG
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c455t-c8517bc0b30d901b81ad70a4de4f2a80a72acce964e8f1f91238b1c9f0533dc3
IEDL.DBID 7WY
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308364500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Mon Dec 15 19:32:35 EST 2025
Sat Nov 29 09:56:32 EST 2025
Wed Nov 26 09:31:46 EST 2025
Sat Nov 29 06:42:25 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 21 02:26:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Image search
Cross-modal retrieval
Image tags
Image retrieval
Multi-modal retrieval
Kernelized canonical correlation analysis
Object recognition
Auto annotation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-c8517bc0b30d901b81ad70a4de4f2a80a72acce964e8f1f91238b1c9f0533dc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1419824256
PQPubID 1456341
PageCount 20
ParticipantIDs proquest_journals_1419824256
gale_infotracacademiconefile_A378558160
gale_incontextgauss_ISR_A378558160
crossref_primary_10_1007_s11263_011_0494_3
crossref_citationtrail_10_1007_s11263_011_0494_3
springer_journals_10_1007_s11263_011_0494_3
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2012
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Wolfe, Horowitz (CR46) 2004; 5
Smeulders, Worring, Santini, Gupta, Jain (CR41) 2000; 22
Deng, Dong, Socher, Li, Li, Fei-Fei (CR10) 2009
Tatler, Baddeley, Gilchrist (CR43) 2005; 45
Torralba (CR44) 2003; 53
Hwang, Grauman (CR23) 2010
Hotelling (CR22) 1936; 28
CR39
CR14
CR33
CR31
Baeza-Yates, Ribeiro-Neto (CR3) 1999
Monay, Gatica-Perez (CR35) 2003
Quack, Leibe, Gool (CR37) 2008
Duygulu, Barnard, de Freitas, Forsyth (CR11) 2002
Quattoni, Collins, Darrell (CR38) 2007
Datta, Joshi, Li, Wang (CR9) 2008; 40
Schroff, Criminisi, Zisserman (CR40) 2007
Kadir, Brady (CR26) 2001; 45
Vijayanarasimhan, Grauman (CR45) 2008
Gupta, Davis (CR19) 2008
Yakhnenko, Honavar (CR47) 2009
Li, Socher, Fei-Fei (CR30) 2009
Spain, Perona (CR42) 2008
Fyfe, Lai (CR18) 2001; 10
Fleiss (CR17) 1971; 76
Einhauser, Spain, Perona (CR12) 2008; 8
Hardoon, Shawe-Taylor (CR20) 2003
Jarvelin, Kekalainen (CR25) 2002; 20
Bekkerman, Jeon (CR5) 2007
Blaschko, Lampert (CR7) 2008
CR21
Farhadi, Hejrati, Sadeghi, Young, Rashtchian, Hockenmaier, Forsyth (CR15) 2010
Fergus, Fei-Fei, Perona, Zisserman (CR16) 2005
Lavrenko, Manmatha, Jeon (CR28) 2003
Qi, Hua, Zhang (CR36) 2009
Berg, Berg, Edwards, Forsyth (CR6) 2004
Elazary, Itti (CR13) 2008; 8
Loeff, Farhadi (CR32) 2008
Akaho (CR2) 2001
Barnard, Duygulu, de Freitas, Forsyth, Blei, Jordan (CR4) 2003; 3
Makadia, Pavlovic, Kumar (CR34) 2008
von Ahn, Dabbish (CR1) 2004
Hwang, Grauman (CR24) 2010
Kulis, Grauman (CR27) 2009
Li, Wang, Fei-Fei (CR29) 2007
Bruce, Tsotsos (CR8) 2005
R. Baeza-Yates (494_CR3) 1999
S. Vijayanarasimhan (494_CR45) 2008
A. Gupta (494_CR19) 2008
494_CR21
A. Quattoni (494_CR38) 2007
L. Li (494_CR29) 2007
G. J. Qi (494_CR36) 2009
C. Fyfe (494_CR18) 2001; 10
B. Kulis (494_CR27) 2009
K. Jarvelin (494_CR25) 2002; 20
O. Yakhnenko (494_CR47) 2009
R. Bekkerman (494_CR5) 2007
K. Barnard (494_CR4) 2003; 3
D. Hardoon (494_CR20) 2003
H. Hotelling (494_CR22) 1936; 28
494_CR39
494_CR14
R. Fergus (494_CR16) 2005
T. Quack (494_CR37) 2008
W. Einhauser (494_CR12) 2008; 8
A. Torralba (494_CR44) 2003; 53
S. J. Hwang (494_CR24) 2010
J. Deng (494_CR10) 2009
J. L. Fleiss (494_CR17) 1971; 76
T. Berg (494_CR6) 2004
F. Monay (494_CR35) 2003
A. Smeulders (494_CR41) 2000; 22
J. Wolfe (494_CR46) 2004; 5
L. J. Li (494_CR30) 2009
P. Duygulu (494_CR11) 2002
L. Elazary (494_CR13) 2008; 8
A. Farhadi (494_CR15) 2010
494_CR33
A. Makadia (494_CR34) 2008
494_CR31
R. Datta (494_CR9) 2008; 40
V. Lavrenko (494_CR28) 2003
S. Akaho (494_CR2) 2001
M. Spain (494_CR42) 2008
L. Ahn von (494_CR1) 2004
N. Loeff (494_CR32) 2008
N. Bruce (494_CR8) 2005
F. Schroff (494_CR40) 2007
S. J. Hwang (494_CR23) 2010
M. B. Blaschko (494_CR7) 2008
T. Kadir (494_CR26) 2001; 45
B. Tatler (494_CR43) 2005; 45
References_xml – year: 2009
  ident: CR36
  article-title: Learning semantic distance from community-tagged media collection
  publication-title: ACM multimedia
– volume: 3
  start-page: 1107
  year: 2003
  end-page: 1135
  ident: CR4
  article-title: Matching words and pictures
  publication-title: Journal of Machine Learning Research
– year: 2008
  ident: CR32
  article-title: Scene discovery by matrix factorization
  publication-title: ECCV
– year: 2005
  ident: CR8
  article-title: Saliency based on information maximization
  publication-title: NIPS
– volume: 22
  start-page: 1349
  issue: 12
  year: 2000
  end-page: 1380
  ident: CR41
  article-title: Content-based image retrieval at the end of the early years
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.895972
– year: 2009
  ident: CR10
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: CVPR
– year: 2009
  ident: CR27
  article-title: Kernelized locality-sensitive hashing for scalable image search
  publication-title: ICCV
– ident: CR14
– ident: CR39
– year: 2009
  ident: CR47
  article-title: Multiple label prediction for image annotation with multiple kernel correlation models
  publication-title: Workshop on visual context learning, in conjunction with CVPR
– year: 2003
  ident: CR28
  article-title: A model for learning the semantics of pictures
  publication-title: NIPS
– year: 2007
  ident: CR5
  article-title: Multi-modal clustering for multimedia collections
  publication-title: CVPR
– volume: 8
  start-page: 1
  issue: 14
  year: 2008
  end-page: 26
  ident: CR12
  article-title: Objects predict fixations better than early saliency
  publication-title: Journal of Vision
  doi: 10.1167/8.14.18
– year: 2010
  ident: CR15
  article-title: Every picture tells a story: generating sentences for images
  publication-title: ECCV
– volume: 28
  start-page: 321
  year: 1936
  end-page: 377
  ident: CR22
  article-title: Relations between two sets of variants
  publication-title: Biometrika
– ident: CR33
– volume: 10
  start-page: 365
  year: 2001
  end-page: 374
  ident: CR18
  article-title: Kernel and nonlinear canonical correlation analysis
  publication-title: International Journal of Neural Systems
– year: 2008
  ident: CR7
  article-title: Correlational spectral clustering
  publication-title: CVPR
– year: 2001
  ident: CR2
  article-title: A kernel method for canonical correlation analysis
  publication-title: International meeting of Psychometric Society
– year: 2002
  ident: CR11
  article-title: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary
  publication-title: ECCV
– year: 2009
  ident: CR30
  article-title: Towards total scene understanding: classification, annotation and segmentation in an automatic framework
  publication-title: CVPR
– year: 2003
  ident: CR20
  article-title: KCCA for different level precision in content-based image retrieval
  publication-title: Third international workshop on content-based multimedia indexing
– year: 2007
  ident: CR29
  article-title: Optimol: automatic online picture collection via incremental model learning
  publication-title: CVPR
– year: 2007
  ident: CR40
  article-title: Harvesting image databases from the web
  publication-title: ICCV
– volume: 53
  start-page: 169
  issue: 2
  year: 2003
  end-page: 191
  ident: CR44
  article-title: Contextual priming for object detection
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023052124951
– ident: CR21
– year: 2005
  ident: CR16
  article-title: Learning object categories from Google’s image search
  publication-title: ICCV
– volume: 5
  start-page: 495
  year: 2004
  end-page: 501
  ident: CR46
  article-title: What attributes guide the deployment of visual attention and how do they do it?
  publication-title: Neuroscience
– year: 2008
  ident: CR19
  article-title: Beyond nouns: exploiting prepositions and comparative adjectives for learning visual classifiers
  publication-title: ECCV
– volume: 45
  start-page: 83
  issue: 2
  year: 2001
  end-page: 105
  ident: CR26
  article-title: Saliency, scale and image description
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1012460413855
– year: 2003
  ident: CR35
  article-title: On image auto-annotation with latent space models
  publication-title: ACM multimedia
– year: 2010
  ident: CR23
  article-title: Accounting for the relative importance of objects in image retrieval
  publication-title: British machine vision conference
– volume: 76
  start-page: 378
  issue: 5
  year: 1971
  end-page: 382
  ident: CR17
  article-title: Measuring nominal scale agreement among many raters
  publication-title: Psychological Bulletin
  doi: 10.1037/h0031619
– year: 2004
  ident: CR6
  article-title: Who’s in the picture
  publication-title: NIPS
– volume: 40
  start-page: 1
  issue: 2
  year: 2008
  end-page: 60
  ident: CR9
  article-title: Image retrieval: ideas, influences, and trends of the New Age
  publication-title: ACM Computing Surveys
  doi: 10.1145/1348246.1348248
– year: 2010
  ident: CR24
  article-title: Reading between the lines: object localization using implicit cues from image tags
  publication-title: CVPR
– ident: CR31
– year: 2008
  ident: CR45
  article-title: Keywords to visual categories: multiple-instance learning for weakly supervised object categorization
  publication-title: CVPR
– year: 2008
  ident: CR37
  article-title: World-scale mining of objects and events from community photo collections
  publication-title: CIVR
– volume: 20
  start-page: 422
  issue: 4
  year: 2002
  end-page: 446
  ident: CR25
  article-title: Cumulated gain-based evaluation of IR techniques
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/582415.582418
– year: 2007
  ident: CR38
  article-title: Learning visual representations using images with captions
  publication-title: CVPR
– year: 2008
  ident: CR34
  article-title: A new baseline for image annotation
  publication-title: ECCV
– year: 2004
  ident: CR1
  article-title: Labeling images with a computer game
  publication-title: CHI
– volume: 45
  start-page: 643
  year: 2005
  end-page: 659
  ident: CR43
  article-title: Visual correlates of fixation selection: effects of scale and time
  publication-title: Vision Research
  doi: 10.1016/j.visres.2004.09.017
– year: 1999
  ident: CR3
  publication-title: Modern information retrieval
– year: 2008
  ident: CR42
  article-title: Some objects are more equal than others: measuring and predicting importance
  publication-title: ECCV
– volume: 8
  start-page: 1
  issue: 3
  year: 2008
  end-page: 15
  ident: CR13
  article-title: Interesting objects are visually salient
  publication-title: Journal of Vision
  doi: 10.1167/8.3.3
– volume-title: CVPR
  year: 2009
  ident: 494_CR30
– volume-title: CHI
  year: 2004
  ident: 494_CR1
– volume-title: Workshop on visual context learning, in conjunction with CVPR
  year: 2009
  ident: 494_CR47
– volume-title: International meeting of Psychometric Society
  year: 2001
  ident: 494_CR2
– volume-title: NIPS
  year: 2003
  ident: 494_CR28
– volume-title: ECCV
  year: 2008
  ident: 494_CR19
– volume-title: British machine vision conference
  year: 2010
  ident: 494_CR23
– volume-title: ECCV
  year: 2002
  ident: 494_CR11
– volume: 8
  start-page: 1
  issue: 14
  year: 2008
  ident: 494_CR12
  publication-title: Journal of Vision
  doi: 10.1167/8.14.1
– volume-title: ICCV
  year: 2005
  ident: 494_CR16
– volume: 40
  start-page: 1
  issue: 2
  year: 2008
  ident: 494_CR9
  publication-title: ACM Computing Surveys
  doi: 10.1145/1348246.1348248
– volume-title: CVPR
  year: 2008
  ident: 494_CR7
– volume-title: Modern information retrieval
  year: 1999
  ident: 494_CR3
– volume: 28
  start-page: 321
  year: 1936
  ident: 494_CR22
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 5
  start-page: 495
  year: 2004
  ident: 494_CR46
  publication-title: Neuroscience
– volume-title: CVPR
  year: 2007
  ident: 494_CR29
– volume-title: CIVR
  year: 2008
  ident: 494_CR37
– volume: 76
  start-page: 378
  issue: 5
  year: 1971
  ident: 494_CR17
  publication-title: Psychological Bulletin
  doi: 10.1037/h0031619
– volume: 10
  start-page: 365
  year: 2001
  ident: 494_CR18
  publication-title: International Journal of Neural Systems
– volume-title: ACM multimedia
  year: 2003
  ident: 494_CR35
– volume-title: ACM multimedia
  year: 2009
  ident: 494_CR36
– volume-title: CVPR
  year: 2007
  ident: 494_CR38
– ident: 494_CR14
– ident: 494_CR21
  doi: 10.1162/0899766042321814
– volume: 3
  start-page: 1107
  year: 2003
  ident: 494_CR4
  publication-title: Journal of Machine Learning Research
– volume: 53
  start-page: 169
  issue: 2
  year: 2003
  ident: 494_CR44
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023052124951
– volume-title: ECCV
  year: 2008
  ident: 494_CR34
– volume-title: ICCV
  year: 2009
  ident: 494_CR27
– volume-title: ECCV
  year: 2008
  ident: 494_CR32
– volume: 45
  start-page: 643
  year: 2005
  ident: 494_CR43
  publication-title: Vision Research
  doi: 10.1016/j.visres.2004.09.017
– volume-title: CVPR
  year: 2007
  ident: 494_CR5
– ident: 494_CR39
– volume-title: ECCV
  year: 2008
  ident: 494_CR42
– volume: 8
  start-page: 1
  issue: 3
  year: 2008
  ident: 494_CR13
  publication-title: Journal of Vision
  doi: 10.1167/8.3.1
– volume-title: ICCV
  year: 2007
  ident: 494_CR40
– volume-title: NIPS
  year: 2004
  ident: 494_CR6
– volume-title: Third international workshop on content-based multimedia indexing
  year: 2003
  ident: 494_CR20
– volume: 45
  start-page: 83
  issue: 2
  year: 2001
  ident: 494_CR26
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1012460413855
– volume: 22
  start-page: 1349
  issue: 12
  year: 2000
  ident: 494_CR41
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.895972
– volume-title: ECCV
  year: 2010
  ident: 494_CR15
– volume: 20
  start-page: 422
  issue: 4
  year: 2002
  ident: 494_CR25
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/582415.582418
– volume-title: CVPR
  year: 2008
  ident: 494_CR45
– ident: 494_CR33
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume-title: NIPS
  year: 2005
  ident: 494_CR8
– volume-title: CVPR
  year: 2010
  ident: 494_CR24
– ident: 494_CR31
  doi: 10.1007/s10844-006-1627-y
– volume-title: CVPR
  year: 2009
  ident: 494_CR10
SSID ssj0002823
Score 2.4378796
Snippet We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword...
We introduce an approach to image retrieval and auto-tagging that leverages the implicit information about object importance conveyed by the list of keyword...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Analysis
Artificial Intelligence
Computer Imaging
Computer Science
Correlation analysis
Experiments
Human subjects
Image Processing and Computer Vision
Image retrieval
Information management
Information retrieval
International
Keywords
Learning
Learning strategies
Pattern Recognition
Pattern Recognition and Graphics
Perceptions
Queries
Semantics
Studies
Vision
Vision systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEA6t7UNf1NqWHqsSSkFoCew1l0eRigfUFj0U30KuB6Huytmjv9-Z3azW2hbs42Ynu8nk9iWZ-YaQT8ryQgXvGI-uZFUdDbPel8xy60WsZVa7njL_SJycyPNz9T35cXejtft4JdnP1PfObnmBd454pFepipXPyQtkf0PC_NOzH3fTL-whhvjxsC-qucrHq8w_feLBYvT7lPzobrRfcg7W_quw62Q1IUy6N3SJ1-RZaDbIWkKbNI3lDpLGgA5j2hviEtvqnAIspIOd3E2g08sepIMIbSP9ZvHopqPomEJnZj6Hr04vYVqCpHYBuTBEF_RfahpP97He7Lj18DxYNr8ls4Ovs_1DlqIwMFfV9ZI5wGTCusyWmQfwYGVuvMhM5UMVCyMzIwrjXFC8CjLmUcFSKG3uVEQvX-_Kd2SlaZvwnlCTu1AFC5hNgFJsKbmPzhouAAYGZ8WEZGNraJcYyjFQxk99z62MatWgVo1q1eWEfL7LcjXQc_xL-CM2sUbaiwbtaubmuuv09OxU75VC1rXMeTYhu0kotvBzZ5KbAlQBmbIeSG6NXUWngd_BTipXErdxfEK-jF3jl9d_K9vmk6Q_kFcA3IrBJ3KLrCwX12GbvHQ3y4tusdOPh1vuygOV
  priority: 102
  providerName: Springer Nature
Title Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search
URI https://link.springer.com/article/10.1007/s11263-011-0494-3
https://www.proquest.com/docview/1419824256
Volume 100
WOSCitedRecordID wos000308364500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCF8hRbSmUhJCSQRR52nJxQWbViBV1W2xUULpafKySatJttfz8zidNSEL1wsWTHdpzMePzZngchLytTZJV3lhXB5oyLoJlxLmemME4GUSbCdi7zP8nptDw-rmbxwK2NapWDTOwEtWssnpG_TTlsjxEfF-9OzxhGjcLb1RhC4zbZhIWao0qX_PrtUhLDdqIPJQ9bJFFU6XCr2ZnOpRneYOIBIa84y6-tS39K57-uSbvV52Drf8d9n9yLuJPu9YzygNzy9UOyFTEojTO8haIhzMNQ9ojY6IN1SQEs0l577sLTyUkH3aEKbQL9bPBAp6VorkIXermEXicnIKygqFlBKwzcBVxNde3oGH8BO2wc5Ht958dkcbC_GH9gMTYDs1yINbOA1KSxickTB5DClKl2MtHceR4yXSZaZtpaXxXclyENFSyQpUltFdD219n8Cdmom9o_JVSn1nNvAMlJoITJy8IFa3QhARx6a-SIJANhlI1-yzF8xk915XEZaamAlgppqfIReX3Z5LR32nFT5RdIbYXOMGrUtlnq87ZVk6O52stlKUSZFsmIvIqVQgMvtzoaL8AnoP-sazV3Bj5QURy06ooJRuTNwEm_Pf7X2LZv7uwZuQv4LetNI3fIxnp17p-TO_Zi_aNd7XZzYZdsvt-fzuaQ-ygZpIfJGNKZ-A7p_OjLL7l8E94
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkulFUMtGAhEBLIalYnOVRVVagazXRAMIfeLK8jJJqUybSIH8V_7HtZWgqitx44xrGd2P78FvstAK8KLaLCWcOFNzFPUq-4tjbmWmib-TQPUtOGzJ9k02l-eFh8WoFfgy8MmVUONLEl1LY2dEa-GSaoHpN8LLaPv3PKGkW3q0MKjQ4WY_fzB6pszVb5Htf3dRTtfZjt7vM-qwA3SZouuaFs9NoEOg4sMkOdh8pmgUqsS3yk8kBlkTLGFSJxuQ99gaQ916EpPHmtWhNjtzfgJkX4JF1vnPFzwo_aS5e5HjWyVBThcInaeuqFEV2Y0nlkUiQ8vsQG_2QGf93Ktsxub-0_m6Z7cLeXqtlOtw3uw4qrHsBaL2Gznn41WDQksRjKHoLpI8zOGYrCrLMNPHWsPGoVE6zCas8-ajquahg547CZms-x1_IISTEW1QtsRWnJcM8yVVm2SzPOD2qLz5019yOYXcfgH8NqVVfuCTAVGpc4jXJqhguv41xYb7QSGYq-zuhsBMGAA2n6qOyUHOSbvIgnTdCRCB1J0JHxCN6eNznuQpJcVfklgUtSqI-KbInm6qRpZPnls9yJszxN81AEI3jTV_I1ftyo3jUDh0DRwS7VXB9gJ3ti18gLzI3g3QDc317_69-eXt3ZC7i9PzuYyEk5HT-DOyipRp0T6DqsLhcnbgNumdPl12bxvN2GDOQ14_kMwBNq6g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXylMstGAhEBLIat6PQ1VVLSuiLUsFe-jN8nOFRJOy2Rbx0_h3nUmcloLorQeOcRwndr55eTwzAK9KlUWlNZpnTsc8SZ3kypiYq0yZ3KVFkOouZf5-Pp0Wh4flwQr8GmJh6FjlwBM7Rm0aTXvkm2GC5jHpx9mm88ciDvbG28ffOVWQIk_rUE6jh8jE_vyB5lu7Ve3hv34dReP3s90P3FcY4DpJ0yXXVJle6UDFgUHBqIpQmjyQibGJi2QRyDySWtsyS2zhQlcimy9UqEtHEaxGxzjsDbhJQpiIa5LzcyGAlkxfxR6tszQrw8Gh2kXthRE5T2lvMikTHl8SiX8Khr88tJ3gG6_9x0t2D-56bZvt9ORxH1Zs_QDWvObNPF9rsWkobjG0PQTtM8_OGarIrD8zeGpZddQZLNiFNY59UrSN1TIK0mEzOZ_jqNURsmhsahb4FJUrQ1pmsjZsl1aff2wMXvenvB_B7Dom_xhW66a2T4DJUNvEKtRfcwSBiovMOK1klqNKbLXKRxAMmBDaZ2unoiHfxEWeaYKRQBgJgpGIR_D2_JHjPlXJVZ1fEtAEpQCpCRlzedK2ovryWezEeZGmRZgFI3jjO7kGX66lD9nAKVDWsEs91wcICs8EW3GBvxG8G0D82-1_fdvTqwd7AbcRxmK_mk6ewR1UYKM-NnQdVpeLE7sBt_Tp8mu7eN5RJANxzXA-A4Pcc6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+relative+importance+of+objects+from+tagged+images+for+retrieval+and+cross-modal+search&rft.jtitle=International+journal+of+computer+vision&rft.au=Hwang%2C+Sung+Ju&rft.au=Grauman%2C+Kristen&rft.date=2012-11-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=100&rft.issue=2&rft.spage=134&rft_id=info:doi/10.1007%2Fs11263-011-0494-3&rft.externalDBID=ISR&rft.externalDocID=A378558160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon