NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy an...

Full description

Saved in:
Bibliographic Details
Published in:Cell metabolism Vol. 24; no. 4; p. 566
Main Authors: Fang, Evandro Fei, Kassahun, Henok, Croteau, Deborah L, Scheibye-Knudsen, Morten, Marosi, Krisztina, Lu, Huiming, Shamanna, Raghavendra A, Kalyanasundaram, Sumana, Bollineni, Ravi Chand, Wilson, Mark A, Iser, Wendy B, Wollman, Bradley N, Morevati, Marya, Li, Jun, Kerr, Jesse S, Lu, Qiping, Waltz, Tyler B, Tian, Jane, Sinclair, David A, Mattson, Mark P, Nilsen, Hilde, Bohr, Vilhelm A
Format: Journal Article
Language:English
Published: United States 11.10.2016
Subjects:
ISSN:1932-7420, 1932-7420
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.
AbstractList Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.
Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.
Author Shamanna, Raghavendra A
Tian, Jane
Mattson, Mark P
Fang, Evandro Fei
Lu, Qiping
Croteau, Deborah L
Sinclair, David A
Marosi, Krisztina
Wollman, Bradley N
Wilson, Mark A
Scheibye-Knudsen, Morten
Bohr, Vilhelm A
Kassahun, Henok
Li, Jun
Morevati, Marya
Kerr, Jesse S
Bollineni, Ravi Chand
Lu, Huiming
Nilsen, Hilde
Iser, Wendy B
Waltz, Tyler B
Kalyanasundaram, Sumana
Author_xml – sequence: 1
  givenname: Evandro Fei
  surname: Fang
  fullname: Fang, Evandro Fei
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 2
  givenname: Henok
  surname: Kassahun
  fullname: Kassahun, Henok
  organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
– sequence: 3
  givenname: Deborah L
  surname: Croteau
  fullname: Croteau, Deborah L
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 4
  givenname: Morten
  surname: Scheibye-Knudsen
  fullname: Scheibye-Knudsen, Morten
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark
– sequence: 5
  givenname: Krisztina
  surname: Marosi
  fullname: Marosi, Krisztina
  organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 6
  givenname: Huiming
  surname: Lu
  fullname: Lu, Huiming
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 7
  givenname: Raghavendra A
  surname: Shamanna
  fullname: Shamanna, Raghavendra A
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 8
  givenname: Sumana
  surname: Kalyanasundaram
  fullname: Kalyanasundaram, Sumana
  organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; Bioinformatics Core Facility, Department of Core Facilities, Institute of Cancer Research, Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
– sequence: 9
  givenname: Ravi Chand
  surname: Bollineni
  fullname: Bollineni, Ravi Chand
  organization: Department of Biosciences, University of Oslo, 0316 Oslo, Norway
– sequence: 10
  givenname: Mark A
  surname: Wilson
  fullname: Wilson, Mark A
  organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 11
  givenname: Wendy B
  surname: Iser
  fullname: Iser, Wendy B
  organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 12
  givenname: Bradley N
  surname: Wollman
  fullname: Wollman, Bradley N
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 13
  givenname: Marya
  surname: Morevati
  fullname: Morevati, Marya
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark
– sequence: 14
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 15
  givenname: Jesse S
  surname: Kerr
  fullname: Kerr, Jesse S
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 16
  givenname: Qiping
  surname: Lu
  fullname: Lu, Qiping
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 17
  givenname: Tyler B
  surname: Waltz
  fullname: Waltz, Tyler B
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 18
  givenname: Jane
  surname: Tian
  fullname: Tian, Jane
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
– sequence: 19
  givenname: David A
  surname: Sinclair
  fullname: Sinclair, David A
  organization: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
– sequence: 20
  givenname: Mark P
  surname: Mattson
  fullname: Mattson, Mark P
  organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 21
  givenname: Hilde
  surname: Nilsen
  fullname: Nilsen, Hilde
  organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
– sequence: 22
  givenname: Vilhelm A
  surname: Bohr
  fullname: Bohr, Vilhelm A
  email: vbohr@nih.gov
  organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark. Electronic address: vbohr@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27732836$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EP_gAvJUpAZk8k8kuXQqi3UClLXQya506bMq01a7L93Wiu4ut-B-zj3DFGvbmpA6J4SnxIaP298VYHzg459InxCwis0oIIFXhIGpPeP-2ho7YYQFjPBblA_SBIWcBYP0HaRTvAT_oS2hNrYdQW1w7Oq3TUHsHhuCrCtrLGsNZ6CLN36LE2NUye_jcRLKGW9MqCctJ18bzSUFh9OaFzTruXqeB6eLNLTEWl2t-i6kKWFu0sdoa_Xl-V46s0_3mbjdO6pMIqclyc5p4wQqRKuFacgo6IIOVFAleaaqyhnQmutijxQUhSx4BxEzmhCGBeEByP0-Lu3-2W7B-uyylgFZecXmr3NKGdRSHnUZTRCD5fWfV6BztqdqeTumP3FFPwARBxtOQ
CitedBy_id crossref_primary_10_1016_j_dnarep_2020_102950
crossref_primary_10_1128_mbio_01982_25
crossref_primary_10_1038_nature25143
crossref_primary_10_1073_pnas_2011226118
crossref_primary_10_1016_j_chemosphere_2024_141148
crossref_primary_10_1016_j_exger_2022_111889
crossref_primary_10_1096_fj_201902636RR
crossref_primary_10_1038_s41580_020_00313_x
crossref_primary_10_3390_biom15020168
crossref_primary_10_1016_j_neuint_2019_104469
crossref_primary_10_3389_fcvm_2023_1232681
crossref_primary_10_3390_cancers12061694
crossref_primary_10_1016_j_cmet_2023_12_007
crossref_primary_10_1016_j_jbc_2022_102615
crossref_primary_10_3390_genes13081379
crossref_primary_10_1016_j_pnpbp_2019_109670
crossref_primary_10_3390_antiox12061230
crossref_primary_10_1038_s41419_024_07062_1
crossref_primary_10_3389_fneur_2025_1422707
crossref_primary_10_1016_j_arr_2024_102251
crossref_primary_10_1016_j_phrs_2022_106281
crossref_primary_10_1177_1178646917704662
crossref_primary_10_1016_j_tins_2017_01_002
crossref_primary_10_3389_fnut_2025_1548821
crossref_primary_10_1016_j_arr_2022_101833
crossref_primary_10_1016_j_arr_2020_101154
crossref_primary_10_1016_j_mad_2021_111545
crossref_primary_10_1038_s41421_022_00409_y
crossref_primary_10_3389_fnmol_2019_00108
crossref_primary_10_1016_j_chembiol_2017_12_008
crossref_primary_10_1016_j_ddmod_2019_01_001
crossref_primary_10_1016_j_envpol_2019_113693
crossref_primary_10_1016_j_arr_2018_05_006
crossref_primary_10_1111_acel_14017
crossref_primary_10_1038_s41556_018_0176_2
crossref_primary_10_1016_j_tibs_2022_03_008
crossref_primary_10_1016_j_arr_2022_101702
crossref_primary_10_1111_acel_70093
crossref_primary_10_1038_s44321_024_00119_w
crossref_primary_10_1007_s10565_024_09926_w
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1002_hep_32658
crossref_primary_10_1080_15548627_2024_2383145
crossref_primary_10_1016_j_pharmthera_2017_04_005
crossref_primary_10_1186_s12974_021_02250_8
crossref_primary_10_1007_s10522_022_09958_x
crossref_primary_10_1016_j_molmed_2017_08_001
crossref_primary_10_1016_j_biopha_2022_113246
crossref_primary_10_1002_mco2_70369
crossref_primary_10_1039_D2FO00525E
crossref_primary_10_1093_nar_gkz568
crossref_primary_10_1146_annurev_cancerbio_030419_033405
crossref_primary_10_1016_j_celrep_2025_115540
crossref_primary_10_1016_j_mad_2021_111567
crossref_primary_10_1038_srep46208
crossref_primary_10_1038_s41392_020_00354_w
crossref_primary_10_1111_acel_13268
crossref_primary_10_1007_s10522_020_09864_0
crossref_primary_10_1631_jzus_B2400186
crossref_primary_10_3390_biom15050614
crossref_primary_10_1016_j_arr_2020_101129
crossref_primary_10_1016_j_mad_2021_111569
crossref_primary_10_1016_j_mad_2020_111296
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_1016_j_dnarep_2018_10_001
crossref_primary_10_4049_jimmunol_1801382
crossref_primary_10_1089_ars_2017_7478
crossref_primary_10_1111_acel_14462
crossref_primary_10_1016_j_cmet_2018_02_011
crossref_primary_10_1016_j_arr_2022_101636
crossref_primary_10_1016_j_spen_2024_101169
crossref_primary_10_1038_s41388_023_02592_y
crossref_primary_10_3389_fcell_2021_668491
crossref_primary_10_3390_nu12061616
crossref_primary_10_1038_s41467_024_44808_z
crossref_primary_10_1089_ars_2017_7445
crossref_primary_10_1038_s41418_023_01196_z
crossref_primary_10_3390_ijms24010137
crossref_primary_10_1002_mnfr_70162
crossref_primary_10_1039_D1RA02062E
crossref_primary_10_1016_j_molmet_2021_101195
crossref_primary_10_1007_s00018_022_04625_3
crossref_primary_10_1038_s41582_019_0244_7
crossref_primary_10_1080_1744666X_2020_1810570
crossref_primary_10_1016_j_dnarep_2021_103155
crossref_primary_10_1016_j_mito_2021_04_007
crossref_primary_10_1002_fft2_511
crossref_primary_10_1016_j_bcp_2022_114946
crossref_primary_10_1038_s41598_020_78193_6
crossref_primary_10_1097_PRS_0000000000009673
crossref_primary_10_1093_stmcls_sxac008
crossref_primary_10_1016_j_phymed_2024_155665
crossref_primary_10_1016_j_toxlet_2021_05_013
crossref_primary_10_1371_journal_pone_0182306
crossref_primary_10_7554_eLife_62852
crossref_primary_10_1038_s41467_023_35899_1
crossref_primary_10_1007_s12311_023_01560_2
crossref_primary_10_1007_s12035_021_02487_7
crossref_primary_10_1017_erm_2022_36
crossref_primary_10_4093_dmj_2023_0213
crossref_primary_10_1016_j_neuroscience_2022_07_007
crossref_primary_10_3389_fnagi_2022_845330
crossref_primary_10_7554_eLife_49874
crossref_primary_10_3390_antiox11091637
crossref_primary_10_3389_fcell_2020_00200
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_1093_genetics_iyaf007
crossref_primary_10_3389_fcvm_2021_716989
crossref_primary_10_1002_iub_2585
crossref_primary_10_1038_s42003_024_05921_3
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002
crossref_primary_10_1111_acel_13329
crossref_primary_10_1080_15548627_2023_2170960
crossref_primary_10_1038_s41419_025_07834_3
crossref_primary_10_3233_JAD_231277
crossref_primary_10_1038_s42255_022_00640_7
crossref_primary_10_1038_s41467_020_15794_9
crossref_primary_10_2147_RMHP_S281729
crossref_primary_10_1093_nar_gkae705
crossref_primary_10_1016_j_semcancer_2017_04_008
crossref_primary_10_1038_s41467_019_12262_x
crossref_primary_10_1128_msystems_01214_23
crossref_primary_10_1210_endrev_bnad019
crossref_primary_10_1155_2020_2692794
crossref_primary_10_3389_fcell_2022_837337
crossref_primary_10_1016_j_fct_2021_112060
crossref_primary_10_1038_s41586_024_08329_5
crossref_primary_10_3390_cells12030429
crossref_primary_10_1152_japplphysiol_00168_2020
crossref_primary_10_3389_fcell_2020_00239
crossref_primary_10_1038_s43587_025_00947_6
crossref_primary_10_3389_fphar_2022_891851
crossref_primary_10_1093_genetics_iyad078
crossref_primary_10_1016_j_tem_2017_02_004
crossref_primary_10_1111_acel_13301
crossref_primary_10_1016_j_tma_2019_11_002
crossref_primary_10_1139_cjpp_2024_0400
crossref_primary_10_1042_BST20180417
crossref_primary_10_1038_s41572_019_0113_0
crossref_primary_10_1007_s11357_025_01793_5
crossref_primary_10_1016_j_mad_2020_111207
crossref_primary_10_1016_j_nbd_2024_106645
crossref_primary_10_1182_blood_2017_07_746396
crossref_primary_10_1016_j_mad_2020_111208
crossref_primary_10_1155_2021_8850708
crossref_primary_10_1016_j_bbrc_2025_151769
crossref_primary_10_1016_j_arr_2025_102732
crossref_primary_10_1016_j_cmet_2016_09_019
crossref_primary_10_1083_jcb_202004029
crossref_primary_10_1002_dvdy_24522
crossref_primary_10_3389_fnagi_2019_00311
crossref_primary_10_1111_acel_13754
crossref_primary_10_1016_j_jnutbio_2024_109809
crossref_primary_10_1038_s41392_022_01251_0
crossref_primary_10_1186_s13099_024_00640_w
crossref_primary_10_1016_j_jmb_2019_06_032
crossref_primary_10_1002_mc_23705
crossref_primary_10_1016_j_arr_2025_102865
crossref_primary_10_1111_jnc_16032
crossref_primary_10_4103_1673_5374_350194
crossref_primary_10_1016_j_xpro_2024_103428
crossref_primary_10_3390_biology8020035
crossref_primary_10_1093_nar_gkad659
crossref_primary_10_1038_s41598_024_83500_6
crossref_primary_10_1155_2019_6387357
crossref_primary_10_1242_dmm_048993
crossref_primary_10_3390_antiox10020254
crossref_primary_10_1038_nprot_2017_060
crossref_primary_10_3389_fnmol_2022_1014251
crossref_primary_10_1016_j_molmet_2021_101354
crossref_primary_10_1155_2021_7158444
crossref_primary_10_1172_JCI158448
crossref_primary_10_1093_nar_gkaa393
crossref_primary_10_3390_cancers12092684
crossref_primary_10_3233_JAD_220203
crossref_primary_10_1016_j_arr_2024_102347
crossref_primary_10_1038_s43587_021_00098_4
crossref_primary_10_1210_clinem_dgad027
crossref_primary_10_1016_j_bbagen_2020_129669
crossref_primary_10_1093_nar_gkz083
crossref_primary_10_1080_21678421_2018_1536152
crossref_primary_10_3389_fncel_2018_00343
crossref_primary_10_1080_10408398_2024_2387324
crossref_primary_10_1016_j_canlet_2024_216927
crossref_primary_10_1038_s42255_023_00930_8
crossref_primary_10_1016_j_nbd_2024_106562
crossref_primary_10_1016_j_tcb_2025_07_006
crossref_primary_10_15252_embj_2019103420
crossref_primary_10_1007_s11357_020_00171_7
crossref_primary_10_3390_ijms22031391
crossref_primary_10_3390_ijms23179826
crossref_primary_10_1016_j_ejps_2025_107098
crossref_primary_10_1007_s10439_022_03103_y
crossref_primary_10_1073_pnas_1718819115
crossref_primary_10_3389_fcell_2019_00391
crossref_primary_10_1016_j_neuroscience_2022_09_020
crossref_primary_10_1016_j_heliyon_2023_e17392
crossref_primary_10_3390_cells11081284
crossref_primary_10_1038_s42003_020_01514_y
crossref_primary_10_1111_febs_15716
crossref_primary_10_3390_cells11081283
crossref_primary_10_1038_s41573_020_0076_6
crossref_primary_10_1111_acel_13729
crossref_primary_10_1016_j_cellsig_2022_110465
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_1038_s41580_024_00775_3
crossref_primary_10_1111_acel_12994
crossref_primary_10_1038_s12276_019_0302_7
crossref_primary_10_3389_fcell_2021_668735
crossref_primary_10_1038_s41380_020_0807_4
crossref_primary_10_1038_s41467_020_16361_y
crossref_primary_10_1007_s11064_019_02809_1
crossref_primary_10_1097_WNR_0000000000000876
crossref_primary_10_3389_fcvm_2023_1212174
crossref_primary_10_3389_fphys_2021_649547
crossref_primary_10_1080_13543784_2023_2249399
crossref_primary_10_1016_j_cmet_2017_11_002
crossref_primary_10_1038_s43587_022_00191_2
crossref_primary_10_1002_jcb_30522
crossref_primary_10_1073_pnas_1820245116
crossref_primary_10_1016_j_jhazmat_2021_126177
crossref_primary_10_1016_j_molmed_2019_07_002
crossref_primary_10_1002_1873_3468_12902
crossref_primary_10_1186_s40478_020_00896_8
crossref_primary_10_1007_s10565_020_09561_1
crossref_primary_10_1016_j_neuint_2017_02_007
crossref_primary_10_1096_fj_202101462R
crossref_primary_10_1016_j_molmed_2024_12_004
crossref_primary_10_1083_jcb_201806197
crossref_primary_10_1038_s41581_019_0216_6
crossref_primary_10_1089_ars_2019_8013
crossref_primary_10_3390_antiox11040653
crossref_primary_10_3389_fnagi_2019_00143
crossref_primary_10_1007_s11010_025_05358_0
crossref_primary_10_1038_s41580_024_00752_w
crossref_primary_10_1038_s44324_025_00067_0
crossref_primary_10_1080_15548627_2021_1975914
crossref_primary_10_1042_BST20221363
crossref_primary_10_3390_biomedicines9111574
crossref_primary_10_3390_cells9091969
crossref_primary_10_1016_j_expneurol_2024_114698
crossref_primary_10_1055_a_1959_9404
crossref_primary_10_1161_ATVBAHA_125_322549
crossref_primary_10_1002_mus_27721
crossref_primary_10_1093_nar_gkac079
crossref_primary_10_15252_embj_201797135
crossref_primary_10_1038_s41419_024_06770_y
crossref_primary_10_3389_fcell_2020_00246
crossref_primary_10_1007_s00018_022_04499_5
crossref_primary_10_1016_j_jbc_2025_108248
crossref_primary_10_1016_j_bbagen_2018_07_023
crossref_primary_10_1038_s41573_025_01212_6
crossref_primary_10_1016_j_exger_2018_01_018
crossref_primary_10_1371_journal_pone_0190821
crossref_primary_10_1016_j_mam_2021_101020
crossref_primary_10_3389_fnagi_2024_1503336
crossref_primary_10_1371_journal_pone_0252554
crossref_primary_10_1111_febs_14663
crossref_primary_10_1016_j_phrs_2022_106529
crossref_primary_10_1093_brain_awy076
crossref_primary_10_3389_fpubh_2023_1287421
crossref_primary_10_1096_fj_202500921R
crossref_primary_10_7554_eLife_34836
crossref_primary_10_1016_j_abb_2020_108698
crossref_primary_10_1016_j_aquaculture_2022_738228
crossref_primary_10_1016_j_freeradbiomed_2024_09_036
crossref_primary_10_1038_s41420_024_02201_1
crossref_primary_10_1002_adbi_202400235
crossref_primary_10_1007_s12038_021_00224_9
crossref_primary_10_1186_s40170_022_00286_9
crossref_primary_10_1007_s11033_022_07459_1
crossref_primary_10_1186_s13578_024_01300_x
crossref_primary_10_1016_j_mrfmmm_2020_111695
crossref_primary_10_1016_j_abb_2021_108977
crossref_primary_10_1016_j_celrep_2024_113896
crossref_primary_10_1093_nar_gkab085
crossref_primary_10_1016_j_jbc_2022_102037
crossref_primary_10_1016_j_freeradbiomed_2018_03_004
crossref_primary_10_1631_jzus_B2300886
crossref_primary_10_1096_fj_202500469RR
crossref_primary_10_1093_toxsci_kfab147
crossref_primary_10_3390_ijms22136748
crossref_primary_10_1038_s41514_021_00078_3
crossref_primary_10_1111_jne_12508
crossref_primary_10_1007_s12035_022_03035_7
crossref_primary_10_1007_s13577_025_01177_z
crossref_primary_10_1038_s41551_021_00819_5
crossref_primary_10_1016_j_exger_2020_110831
crossref_primary_10_3390_antiox10040519
crossref_primary_10_3389_fcell_2021_644346
crossref_primary_10_14348_molcells_2021_0080
crossref_primary_10_1016_j_mad_2021_111499
crossref_primary_10_3390_antiox10050794
crossref_primary_10_1016_j_phrs_2023_106835
crossref_primary_10_1002_mds_29645
crossref_primary_10_3390_cells10040813
crossref_primary_10_1002_1878_0261_13261
crossref_primary_10_3390_ijms24032959
crossref_primary_10_1016_j_exger_2020_110841
crossref_primary_10_1038_s41593_018_0332_9
crossref_primary_10_3389_fphys_2019_01523
crossref_primary_10_1186_s40035_020_00219_w
crossref_primary_10_1016_j_tibs_2019_08_002
crossref_primary_10_1016_j_freeradbiomed_2024_10_274
crossref_primary_10_3389_fonc_2017_00291
crossref_primary_10_1016_j_arr_2017_09_005
crossref_primary_10_1016_j_scitotenv_2020_136953
crossref_primary_10_1530_REP_22_0095
crossref_primary_10_1002_mds_28788
crossref_primary_10_1080_08958378_2022_2026538
crossref_primary_10_1172_JCI139333
crossref_primary_10_3390_ijms241210098
crossref_primary_10_1016_j_tcb_2023_02_004
crossref_primary_10_3389_fimmu_2020_597959
crossref_primary_10_1155_2017_9028435
crossref_primary_10_1016_j_tma_2018_08_003
crossref_primary_10_1038_s41580_021_00394_2
crossref_primary_10_1101_gad_301325_117
crossref_primary_10_1146_annurev_biochem_062917_012239
crossref_primary_10_1038_s41392_018_0024_7
crossref_primary_10_3390_nu12092871
crossref_primary_10_3892_or_2017_5793
crossref_primary_10_1016_j_ebiom_2025_105882
crossref_primary_10_31083_j_fbl2711318
crossref_primary_10_4103_1673_5374_346472
crossref_primary_10_1155_2020_1234059
crossref_primary_10_3390_ijms222011117
crossref_primary_10_1016_j_arr_2023_101955
crossref_primary_10_1016_j_molcel_2021_01_019
crossref_primary_10_3390_antiox11101983
crossref_primary_10_1146_annurev_pharmtox_010716_104908
crossref_primary_10_1002_jcb_30377
crossref_primary_10_1016_j_arr_2022_101653
crossref_primary_10_1002_cbf_3385
crossref_primary_10_3390_nu14193889
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1016_j_jid_2020_10_019
crossref_primary_10_1038_s41419_021_03984_2
crossref_primary_10_3389_fphys_2020_01054
crossref_primary_10_1038_s41598_020_57506_9
crossref_primary_10_3390_nu14010113
crossref_primary_10_3390_molecules27134124
crossref_primary_10_1186_s13395_018_0154_1
crossref_primary_10_1080_07391102_2024_2321510
crossref_primary_10_1038_s42255_024_00997_x
crossref_primary_10_1093_biolre_ioab078
crossref_primary_10_3390_cells10010079
crossref_primary_10_1016_j_cmet_2019_09_001
crossref_primary_10_3390_ijms20184535
crossref_primary_10_3390_ijms25031698
crossref_primary_10_3389_fonc_2018_00073
crossref_primary_10_15252_embr_201948676
crossref_primary_10_3390_biom15070969
crossref_primary_10_3390_nu14010101
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1038_s41467_019_13172_8
crossref_primary_10_7554_eLife_55828
crossref_primary_10_1111_eci_13334
crossref_primary_10_3390_cells12172181
crossref_primary_10_3390_ijms23010523
crossref_primary_10_1016_j_phrs_2020_105240
crossref_primary_10_1016_j_tem_2025_03_013
crossref_primary_10_3389_fonc_2019_00292
crossref_primary_10_1038_s41514_017_0016_9
crossref_primary_10_1146_annurev_cancerbio_030518_055905
crossref_primary_10_1007_s12035_022_02904_5
crossref_primary_10_1007_s11064_022_03772_0
crossref_primary_10_1016_j_ebiom_2025_105840
crossref_primary_10_1038_s41574_021_00626_7
crossref_primary_10_3390_antiox12040831
crossref_primary_10_3390_ijms24076313
crossref_primary_10_1016_j_phrs_2024_107394
crossref_primary_10_3390_cells10061402
crossref_primary_10_1016_j_ab_2019_02_019
crossref_primary_10_3390_cells9030786
crossref_primary_10_1111_cns_14236
crossref_primary_10_1056_NEJMra1703366
crossref_primary_10_1007_s10787_023_01384_w
crossref_primary_10_1007_s00210_023_02636_w
crossref_primary_10_15252_embr_202256156
crossref_primary_10_3390_biomedicines9111625
crossref_primary_10_1007_s10522_019_09798_2
crossref_primary_10_1080_17460441_2021_1915980
crossref_primary_10_1155_2018_9179270
crossref_primary_10_3389_fnagi_2022_979869
crossref_primary_10_3390_cells11040710
crossref_primary_10_3390_biology10020163
ContentType Journal Article
Copyright Published by Elsevier Inc.
Copyright_xml – notice: Published by Elsevier Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2016.09.004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
ExternalDocumentID 27732836
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R37 AG028730
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
7X8
ID FETCH-LOGICAL-c455t-b7b81300ac78dc81ea5ff480ce1cd8d8c5b39dddcfb2ca9f6988e9b3170389082
IEDL.DBID 7X8
ISICitedReferencesCount 454
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386521200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7420
IngestDate Sun Sep 28 09:38:25 EDT 2025
Mon Jul 21 06:04:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-b7b81300ac78dc81ea5ff480ce1cd8d8c5b39dddcfb2ca9f6988e9b3170389082
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cmet.2016.09.004
PMID 27732836
PQID 1835418593
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1835418593
pubmed_primary_27732836
PublicationCentury 2000
PublicationDate 2016-10-11
PublicationDateYYYYMMDD 2016-10-11
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2016
References 27732834 - Cell Metab. 2016 Oct 11;24(4):526-528. doi: 10.1016/j.cmet.2016.09.019
References_xml – reference: 27732834 - Cell Metab. 2016 Oct 11;24(4):526-528. doi: 10.1016/j.cmet.2016.09.019
SSID ssj0036393
Score 2.6562643
Snippet Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 566
SubjectTerms Animals
Ataxia Telangiectasia - pathology
Ataxia Telangiectasia Mutated Proteins - deficiency
Ataxia Telangiectasia Mutated Proteins - metabolism
Behavior, Animal
Caenorhabditis elegans - metabolism
Caenorhabditis elegans - ultrastructure
Cells, Cultured
Disease Models, Animal
DNA Repair - drug effects
Gene Knockdown Techniques
Health
Homeostasis - drug effects
Longevity - drug effects
Metabolomics
Mice
Mitophagy - drug effects
NAD - pharmacology
Neurons - drug effects
Neurons - metabolism
Phenotype
Phthalazines - pharmacology
Piperazines - pharmacology
Proteomics
Rats, Sprague-Dawley
Signal Transduction - drug effects
Sirtuin 1 - metabolism
Title NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair
URI https://www.ncbi.nlm.nih.gov/pubmed/27732836
https://www.proquest.com/docview/1835418593
Volume 24
WOSCitedRecordID wos000386521200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UKnhxX-rGCN4k2MlkkpmTFLV4qKGHKr2VWTWgaW1qsf_eeUmqJ0HwEpLDkDDz8t7H95YPoQuhWeQ4p4GOmQsiqUwgmGGBh9aUWad0q1SJeOomacoHA9GrCbeiLqtc-MTSUZuRBo78igBDQWA61_X4PQDVKMiu1hIay6hBPZQBq04G31kE6qMvrbLKHkVGYatumqnqu_SbhVpKEpdzTkuhtl8gZhlqOpv__cgttFGDTNyurGIbLdl8B61VspPzXTRO27eX2ENvH3Gy4gX4QVyRC7bA3cxZ72VyLHODqyal8jHLcXsqPzOJ-xZIzsx7SujAxKCm9lrgGdxmMKZAPs_LxbdpG14is8keeuzc9W_ug1p5IdARY9NAJYpDnkvqhBvNiZXMuYi3tCXacMM1U1QYY7RToZbCxYJzK5THIjCvz6OKfbSSj3J7iDCPqTKRNMIRG7EwEU4Sy1XLxooyKcImOl9s5dBbNqQrZG5HH8XwZzOb6KA6j-G4GsExDBMYMkTjoz-sPkbrcMwQcAg5QQ3n_2t7ilb1bJoVk7PSZPw17T18AfFkzEU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+%2B+Replenishment+Improves+Lifespan+and+Healthspan+in+Ataxia+Telangiectasia+Models+via+Mitophagy+and+DNA+Repair&rft.jtitle=Cell+metabolism&rft.au=Fang%2C+Evandro+Fei&rft.au=Kassahun%2C+Henok&rft.au=Croteau%2C+Deborah+L&rft.au=Scheibye-Knudsen%2C+Morten&rft.date=2016-10-11&rft.eissn=1932-7420&rft.volume=24&rft.issue=4&rft.spage=566&rft_id=info:doi/10.1016%2Fj.cmet.2016.09.004&rft_id=info%3Apmid%2F27732836&rft_id=info%3Apmid%2F27732836&rft.externalDocID=27732836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon