NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair
Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy an...
Saved in:
| Published in: | Cell metabolism Vol. 24; no. 4; p. 566 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
11.10.2016
|
| Subjects: | |
| ISSN: | 1932-7420, 1932-7420 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD
, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD
reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD
also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. |
|---|---|
| AbstractList | Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. |
| Author | Shamanna, Raghavendra A Tian, Jane Mattson, Mark P Fang, Evandro Fei Lu, Qiping Croteau, Deborah L Sinclair, David A Marosi, Krisztina Wollman, Bradley N Wilson, Mark A Scheibye-Knudsen, Morten Bohr, Vilhelm A Kassahun, Henok Li, Jun Morevati, Marya Kerr, Jesse S Bollineni, Ravi Chand Lu, Huiming Nilsen, Hilde Iser, Wendy B Waltz, Tyler B Kalyanasundaram, Sumana |
| Author_xml | – sequence: 1 givenname: Evandro Fei surname: Fang fullname: Fang, Evandro Fei organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 2 givenname: Henok surname: Kassahun fullname: Kassahun, Henok organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway – sequence: 3 givenname: Deborah L surname: Croteau fullname: Croteau, Deborah L organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 4 givenname: Morten surname: Scheibye-Knudsen fullname: Scheibye-Knudsen, Morten organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark – sequence: 5 givenname: Krisztina surname: Marosi fullname: Marosi, Krisztina organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 6 givenname: Huiming surname: Lu fullname: Lu, Huiming organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 7 givenname: Raghavendra A surname: Shamanna fullname: Shamanna, Raghavendra A organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 8 givenname: Sumana surname: Kalyanasundaram fullname: Kalyanasundaram, Sumana organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; Bioinformatics Core Facility, Department of Core Facilities, Institute of Cancer Research, Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway – sequence: 9 givenname: Ravi Chand surname: Bollineni fullname: Bollineni, Ravi Chand organization: Department of Biosciences, University of Oslo, 0316 Oslo, Norway – sequence: 10 givenname: Mark A surname: Wilson fullname: Wilson, Mark A organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 11 givenname: Wendy B surname: Iser fullname: Iser, Wendy B organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 12 givenname: Bradley N surname: Wollman fullname: Wollman, Bradley N organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 13 givenname: Marya surname: Morevati fullname: Morevati, Marya organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark – sequence: 14 givenname: Jun surname: Li fullname: Li, Jun organization: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 15 givenname: Jesse S surname: Kerr fullname: Kerr, Jesse S organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 16 givenname: Qiping surname: Lu fullname: Lu, Qiping organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 17 givenname: Tyler B surname: Waltz fullname: Waltz, Tyler B organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 18 givenname: Jane surname: Tian fullname: Tian, Jane organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 19 givenname: David A surname: Sinclair fullname: Sinclair, David A organization: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia – sequence: 20 givenname: Mark P surname: Mattson fullname: Mattson, Mark P organization: Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 21 givenname: Hilde surname: Nilsen fullname: Nilsen, Hilde organization: Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway – sequence: 22 givenname: Vilhelm A surname: Bohr fullname: Bohr, Vilhelm A email: vbohr@nih.gov organization: Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark. Electronic address: vbohr@nih.gov |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27732836$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYNU7EP_gAvJUpAZk8k8kuXQqi3UClLXQya506bMq01a7L93Wiu4ut-B-zj3DFGvbmpA6J4SnxIaP298VYHzg459InxCwis0oIIFXhIGpPeP-2ho7YYQFjPBblA_SBIWcBYP0HaRTvAT_oS2hNrYdQW1w7Oq3TUHsHhuCrCtrLGsNZ6CLN36LE2NUye_jcRLKGW9MqCctJ18bzSUFh9OaFzTruXqeB6eLNLTEWl2t-i6kKWFu0sdoa_Xl-V46s0_3mbjdO6pMIqclyc5p4wQqRKuFacgo6IIOVFAleaaqyhnQmutijxQUhSx4BxEzmhCGBeEByP0-Lu3-2W7B-uyylgFZecXmr3NKGdRSHnUZTRCD5fWfV6BztqdqeTumP3FFPwARBxtOQ |
| CitedBy_id | crossref_primary_10_1016_j_dnarep_2020_102950 crossref_primary_10_1128_mbio_01982_25 crossref_primary_10_1038_nature25143 crossref_primary_10_1073_pnas_2011226118 crossref_primary_10_1016_j_chemosphere_2024_141148 crossref_primary_10_1016_j_exger_2022_111889 crossref_primary_10_1096_fj_201902636RR crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_3390_biom15020168 crossref_primary_10_1016_j_neuint_2019_104469 crossref_primary_10_3389_fcvm_2023_1232681 crossref_primary_10_3390_cancers12061694 crossref_primary_10_1016_j_cmet_2023_12_007 crossref_primary_10_1016_j_jbc_2022_102615 crossref_primary_10_3390_genes13081379 crossref_primary_10_1016_j_pnpbp_2019_109670 crossref_primary_10_3390_antiox12061230 crossref_primary_10_1038_s41419_024_07062_1 crossref_primary_10_3389_fneur_2025_1422707 crossref_primary_10_1016_j_arr_2024_102251 crossref_primary_10_1016_j_phrs_2022_106281 crossref_primary_10_1177_1178646917704662 crossref_primary_10_1016_j_tins_2017_01_002 crossref_primary_10_3389_fnut_2025_1548821 crossref_primary_10_1016_j_arr_2022_101833 crossref_primary_10_1016_j_arr_2020_101154 crossref_primary_10_1016_j_mad_2021_111545 crossref_primary_10_1038_s41421_022_00409_y crossref_primary_10_3389_fnmol_2019_00108 crossref_primary_10_1016_j_chembiol_2017_12_008 crossref_primary_10_1016_j_ddmod_2019_01_001 crossref_primary_10_1016_j_envpol_2019_113693 crossref_primary_10_1016_j_arr_2018_05_006 crossref_primary_10_1111_acel_14017 crossref_primary_10_1038_s41556_018_0176_2 crossref_primary_10_1016_j_tibs_2022_03_008 crossref_primary_10_1016_j_arr_2022_101702 crossref_primary_10_1111_acel_70093 crossref_primary_10_1038_s44321_024_00119_w crossref_primary_10_1007_s10565_024_09926_w crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_1002_hep_32658 crossref_primary_10_1080_15548627_2024_2383145 crossref_primary_10_1016_j_pharmthera_2017_04_005 crossref_primary_10_1186_s12974_021_02250_8 crossref_primary_10_1007_s10522_022_09958_x crossref_primary_10_1016_j_molmed_2017_08_001 crossref_primary_10_1016_j_biopha_2022_113246 crossref_primary_10_1002_mco2_70369 crossref_primary_10_1039_D2FO00525E crossref_primary_10_1093_nar_gkz568 crossref_primary_10_1146_annurev_cancerbio_030419_033405 crossref_primary_10_1016_j_celrep_2025_115540 crossref_primary_10_1016_j_mad_2021_111567 crossref_primary_10_1038_srep46208 crossref_primary_10_1038_s41392_020_00354_w crossref_primary_10_1111_acel_13268 crossref_primary_10_1007_s10522_020_09864_0 crossref_primary_10_1631_jzus_B2400186 crossref_primary_10_3390_biom15050614 crossref_primary_10_1016_j_arr_2020_101129 crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1016_j_mad_2020_111296 crossref_primary_10_1007_s00018_021_03774_1 crossref_primary_10_1016_j_dnarep_2018_10_001 crossref_primary_10_4049_jimmunol_1801382 crossref_primary_10_1089_ars_2017_7478 crossref_primary_10_1111_acel_14462 crossref_primary_10_1016_j_cmet_2018_02_011 crossref_primary_10_1016_j_arr_2022_101636 crossref_primary_10_1016_j_spen_2024_101169 crossref_primary_10_1038_s41388_023_02592_y crossref_primary_10_3389_fcell_2021_668491 crossref_primary_10_3390_nu12061616 crossref_primary_10_1038_s41467_024_44808_z crossref_primary_10_1089_ars_2017_7445 crossref_primary_10_1038_s41418_023_01196_z crossref_primary_10_3390_ijms24010137 crossref_primary_10_1002_mnfr_70162 crossref_primary_10_1039_D1RA02062E crossref_primary_10_1016_j_molmet_2021_101195 crossref_primary_10_1007_s00018_022_04625_3 crossref_primary_10_1038_s41582_019_0244_7 crossref_primary_10_1080_1744666X_2020_1810570 crossref_primary_10_1016_j_dnarep_2021_103155 crossref_primary_10_1016_j_mito_2021_04_007 crossref_primary_10_1002_fft2_511 crossref_primary_10_1016_j_bcp_2022_114946 crossref_primary_10_1038_s41598_020_78193_6 crossref_primary_10_1097_PRS_0000000000009673 crossref_primary_10_1093_stmcls_sxac008 crossref_primary_10_1016_j_phymed_2024_155665 crossref_primary_10_1016_j_toxlet_2021_05_013 crossref_primary_10_1371_journal_pone_0182306 crossref_primary_10_7554_eLife_62852 crossref_primary_10_1038_s41467_023_35899_1 crossref_primary_10_1007_s12311_023_01560_2 crossref_primary_10_1007_s12035_021_02487_7 crossref_primary_10_1017_erm_2022_36 crossref_primary_10_4093_dmj_2023_0213 crossref_primary_10_1016_j_neuroscience_2022_07_007 crossref_primary_10_3389_fnagi_2022_845330 crossref_primary_10_7554_eLife_49874 crossref_primary_10_3390_antiox11091637 crossref_primary_10_3389_fcell_2020_00200 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_1093_genetics_iyaf007 crossref_primary_10_3389_fcvm_2021_716989 crossref_primary_10_1002_iub_2585 crossref_primary_10_1038_s42003_024_05921_3 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002 crossref_primary_10_1111_acel_13329 crossref_primary_10_1080_15548627_2023_2170960 crossref_primary_10_1038_s41419_025_07834_3 crossref_primary_10_3233_JAD_231277 crossref_primary_10_1038_s42255_022_00640_7 crossref_primary_10_1038_s41467_020_15794_9 crossref_primary_10_2147_RMHP_S281729 crossref_primary_10_1093_nar_gkae705 crossref_primary_10_1016_j_semcancer_2017_04_008 crossref_primary_10_1038_s41467_019_12262_x crossref_primary_10_1128_msystems_01214_23 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_1155_2020_2692794 crossref_primary_10_3389_fcell_2022_837337 crossref_primary_10_1016_j_fct_2021_112060 crossref_primary_10_1038_s41586_024_08329_5 crossref_primary_10_3390_cells12030429 crossref_primary_10_1152_japplphysiol_00168_2020 crossref_primary_10_3389_fcell_2020_00239 crossref_primary_10_1038_s43587_025_00947_6 crossref_primary_10_3389_fphar_2022_891851 crossref_primary_10_1093_genetics_iyad078 crossref_primary_10_1016_j_tem_2017_02_004 crossref_primary_10_1111_acel_13301 crossref_primary_10_1016_j_tma_2019_11_002 crossref_primary_10_1139_cjpp_2024_0400 crossref_primary_10_1042_BST20180417 crossref_primary_10_1038_s41572_019_0113_0 crossref_primary_10_1007_s11357_025_01793_5 crossref_primary_10_1016_j_mad_2020_111207 crossref_primary_10_1016_j_nbd_2024_106645 crossref_primary_10_1182_blood_2017_07_746396 crossref_primary_10_1016_j_mad_2020_111208 crossref_primary_10_1155_2021_8850708 crossref_primary_10_1016_j_bbrc_2025_151769 crossref_primary_10_1016_j_arr_2025_102732 crossref_primary_10_1016_j_cmet_2016_09_019 crossref_primary_10_1083_jcb_202004029 crossref_primary_10_1002_dvdy_24522 crossref_primary_10_3389_fnagi_2019_00311 crossref_primary_10_1111_acel_13754 crossref_primary_10_1016_j_jnutbio_2024_109809 crossref_primary_10_1038_s41392_022_01251_0 crossref_primary_10_1186_s13099_024_00640_w crossref_primary_10_1016_j_jmb_2019_06_032 crossref_primary_10_1002_mc_23705 crossref_primary_10_1016_j_arr_2025_102865 crossref_primary_10_1111_jnc_16032 crossref_primary_10_4103_1673_5374_350194 crossref_primary_10_1016_j_xpro_2024_103428 crossref_primary_10_3390_biology8020035 crossref_primary_10_1093_nar_gkad659 crossref_primary_10_1038_s41598_024_83500_6 crossref_primary_10_1155_2019_6387357 crossref_primary_10_1242_dmm_048993 crossref_primary_10_3390_antiox10020254 crossref_primary_10_1038_nprot_2017_060 crossref_primary_10_3389_fnmol_2022_1014251 crossref_primary_10_1016_j_molmet_2021_101354 crossref_primary_10_1155_2021_7158444 crossref_primary_10_1172_JCI158448 crossref_primary_10_1093_nar_gkaa393 crossref_primary_10_3390_cancers12092684 crossref_primary_10_3233_JAD_220203 crossref_primary_10_1016_j_arr_2024_102347 crossref_primary_10_1038_s43587_021_00098_4 crossref_primary_10_1210_clinem_dgad027 crossref_primary_10_1016_j_bbagen_2020_129669 crossref_primary_10_1093_nar_gkz083 crossref_primary_10_1080_21678421_2018_1536152 crossref_primary_10_3389_fncel_2018_00343 crossref_primary_10_1080_10408398_2024_2387324 crossref_primary_10_1016_j_canlet_2024_216927 crossref_primary_10_1038_s42255_023_00930_8 crossref_primary_10_1016_j_nbd_2024_106562 crossref_primary_10_1016_j_tcb_2025_07_006 crossref_primary_10_15252_embj_2019103420 crossref_primary_10_1007_s11357_020_00171_7 crossref_primary_10_3390_ijms22031391 crossref_primary_10_3390_ijms23179826 crossref_primary_10_1016_j_ejps_2025_107098 crossref_primary_10_1007_s10439_022_03103_y crossref_primary_10_1073_pnas_1718819115 crossref_primary_10_3389_fcell_2019_00391 crossref_primary_10_1016_j_neuroscience_2022_09_020 crossref_primary_10_1016_j_heliyon_2023_e17392 crossref_primary_10_3390_cells11081284 crossref_primary_10_1038_s42003_020_01514_y crossref_primary_10_1111_febs_15716 crossref_primary_10_3390_cells11081283 crossref_primary_10_1038_s41573_020_0076_6 crossref_primary_10_1111_acel_13729 crossref_primary_10_1016_j_cellsig_2022_110465 crossref_primary_10_3389_fphys_2021_702276 crossref_primary_10_1038_s41580_024_00775_3 crossref_primary_10_1111_acel_12994 crossref_primary_10_1038_s12276_019_0302_7 crossref_primary_10_3389_fcell_2021_668735 crossref_primary_10_1038_s41380_020_0807_4 crossref_primary_10_1038_s41467_020_16361_y crossref_primary_10_1007_s11064_019_02809_1 crossref_primary_10_1097_WNR_0000000000000876 crossref_primary_10_3389_fcvm_2023_1212174 crossref_primary_10_3389_fphys_2021_649547 crossref_primary_10_1080_13543784_2023_2249399 crossref_primary_10_1016_j_cmet_2017_11_002 crossref_primary_10_1038_s43587_022_00191_2 crossref_primary_10_1002_jcb_30522 crossref_primary_10_1073_pnas_1820245116 crossref_primary_10_1016_j_jhazmat_2021_126177 crossref_primary_10_1016_j_molmed_2019_07_002 crossref_primary_10_1002_1873_3468_12902 crossref_primary_10_1186_s40478_020_00896_8 crossref_primary_10_1007_s10565_020_09561_1 crossref_primary_10_1016_j_neuint_2017_02_007 crossref_primary_10_1096_fj_202101462R crossref_primary_10_1016_j_molmed_2024_12_004 crossref_primary_10_1083_jcb_201806197 crossref_primary_10_1038_s41581_019_0216_6 crossref_primary_10_1089_ars_2019_8013 crossref_primary_10_3390_antiox11040653 crossref_primary_10_3389_fnagi_2019_00143 crossref_primary_10_1007_s11010_025_05358_0 crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_1038_s44324_025_00067_0 crossref_primary_10_1080_15548627_2021_1975914 crossref_primary_10_1042_BST20221363 crossref_primary_10_3390_biomedicines9111574 crossref_primary_10_3390_cells9091969 crossref_primary_10_1016_j_expneurol_2024_114698 crossref_primary_10_1055_a_1959_9404 crossref_primary_10_1161_ATVBAHA_125_322549 crossref_primary_10_1002_mus_27721 crossref_primary_10_1093_nar_gkac079 crossref_primary_10_15252_embj_201797135 crossref_primary_10_1038_s41419_024_06770_y crossref_primary_10_3389_fcell_2020_00246 crossref_primary_10_1007_s00018_022_04499_5 crossref_primary_10_1016_j_jbc_2025_108248 crossref_primary_10_1016_j_bbagen_2018_07_023 crossref_primary_10_1038_s41573_025_01212_6 crossref_primary_10_1016_j_exger_2018_01_018 crossref_primary_10_1371_journal_pone_0190821 crossref_primary_10_1016_j_mam_2021_101020 crossref_primary_10_3389_fnagi_2024_1503336 crossref_primary_10_1371_journal_pone_0252554 crossref_primary_10_1111_febs_14663 crossref_primary_10_1016_j_phrs_2022_106529 crossref_primary_10_1093_brain_awy076 crossref_primary_10_3389_fpubh_2023_1287421 crossref_primary_10_1096_fj_202500921R crossref_primary_10_7554_eLife_34836 crossref_primary_10_1016_j_abb_2020_108698 crossref_primary_10_1016_j_aquaculture_2022_738228 crossref_primary_10_1016_j_freeradbiomed_2024_09_036 crossref_primary_10_1038_s41420_024_02201_1 crossref_primary_10_1002_adbi_202400235 crossref_primary_10_1007_s12038_021_00224_9 crossref_primary_10_1186_s40170_022_00286_9 crossref_primary_10_1007_s11033_022_07459_1 crossref_primary_10_1186_s13578_024_01300_x crossref_primary_10_1016_j_mrfmmm_2020_111695 crossref_primary_10_1016_j_abb_2021_108977 crossref_primary_10_1016_j_celrep_2024_113896 crossref_primary_10_1093_nar_gkab085 crossref_primary_10_1016_j_jbc_2022_102037 crossref_primary_10_1016_j_freeradbiomed_2018_03_004 crossref_primary_10_1631_jzus_B2300886 crossref_primary_10_1096_fj_202500469RR crossref_primary_10_1093_toxsci_kfab147 crossref_primary_10_3390_ijms22136748 crossref_primary_10_1038_s41514_021_00078_3 crossref_primary_10_1111_jne_12508 crossref_primary_10_1007_s12035_022_03035_7 crossref_primary_10_1007_s13577_025_01177_z crossref_primary_10_1038_s41551_021_00819_5 crossref_primary_10_1016_j_exger_2020_110831 crossref_primary_10_3390_antiox10040519 crossref_primary_10_3389_fcell_2021_644346 crossref_primary_10_14348_molcells_2021_0080 crossref_primary_10_1016_j_mad_2021_111499 crossref_primary_10_3390_antiox10050794 crossref_primary_10_1016_j_phrs_2023_106835 crossref_primary_10_1002_mds_29645 crossref_primary_10_3390_cells10040813 crossref_primary_10_1002_1878_0261_13261 crossref_primary_10_3390_ijms24032959 crossref_primary_10_1016_j_exger_2020_110841 crossref_primary_10_1038_s41593_018_0332_9 crossref_primary_10_3389_fphys_2019_01523 crossref_primary_10_1186_s40035_020_00219_w crossref_primary_10_1016_j_tibs_2019_08_002 crossref_primary_10_1016_j_freeradbiomed_2024_10_274 crossref_primary_10_3389_fonc_2017_00291 crossref_primary_10_1016_j_arr_2017_09_005 crossref_primary_10_1016_j_scitotenv_2020_136953 crossref_primary_10_1530_REP_22_0095 crossref_primary_10_1002_mds_28788 crossref_primary_10_1080_08958378_2022_2026538 crossref_primary_10_1172_JCI139333 crossref_primary_10_3390_ijms241210098 crossref_primary_10_1016_j_tcb_2023_02_004 crossref_primary_10_3389_fimmu_2020_597959 crossref_primary_10_1155_2017_9028435 crossref_primary_10_1016_j_tma_2018_08_003 crossref_primary_10_1038_s41580_021_00394_2 crossref_primary_10_1101_gad_301325_117 crossref_primary_10_1146_annurev_biochem_062917_012239 crossref_primary_10_1038_s41392_018_0024_7 crossref_primary_10_3390_nu12092871 crossref_primary_10_3892_or_2017_5793 crossref_primary_10_1016_j_ebiom_2025_105882 crossref_primary_10_31083_j_fbl2711318 crossref_primary_10_4103_1673_5374_346472 crossref_primary_10_1155_2020_1234059 crossref_primary_10_3390_ijms222011117 crossref_primary_10_1016_j_arr_2023_101955 crossref_primary_10_1016_j_molcel_2021_01_019 crossref_primary_10_3390_antiox11101983 crossref_primary_10_1146_annurev_pharmtox_010716_104908 crossref_primary_10_1002_jcb_30377 crossref_primary_10_1016_j_arr_2022_101653 crossref_primary_10_1002_cbf_3385 crossref_primary_10_3390_nu14193889 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1016_j_jid_2020_10_019 crossref_primary_10_1038_s41419_021_03984_2 crossref_primary_10_3389_fphys_2020_01054 crossref_primary_10_1038_s41598_020_57506_9 crossref_primary_10_3390_nu14010113 crossref_primary_10_3390_molecules27134124 crossref_primary_10_1186_s13395_018_0154_1 crossref_primary_10_1080_07391102_2024_2321510 crossref_primary_10_1038_s42255_024_00997_x crossref_primary_10_1093_biolre_ioab078 crossref_primary_10_3390_cells10010079 crossref_primary_10_1016_j_cmet_2019_09_001 crossref_primary_10_3390_ijms20184535 crossref_primary_10_3390_ijms25031698 crossref_primary_10_3389_fonc_2018_00073 crossref_primary_10_15252_embr_201948676 crossref_primary_10_3390_biom15070969 crossref_primary_10_3390_nu14010101 crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1038_s41467_019_13172_8 crossref_primary_10_7554_eLife_55828 crossref_primary_10_1111_eci_13334 crossref_primary_10_3390_cells12172181 crossref_primary_10_3390_ijms23010523 crossref_primary_10_1016_j_phrs_2020_105240 crossref_primary_10_1016_j_tem_2025_03_013 crossref_primary_10_3389_fonc_2019_00292 crossref_primary_10_1038_s41514_017_0016_9 crossref_primary_10_1146_annurev_cancerbio_030518_055905 crossref_primary_10_1007_s12035_022_02904_5 crossref_primary_10_1007_s11064_022_03772_0 crossref_primary_10_1016_j_ebiom_2025_105840 crossref_primary_10_1038_s41574_021_00626_7 crossref_primary_10_3390_antiox12040831 crossref_primary_10_3390_ijms24076313 crossref_primary_10_1016_j_phrs_2024_107394 crossref_primary_10_3390_cells10061402 crossref_primary_10_1016_j_ab_2019_02_019 crossref_primary_10_3390_cells9030786 crossref_primary_10_1111_cns_14236 crossref_primary_10_1056_NEJMra1703366 crossref_primary_10_1007_s10787_023_01384_w crossref_primary_10_1007_s00210_023_02636_w crossref_primary_10_15252_embr_202256156 crossref_primary_10_3390_biomedicines9111625 crossref_primary_10_1007_s10522_019_09798_2 crossref_primary_10_1080_17460441_2021_1915980 crossref_primary_10_1155_2018_9179270 crossref_primary_10_3389_fnagi_2022_979869 crossref_primary_10_3390_cells11040710 crossref_primary_10_3390_biology10020163 |
| ContentType | Journal Article |
| Copyright | Published by Elsevier Inc. |
| Copyright_xml | – notice: Published by Elsevier Inc. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmet.2016.09.004 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1932-7420 |
| ExternalDocumentID | 27732836 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R37 AG028730 |
| GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NPM O-L O9- OK1 P2P RIG ROL RPZ SES SSZ TR2 UNMZH 7X8 |
| ID | FETCH-LOGICAL-c455t-b7b81300ac78dc81ea5ff480ce1cd8d8c5b39dddcfb2ca9f6988e9b3170389082 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 454 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386521200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-7420 |
| IngestDate | Sun Sep 28 09:38:25 EDT 2025 Mon Jul 21 06:04:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-b7b81300ac78dc81ea5ff480ce1cd8d8c5b39dddcfb2ca9f6988e9b3170389082 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cmet.2016.09.004 |
| PMID | 27732836 |
| PQID | 1835418593 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1835418593 pubmed_primary_27732836 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-11 |
| PublicationDateYYYYMMDD | 2016-10-11 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell metabolism |
| PublicationTitleAlternate | Cell Metab |
| PublicationYear | 2016 |
| References | 27732834 - Cell Metab. 2016 Oct 11;24(4):526-528. doi: 10.1016/j.cmet.2016.09.019 |
| References_xml | – reference: 27732834 - Cell Metab. 2016 Oct 11;24(4):526-528. doi: 10.1016/j.cmet.2016.09.019 |
| SSID | ssj0036393 |
| Score | 2.6562643 |
| Snippet | Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 566 |
| SubjectTerms | Animals Ataxia Telangiectasia - pathology Ataxia Telangiectasia Mutated Proteins - deficiency Ataxia Telangiectasia Mutated Proteins - metabolism Behavior, Animal Caenorhabditis elegans - metabolism Caenorhabditis elegans - ultrastructure Cells, Cultured Disease Models, Animal DNA Repair - drug effects Gene Knockdown Techniques Health Homeostasis - drug effects Longevity - drug effects Metabolomics Mice Mitophagy - drug effects NAD - pharmacology Neurons - drug effects Neurons - metabolism Phenotype Phthalazines - pharmacology Piperazines - pharmacology Proteomics Rats, Sprague-Dawley Signal Transduction - drug effects Sirtuin 1 - metabolism |
| Title | NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27732836 https://www.proquest.com/docview/1835418593 |
| Volume | 24 |
| WOSCitedRecordID | wos000386521200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UKnhxX-rGCN4k2MlkkpmTFLV4qKGHKr2VWTWgaW1qsf_eeUmqJ0HwEpLDkDDz8t7H95YPoQuhWeQ4p4GOmQsiqUwgmGGBh9aUWad0q1SJeOomacoHA9GrCbeiLqtc-MTSUZuRBo78igBDQWA61_X4PQDVKMiu1hIay6hBPZQBq04G31kE6qMvrbLKHkVGYatumqnqu_SbhVpKEpdzTkuhtl8gZhlqOpv__cgttFGDTNyurGIbLdl8B61VspPzXTRO27eX2ENvH3Gy4gX4QVyRC7bA3cxZ72VyLHODqyal8jHLcXsqPzOJ-xZIzsx7SujAxKCm9lrgGdxmMKZAPs_LxbdpG14is8keeuzc9W_ug1p5IdARY9NAJYpDnkvqhBvNiZXMuYi3tCXacMM1U1QYY7RToZbCxYJzK5THIjCvz6OKfbSSj3J7iDCPqTKRNMIRG7EwEU4Sy1XLxooyKcImOl9s5dBbNqQrZG5HH8XwZzOb6KA6j-G4GsExDBMYMkTjoz-sPkbrcMwQcAg5QQ3n_2t7ilb1bJoVk7PSZPw17T18AfFkzEU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+%2B+Replenishment+Improves+Lifespan+and+Healthspan+in+Ataxia+Telangiectasia+Models+via+Mitophagy+and+DNA+Repair&rft.jtitle=Cell+metabolism&rft.au=Fang%2C+Evandro+Fei&rft.au=Kassahun%2C+Henok&rft.au=Croteau%2C+Deborah+L&rft.au=Scheibye-Knudsen%2C+Morten&rft.date=2016-10-11&rft.eissn=1932-7420&rft.volume=24&rft.issue=4&rft.spage=566&rft_id=info:doi/10.1016%2Fj.cmet.2016.09.004&rft_id=info%3Apmid%2F27732836&rft_id=info%3Apmid%2F27732836&rft.externalDocID=27732836 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon |