Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting

•For the first time a LSTM-ED model is proposed to model multi-step-ahead flood forecasting.•Sequence-to-sequence learning converts an input sequence into an output sequence.•LSTM encoder-decoder models tackle the challenging sequence-to-sequence prediction.•The LSTM-ED model reduced RMSE by 3% (T +...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 583; s. 124631
Hlavní autoři: Kao, I-Feng, Zhou, Yanlai, Chang, Li-Chiu, Chang, Fi-John
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2020
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •For the first time a LSTM-ED model is proposed to model multi-step-ahead flood forecasting.•Sequence-to-sequence learning converts an input sequence into an output sequence.•LSTM encoder-decoder models tackle the challenging sequence-to-sequence prediction.•The LSTM-ED model reduced RMSE by 3% (T + 1) to 38% (T + 6) as compared to the benchmark.•The LSTM-ED model can provide reliable and accurate multi-step-ahead flood forecasts. Operational flood control systems depend on reliable and accurate forecasts with a suitable lead time to take necessary actions against flooding. This study proposed a Long Short-Term Memory based Encoder-Decoder (LSTM-ED) model for multi-step-ahead flood forecasting for the first time. The Shihmen Reservoir catchment in Taiwan constituted the case study. A total of 12,216 hourly hydrological data collected from 23 typhoon events were allocated into three datasets for model training, validation, and testing. The input sequence of the model contained hourly reservoir inflows and rainfall data (traced back to the previous 8 h) of ten gauge stations, and the output sequence stepped into 1- up to 6-hour-ahead reservoir inflow forecasts. A feed forward neural network-based Encoder-Decoder (FFNN-ED) model was established for comparison purposes. This study conducted model training a number of times with various initial weights to evaluate the accuracy, stability, and reliability of the constructed FFNN-ED and LSTM-ED models. The results demonstrated that both models, in general, could provide suitable multi-step ahead forecasts, and the proposed LSTM-ED model not only could effectively mimic the long-term dependence between rainfall and runoff sequences but also could make more reliable and accurate flood forecasts than the FFNN-ED model. Concerning the time delay between the time horizons of model inputs (rainfall) and model outputs (runoff), the impact assessment of this time-delay on model performance indicated that the LSTM-ED model achieved similar forecast performance when fed with antecedent rainfall either at a shorter horizon of 4 h in the past (T − 4) or at horizons longer than 7 h in the past (>T − 7). We conclude that the proposed LSTM-ED that translates and links the rainfall sequence with the runoff sequence can improve the reliability of flood forecasting and increase the interpretability of model internals.
AbstractList Operational flood control systems depend on reliable and accurate forecasts with a suitable lead time to take necessary actions against flooding. This study proposed a Long Short-Term Memory based Encoder-Decoder (LSTM-ED) model for multi-step-ahead flood forecasting for the first time. The Shihmen Reservoir catchment in Taiwan constituted the case study. A total of 12,216 hourly hydrological data collected from 23 typhoon events were allocated into three datasets for model training, validation, and testing. The input sequence of the model contained hourly reservoir inflows and rainfall data (traced back to the previous 8 h) of ten gauge stations, and the output sequence stepped into 1- up to 6-hour-ahead reservoir inflow forecasts. A feed forward neural network-based Encoder-Decoder (FFNN-ED) model was established for comparison purposes. This study conducted model training a number of times with various initial weights to evaluate the accuracy, stability, and reliability of the constructed FFNN-ED and LSTM-ED models. The results demonstrated that both models, in general, could provide suitable multi-step ahead forecasts, and the proposed LSTM-ED model not only could effectively mimic the long-term dependence between rainfall and runoff sequences but also could make more reliable and accurate flood forecasts than the FFNN-ED model. Concerning the time delay between the time horizons of model inputs (rainfall) and model outputs (runoff), the impact assessment of this time-delay on model performance indicated that the LSTM-ED model achieved similar forecast performance when fed with antecedent rainfall either at a shorter horizon of 4 h in the past (T − 4) or at horizons longer than 7 h in the past (>T − 7). We conclude that the proposed LSTM-ED that translates and links the rainfall sequence with the runoff sequence can improve the reliability of flood forecasting and increase the interpretability of model internals.
•For the first time a LSTM-ED model is proposed to model multi-step-ahead flood forecasting.•Sequence-to-sequence learning converts an input sequence into an output sequence.•LSTM encoder-decoder models tackle the challenging sequence-to-sequence prediction.•The LSTM-ED model reduced RMSE by 3% (T + 1) to 38% (T + 6) as compared to the benchmark.•The LSTM-ED model can provide reliable and accurate multi-step-ahead flood forecasts. Operational flood control systems depend on reliable and accurate forecasts with a suitable lead time to take necessary actions against flooding. This study proposed a Long Short-Term Memory based Encoder-Decoder (LSTM-ED) model for multi-step-ahead flood forecasting for the first time. The Shihmen Reservoir catchment in Taiwan constituted the case study. A total of 12,216 hourly hydrological data collected from 23 typhoon events were allocated into three datasets for model training, validation, and testing. The input sequence of the model contained hourly reservoir inflows and rainfall data (traced back to the previous 8 h) of ten gauge stations, and the output sequence stepped into 1- up to 6-hour-ahead reservoir inflow forecasts. A feed forward neural network-based Encoder-Decoder (FFNN-ED) model was established for comparison purposes. This study conducted model training a number of times with various initial weights to evaluate the accuracy, stability, and reliability of the constructed FFNN-ED and LSTM-ED models. The results demonstrated that both models, in general, could provide suitable multi-step ahead forecasts, and the proposed LSTM-ED model not only could effectively mimic the long-term dependence between rainfall and runoff sequences but also could make more reliable and accurate flood forecasts than the FFNN-ED model. Concerning the time delay between the time horizons of model inputs (rainfall) and model outputs (runoff), the impact assessment of this time-delay on model performance indicated that the LSTM-ED model achieved similar forecast performance when fed with antecedent rainfall either at a shorter horizon of 4 h in the past (T − 4) or at horizons longer than 7 h in the past (>T − 7). We conclude that the proposed LSTM-ED that translates and links the rainfall sequence with the runoff sequence can improve the reliability of flood forecasting and increase the interpretability of model internals.
ArticleNumber 124631
Author Chang, Li-Chiu
Kao, I-Feng
Chang, Fi-John
Zhou, Yanlai
Author_xml – sequence: 1
  givenname: I-Feng
  surname: Kao
  fullname: Kao, I-Feng
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 2
  givenname: Yanlai
  orcidid: 0000-0002-5447-2420
  surname: Zhou
  fullname: Zhou, Yanlai
  organization: Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo, Norway
– sequence: 3
  givenname: Li-Chiu
  surname: Chang
  fullname: Chang, Li-Chiu
  organization: Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan
– sequence: 4
  givenname: Fi-John
  orcidid: 0000-0002-1655-8573
  surname: Chang
  fullname: Chang, Fi-John
  email: changfj@ntu.edu.tw
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
BookMark eNqFkE9vEzEQxS3USqSlHwHJRy4Otne9zooDQiX8kYI4tD1bs_aYOOyug-0U8u1xSE9cOpcnzbz3pPldkYs5zkjIa8GXgovu7W652x5diuNScll3su0a8YIsxEr3TGquL8iCcymZ6Pr2JbnKecfrNE27IGH9Zz_GFOYfFOgmVrnbxlTYPaaJfsMppiMdIKOj69lGh4l9xH9KfYIJf8f0k_qY6HQYS2C54J7BFsFRP8boTie0kEvtf0UuPYwZb570mjx8Wt_ffmGb75-_3n7YMNsqVRh4hV66lRycAqVg5Ts5tKoB5YVA6LX1GtD1g-ZNr6DvVNf7lZOtbjTKfmiuyZtz7z7FXwfMxUwhWxxHmDEespEt521X39fVqs5Wm2LOCb3ZpzBBOhrBzQmt2ZkntOaE1pzR1ty7_3I2FCghziVBGJ9Nvz-nsVJ4DJhMtgFniy5UWMW4GJ5p-AuS95wL
CitedBy_id crossref_primary_10_3390_w12082274
crossref_primary_10_1016_j_jhydrol_2021_126067
crossref_primary_10_2166_nh_2020_100
crossref_primary_10_5194_piahs_386_141_2024
crossref_primary_10_1016_j_jhydrol_2022_128086
crossref_primary_10_1016_j_envsoft_2022_105614
crossref_primary_10_2166_nh_2024_124
crossref_primary_10_1016_j_jhydrol_2025_134004
crossref_primary_10_1038_s41598_024_78012_2
crossref_primary_10_1016_j_mex_2024_102946
crossref_primary_10_1111_jfr3_70036
crossref_primary_10_2166_nh_2025_160
crossref_primary_10_1016_j_jhydrol_2021_126506
crossref_primary_10_1016_j_jhydrol_2023_129688
crossref_primary_10_1016_j_scitotenv_2021_149244
crossref_primary_10_1016_j_jenvman_2023_118232
crossref_primary_10_2166_wst_2020_369
crossref_primary_10_1016_j_jhydrol_2022_128099
crossref_primary_10_1038_s41598_025_04633_w
crossref_primary_10_1111_jfr3_12827
crossref_primary_10_3390_w14111794
crossref_primary_10_1061_JCCEE5_CPENG_6757
crossref_primary_10_1016_j_jhydrol_2025_132737
crossref_primary_10_1016_j_neucom_2022_04_124
crossref_primary_10_1016_j_eswa_2022_119469
crossref_primary_10_1016_j_jhydrol_2021_127028
crossref_primary_10_1016_j_jhydrol_2021_126975
crossref_primary_10_3390_w14010055
crossref_primary_10_1007_s00477_023_02567_1
crossref_primary_10_1038_s41598_023_34133_8
crossref_primary_10_1016_j_jhydrol_2021_127175
crossref_primary_10_1016_j_jclepro_2024_142286
crossref_primary_10_1016_j_eswa_2022_118481
crossref_primary_10_1016_j_jhydrol_2025_132769
crossref_primary_10_1002_adts_202400527
crossref_primary_10_3390_w13070920
crossref_primary_10_1007_s10333_023_00944_8
crossref_primary_10_1016_j_jclepro_2023_139825
crossref_primary_10_3390_w13152095
crossref_primary_10_1016_j_jhydrol_2021_126196
crossref_primary_10_1016_j_jhydrol_2022_128431
crossref_primary_10_1016_j_jhydrol_2021_127043
crossref_primary_10_3390_w13030272
crossref_primary_10_1016_j_envsoft_2024_106066
crossref_primary_10_1016_j_jhydrol_2025_132879
crossref_primary_10_1016_j_eswa_2023_120616
crossref_primary_10_1016_j_eswa_2022_116611
crossref_primary_10_1016_j_jhydrol_2024_132453
crossref_primary_10_1007_s11069_022_05766_1
crossref_primary_10_1016_j_measurement_2020_108566
crossref_primary_10_1016_j_jhydrol_2022_127901
crossref_primary_10_1016_j_jclepro_2024_141508
crossref_primary_10_1016_j_jhydrol_2021_126636
crossref_primary_10_1016_j_jhydrol_2024_131737
crossref_primary_10_1016_j_eswa_2024_126004
crossref_primary_10_3390_w15020262
crossref_primary_10_1016_j_knosys_2023_110737
crossref_primary_10_2166_nh_2025_124
crossref_primary_10_3390_rs17010077
crossref_primary_10_3390_w17091405
crossref_primary_10_5194_hess_27_2035_2023
crossref_primary_10_1016_j_epsr_2025_111450
crossref_primary_10_3390_w12061819
crossref_primary_10_1016_j_jhydrol_2025_133750
crossref_primary_10_3390_w13010030
crossref_primary_10_1016_j_eswa_2022_118747
crossref_primary_10_1016_j_jhydrol_2022_128844
crossref_primary_10_1016_j_jhydrol_2021_126945
crossref_primary_10_3390_hydrology8010006
crossref_primary_10_1016_j_jhydrol_2022_128608
crossref_primary_10_1016_j_jhydrol_2022_128727
crossref_primary_10_1016_j_jhydrol_2023_130117
crossref_primary_10_1016_j_jhydrol_2021_127221
crossref_primary_10_3390_w12113195
crossref_primary_10_1007_s00704_023_04493_2
crossref_primary_10_1016_j_jhydrol_2022_127764
crossref_primary_10_1016_j_jhydrol_2022_128853
crossref_primary_10_1016_j_jhydrol_2021_126378
crossref_primary_10_1007_s12145_024_01569_z
crossref_primary_10_1002_joc_7738
crossref_primary_10_1029_2024WR038105
crossref_primary_10_3390_w13243545
crossref_primary_10_1016_j_envsoft_2024_106126
crossref_primary_10_1016_j_jhydrol_2023_129480
crossref_primary_10_1007_s10661_022_10115_7
crossref_primary_10_3390_rs15051395
crossref_primary_10_3390_w15203548
crossref_primary_10_1016_j_asoc_2021_107083
crossref_primary_10_1016_j_jhydrol_2024_132034
crossref_primary_10_3390_geosciences15080279
crossref_primary_10_1016_j_jhydrol_2023_130350
crossref_primary_10_3390_ijgi12110464
crossref_primary_10_3390_w12102951
crossref_primary_10_1007_s12145_024_01436_x
crossref_primary_10_2166_ws_2022_041
crossref_primary_10_1016_j_jhydrol_2021_126815
crossref_primary_10_1109_TII_2022_3158927
crossref_primary_10_1016_j_jhydrol_2023_130588
crossref_primary_10_1016_j_jconhyd_2025_104655
crossref_primary_10_1016_j_jhydrol_2021_127255
crossref_primary_10_1016_j_jhydrol_2022_127653
crossref_primary_10_1016_j_jhydrol_2023_129115
crossref_primary_10_1007_s11069_024_06527_y
crossref_primary_10_1016_j_jhydrol_2024_130862
crossref_primary_10_1007_s11269_025_04166_x
crossref_primary_10_1080_02626667_2021_1962885
crossref_primary_10_1016_j_jhydrol_2024_131275
crossref_primary_10_1016_j_jhydrol_2023_130340
crossref_primary_10_1016_j_jhydrol_2021_126723
crossref_primary_10_3390_hydrology9110202
crossref_primary_10_1016_j_jhydrol_2021_126152
crossref_primary_10_1016_j_jhydrol_2022_127662
crossref_primary_10_1016_j_jhydrol_2023_130458
crossref_primary_10_1016_j_oceaneng_2024_117739
crossref_primary_10_1007_s11069_022_05363_2
crossref_primary_10_3390_w12123532
crossref_primary_10_1016_j_jhydrol_2024_130993
crossref_primary_10_1016_j_jhydrol_2024_132137
crossref_primary_10_1007_s12145_025_01920_y
crossref_primary_10_1016_j_envsoft_2024_106029
crossref_primary_10_2166_nh_2021_016
crossref_primary_10_1016_j_jhydrol_2021_126831
crossref_primary_10_1111_jfr3_12854
crossref_primary_10_3390_rs16193659
crossref_primary_10_1007_s40815_025_01974_6
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1016_j_jhydrol_2025_132909
crossref_primary_10_3390_w12113022
crossref_primary_10_1016_j_compag_2025_110129
crossref_primary_10_1016_j_jhydrol_2023_129296
crossref_primary_10_1016_j_scitotenv_2021_149876
crossref_primary_10_1007_s00477_021_02085_y
crossref_primary_10_1007_s00521_020_05010_6
crossref_primary_10_1016_j_hydres_2024_04_006
crossref_primary_10_3390_app13042245
crossref_primary_10_1134_S0097807822040212
crossref_primary_10_1007_s11269_023_03552_7
crossref_primary_10_3390_w16101407
crossref_primary_10_1109_TITS_2023_3276216
crossref_primary_10_2166_wst_2025_101
crossref_primary_10_5194_hess_28_2809_2024
crossref_primary_10_1016_j_jhydrol_2021_126452
crossref_primary_10_1016_j_jhydrol_2021_126573
crossref_primary_10_1088_1755_1315_851_1_012012
crossref_primary_10_1007_s10489_022_04319_0
crossref_primary_10_1016_j_envsoft_2023_105849
crossref_primary_10_1016_j_jag_2025_104562
crossref_primary_10_3389_frwa_2023_1126310
crossref_primary_10_1007_s10489_022_03825_5
crossref_primary_10_3390_w13020147
crossref_primary_10_3390_w14091469
crossref_primary_10_1016_j_eswa_2024_125062
crossref_primary_10_1016_j_comnet_2023_110135
crossref_primary_10_1016_j_jhydrol_2021_126579
crossref_primary_10_1038_s41598_024_62127_7
crossref_primary_10_1111_2041_210X_14013
crossref_primary_10_1016_j_jhydrol_2022_128265
crossref_primary_10_3390_w16182669
crossref_primary_10_3390_w16020335
crossref_primary_10_1007_s00521_022_07523_8
crossref_primary_10_3390_agronomy13030625
crossref_primary_10_3390_w14172766
crossref_primary_10_1016_j_jhydrol_2023_130141
crossref_primary_10_1016_j_jhydrol_2022_128708
crossref_primary_10_1016_j_jhydrol_2023_130380
crossref_primary_10_1016_j_jhydrol_2023_129956
crossref_primary_10_3390_w15183184
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1016_j_scitotenv_2024_172246
crossref_primary_10_1016_j_jhydrol_2023_130498
crossref_primary_10_5194_hess_28_1665_2024
crossref_primary_10_1016_j_jhydrol_2021_126353
crossref_primary_10_1016_j_jclepro_2024_141228
crossref_primary_10_1016_j_jhydrol_2023_129269
crossref_primary_10_3390_w14060859
crossref_primary_10_1109_TASE_2022_3217451
crossref_primary_10_12677_jwrr_2025_144044
crossref_primary_10_1080_02626667_2025_2458545
crossref_primary_10_1016_j_jhydrol_2025_133328
crossref_primary_10_1007_s13131_024_2343_6
crossref_primary_10_3389_frwa_2023_1332678
crossref_primary_10_1109_ACCESS_2025_3567640
crossref_primary_10_1029_2023WR035194
crossref_primary_10_1007_s00500_024_09859_w
crossref_primary_10_3390_w14142211
crossref_primary_10_1016_j_sciaf_2023_e02053
crossref_primary_10_1016_j_jhydrol_2020_125769
crossref_primary_10_1007_s11269_023_03731_6
crossref_primary_10_1007_s11269_024_04033_1
crossref_primary_10_3389_fmars_2024_1407690
crossref_primary_10_1108_DTA_07_2023_0307
crossref_primary_10_3390_w14213533
crossref_primary_10_1016_j_pce_2024_103696
crossref_primary_10_1016_j_wace_2025_100767
crossref_primary_10_1016_j_enconman_2023_116709
crossref_primary_10_3390_w14010080
crossref_primary_10_1080_02626667_2021_1988612
crossref_primary_10_1016_j_asoc_2022_109259
crossref_primary_10_1016_j_advwatres_2025_105063
crossref_primary_10_3390_w13121612
crossref_primary_10_3390_app14219805
crossref_primary_10_2166_nh_2021_061
crossref_primary_10_3390_w16152199
crossref_primary_10_1016_j_knosys_2021_107213
crossref_primary_10_1007_s11356_025_36581_3
crossref_primary_10_1016_j_jhydrol_2024_130937
crossref_primary_10_1016_j_jhydrol_2022_128577
crossref_primary_10_1016_j_jhydrol_2023_129521
crossref_primary_10_1038_s41598_024_72205_5
crossref_primary_10_1007_s10489_022_03242_8
crossref_primary_10_1016_j_jhydrol_2024_131225
crossref_primary_10_1109_ACCESS_2021_3135362
crossref_primary_10_3390_hydrology11090151
crossref_primary_10_1016_j_envsoft_2021_105136
crossref_primary_10_3390_w12051500
crossref_primary_10_3390_w14233941
crossref_primary_10_1016_j_jhydrol_2025_133221
crossref_primary_10_1007_s11269_023_03713_8
crossref_primary_10_1029_2022WR033091
crossref_primary_10_3390_w14182898
crossref_primary_10_3390_w14010099
crossref_primary_10_1061__ASCE_HE_1943_5584_0002164
crossref_primary_10_1007_s13131_021_1763_9
crossref_primary_10_1080_02626667_2023_2173012
crossref_primary_10_1016_j_jhydrol_2023_129199
crossref_primary_10_1016_j_jhydrol_2025_133258
crossref_primary_10_1007_s10489_020_02143_y
crossref_primary_10_3390_w14223672
crossref_primary_10_1016_j_jhydrol_2022_127934
crossref_primary_10_3390_math13172830
crossref_primary_10_1080_02626667_2024_2339923
crossref_primary_10_1016_j_chaos_2021_111612
crossref_primary_10_1016_j_scitotenv_2023_164494
crossref_primary_10_1007_s11269_023_03725_4
crossref_primary_10_1016_j_heliyon_2023_e17689
crossref_primary_10_1016_j_apenergy_2024_122849
crossref_primary_10_3390_su141711086
crossref_primary_10_1016_j_ecoinf_2025_103291
crossref_primary_10_1080_02626667_2021_1928138
crossref_primary_10_1016_j_jenvman_2024_120931
crossref_primary_10_1016_j_jenvman_2023_119789
crossref_primary_10_1016_j_jhydrol_2020_125286
crossref_primary_10_1088_1755_1315_851_1_012032
crossref_primary_10_1002_sd_3074
crossref_primary_10_1016_j_jhydrol_2023_130177
crossref_primary_10_3390_w13162252
crossref_primary_10_1016_j_ecoinf_2025_103038
crossref_primary_10_1016_j_jhydrol_2025_133800
crossref_primary_10_1016_j_tust_2025_106398
crossref_primary_10_1016_j_jhydrol_2025_132950
crossref_primary_10_1007_s40808_023_01803_5
crossref_primary_10_3390_make7030094
crossref_primary_10_1016_j_ijdrr_2024_104263
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1016_j_future_2022_04_029
crossref_primary_10_1080_02626667_2021_1937631
crossref_primary_10_1016_j_jhydrol_2025_133485
crossref_primary_10_2166_hydro_2021_095
crossref_primary_10_1016_j_jhydrol_2021_126676
crossref_primary_10_1371_journal_pwat_0000361
crossref_primary_10_1007_s11356_024_35182_w
crossref_primary_10_2166_hydro_2023_006
Cites_doi 10.1016/j.jhydrol.2015.11.050
10.3390/w11071387
10.1016/j.jhydrol.2014.03.057
10.1016/j.jhydrol.2016.06.026
10.1177/030913330102500104
10.1016/j.jhydrol.2015.08.008
10.1016/j.isprsjprs.2017.11.009
10.1007/s11269-017-1796-1
10.1016/j.jhydrol.2013.05.038
10.1080/10962247.2018.1459956
10.5194/hess-22-6005-2018
10.1007/s11269-017-1649-y
10.1016/j.jhydrol.2013.11.021
10.1016/j.jcp.2018.04.018
10.1515/jwld-2016-0003
10.1162/neco.1997.9.8.1735
10.1007/s11263-017-1038-2
10.1016/j.neunet.2014.08.005
10.1016/j.jhydrol.2013.03.024
10.1002/met.1533
10.18653/v1/D16-1137
10.1016/j.jhydrol.2015.07.057
10.1016/j.marpolbul.2006.04.003
10.1016/j.envsoft.2007.10.001
10.1016/j.jhydrol.2014.06.013
10.1613/jair.1.11198
10.1016/j.jhydrol.2019.06.036
10.1007/s11269-015-1182-9
10.1002/hyp.9559
10.1016/j.jhydrol.2014.07.036
10.1016/j.jhydrol.2016.11.033
10.1016/S1005-8885(17)60243-7
10.1623/hysj.52.3.414
10.1007/s11263-017-1033-7
10.1109/ICASSP.2018.8462105
10.1016/j.aqpro.2015.02.133
10.1016/j.jhydrol.2016.01.056
10.1016/j.neucom.2016.12.038
10.1007/s00477-017-1400-5
10.1016/j.jhydrol.2018.04.065
10.1016/j.jclepro.2018.10.243
10.1016/j.jhydrol.2019.124434
10.1016/j.jhydrol.2019.02.051
10.1016/j.jhydrol.2018.01.015
10.1109/JSTSP.2017.2759726
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2020.124631
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2020_124631
S0022169420300913
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c455t-af5ef2d82bd5a55a8f62b453a5f11ea97cf7aed9b70395a96569f8d24737e29b3
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527388300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Thu Oct 02 10:11:54 EDT 2025
Sat Nov 29 07:28:27 EST 2025
Tue Nov 18 22:35:36 EST 2025
Fri Feb 23 02:47:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sequence-to-sequence
Encoder-Decoder (ED) model
Long Short-Term Memory (LSTM)
Flood forecast
Recurrent neural network (RNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-af5ef2d82bd5a55a8f62b453a5f11ea97cf7aed9b70395a96569f8d24737e29b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5447-2420
0000-0002-1655-8573
OpenAccessLink http://hdl.handle.net/10852/85301
PQID 2400460037
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400460037
crossref_primary_10_1016_j_jhydrol_2020_124631
crossref_citationtrail_10_1016_j_jhydrol_2020_124631
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_124631
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Zhu, Zhang, Ye, Yang (b0235) 2018; 561
Valipour (b0220) 2016; 23
Noori, Kalin (b0135) 2016; 533
Zhu, Xu, Yang, Hauptmann (b0245) 2017; 124
Lohani, Goel, Bhatia (b0120) 2014; 509
Zhu, Zabaras (b0250) 2018; 366
Bengio, Vinyals, Jaitly, Shazeer (b0025) 2015
Zhou, Chang, Chang, Kao, Wang (b0240) 2019; 209
Chau (b0050) 2006; 52
Nourani, Komasi (b0150) 2013; 490
Tsai, Abrahart, Mount, Chang (b0215) 2014; 28
Adikari, Y., Yoshitani, J. 2009. Global Trends in Water-Related Disasters: An Insight for Policymakers, International Centre for Water Hazard and Risk Management (ICHARM). The United Nations World Water Development Report 3, Tsukuba, Japan.
Hochreiter, Schmidhuber (b0085) 1997; 9
Liu, Wang, Liu, Zeng, Liu, Alsaadi (b0115) 2017; 234
Chiu, C.C., Sainath, T.N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A., Weiss, R.J., Rao, K., Gonina, E., Jaitly, N., Li, B., Chorowski, J., Bacchiani, M., 2018. State-of-the-art speech recognition with sequence-to-sequence models. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4774–4778.
Malinowski, Rohrbach, Fritz (b0125) 2017; 125
Humphrey, Gibbs, Dandy, Maier (b0090) 2016; 540
Nourani, Molajou, Uzelaltinbulat, Sadikoglu (b0165) 2019
Chang, Tsai (b0045) 2016; 535
Nourani, Elkiran, Abdullahi (b0170) 2020; 581
Taormina, Chau, Sivakumar (b0210) 2015; 529
Badrzadeh, Sarukkalige, Jayawardena (b0020) 2015; 529
Fengming, Shufang, Zhimin, Bo, Shiming, Mingming (b0075) 2017; 24
Chang, Chen, Lu, Huang, Chang (b0035) 2014; 517
Freeman, Taylor, Gharabaghi, Thé (b0080) 2018; 68
Audhkhasi, Rosenberg, Sethy, Ramabhadran, Kingsbury (b0015) 2017; 11
Shoaib, Shamseldin, Khan, Khan, Khan, Sultan, Melville (b0195) 2018; 32
Nourani, Baghanam, Adamowski, Kisi (b0145) 2014; 514
Chen, Chang, Chang (b0055) 2013; 497
Sezen, Bezak, Bai, Šraj (b0180) 2019; 576
Dawson, Wilby (b0070) 2001; 25
Sutskever, Vinyals, Le (b0200) 2014
Jeong, Park (b0095) 2019; 572
Le, Ho, Lee, Jung (b0110) 2019; 11
Tan, Lei, Wang, Wang, Wen, Ji, Kang (b0205) 2018; 567
Shenify, Danesh, Gocić, Taher, Wahab, Gani, Shamshirband, Petković (b0190) 2016; 30
Abrahart, Heppenstall, See (b0005) 2007; 52
Chang, Shen, Chang (b0040) 2014; 519
Kalteh, Hjorth, Berndtsson (b0100) 2008; 23
Nourani (b0140) 2017; 544
Venugopalan, Rohrbach, Donahue, Mooney, Darrell, Saenko (b0225) 2015
Chandwani, Vyas, Agrawal, Sharma (b0030) 2015; 4
Nourani, Sattari, Molajou (b0160) 2017; 31
Sainath, Kingsbury, Saon, Soltau, Mohamed, Dahl, Ramabhadran (b0175) 2015; 64
Shafaei, Adamowski, Fakheri-Fard, Dinpashoh, Adamowski (b0185) 2016; 28
Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (b0130) 2018; 135
Nourani, Partoviyan (b0155) 2018; 32
Costa-Jussa (b0065) 2018; 61
Wiseman, S., Rush, A.M., 2016. Sequence-to-sequence learning as beam-search optimization. arXiv 1606.02960v2.
Kratzert, Klotz, Brenner, Schulz, Herrnegger (b0105) 2018; 22
Nourani (10.1016/j.jhydrol.2020.124631_b0160) 2017; 31
Shafaei (10.1016/j.jhydrol.2020.124631_b0185) 2016; 28
Chang (10.1016/j.jhydrol.2020.124631_b0035) 2014; 517
Audhkhasi (10.1016/j.jhydrol.2020.124631_b0015) 2017; 11
Malinowski (10.1016/j.jhydrol.2020.124631_b0125) 2017; 125
Jeong (10.1016/j.jhydrol.2020.124631_b0095) 2019; 572
Chau (10.1016/j.jhydrol.2020.124631_b0050) 2006; 52
Nourani (10.1016/j.jhydrol.2020.124631_b0140) 2017; 544
Chen (10.1016/j.jhydrol.2020.124631_b0055) 2013; 497
Le (10.1016/j.jhydrol.2020.124631_b0110) 2019; 11
Abrahart (10.1016/j.jhydrol.2020.124631_b0005) 2007; 52
Sezen (10.1016/j.jhydrol.2020.124631_b0180) 2019; 576
Tan (10.1016/j.jhydrol.2020.124631_b0205) 2018; 567
Chang (10.1016/j.jhydrol.2020.124631_b0045) 2016; 535
Valipour (10.1016/j.jhydrol.2020.124631_b0220) 2016; 23
Shenify (10.1016/j.jhydrol.2020.124631_b0190) 2016; 30
Nourani (10.1016/j.jhydrol.2020.124631_b0165) 2019
Hochreiter (10.1016/j.jhydrol.2020.124631_b0085) 1997; 9
10.1016/j.jhydrol.2020.124631_b0230
Marmanis (10.1016/j.jhydrol.2020.124631_b0130) 2018; 135
Fengming (10.1016/j.jhydrol.2020.124631_b0075) 2017; 24
Chandwani (10.1016/j.jhydrol.2020.124631_b0030) 2015; 4
Dawson (10.1016/j.jhydrol.2020.124631_b0070) 2001; 25
Kratzert (10.1016/j.jhydrol.2020.124631_b0105) 2018; 22
Bengio (10.1016/j.jhydrol.2020.124631_b0025) 2015
Venugopalan (10.1016/j.jhydrol.2020.124631_b0225) 2015
10.1016/j.jhydrol.2020.124631_b0060
Sutskever (10.1016/j.jhydrol.2020.124631_b0200) 2014
Shoaib (10.1016/j.jhydrol.2020.124631_b0195) 2018; 32
Noori (10.1016/j.jhydrol.2020.124631_b0135) 2016; 533
Nourani (10.1016/j.jhydrol.2020.124631_b0150) 2013; 490
Badrzadeh (10.1016/j.jhydrol.2020.124631_b0020) 2015; 529
Lohani (10.1016/j.jhydrol.2020.124631_b0120) 2014; 509
Tsai (10.1016/j.jhydrol.2020.124631_b0215) 2014; 28
Zhang (10.1016/j.jhydrol.2020.124631_b0235) 2018; 561
Liu (10.1016/j.jhydrol.2020.124631_b0115) 2017; 234
Freeman (10.1016/j.jhydrol.2020.124631_b0080) 2018; 68
Nourani (10.1016/j.jhydrol.2020.124631_b0145) 2014; 514
Nourani (10.1016/j.jhydrol.2020.124631_b0155) 2018; 32
Zhu (10.1016/j.jhydrol.2020.124631_b0245) 2017; 124
Taormina (10.1016/j.jhydrol.2020.124631_b0210) 2015; 529
Zhou (10.1016/j.jhydrol.2020.124631_b0240) 2019; 209
Humphrey (10.1016/j.jhydrol.2020.124631_b0090) 2016; 540
Kalteh (10.1016/j.jhydrol.2020.124631_b0100) 2008; 23
10.1016/j.jhydrol.2020.124631_b0010
Costa-Jussa (10.1016/j.jhydrol.2020.124631_b0065) 2018; 61
Nourani (10.1016/j.jhydrol.2020.124631_b0170) 2020; 581
Zhu (10.1016/j.jhydrol.2020.124631_b0250) 2018; 366
Chang (10.1016/j.jhydrol.2020.124631_b0040) 2014; 519
Sainath (10.1016/j.jhydrol.2020.124631_b0175) 2015; 64
References_xml – volume: 23
  start-page: 835
  year: 2008
  end-page: 845
  ident: b0100
  article-title: Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
  publication-title: Environ. Modell. Software
– volume: 535
  start-page: 256
  year: 2016
  end-page: 269
  ident: b0045
  article-title: A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques
  publication-title: J. Hydrol.
– volume: 209
  start-page: 134
  year: 2019
  end-page: 145
  ident: b0240
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Cleaner Prod.
– start-page: 4534
  year: 2015
  end-page: 4542
  ident: b0225
  article-title: Sequence to sequence-video to text
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 529
  start-page: 1788
  year: 2015
  end-page: 1797
  ident: b0210
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
– volume: 25
  start-page: 80
  year: 2001
  end-page: 108
  ident: b0070
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geogr.
– volume: 52
  start-page: 414
  year: 2007
  end-page: 431
  ident: b0005
  article-title: Timing error correction procedure applied to neural network rainfall—runoff modelling
  publication-title: Hydrol. Sci. J.
– volume: 32
  start-page: 545
  year: 2018
  end-page: 562
  ident: b0155
  article-title: Hybrid denoising-jittering data pre-processing approach to enhance multi-step-ahead rainfall–runoff modeling
  publication-title: Stochastic Environ. Res. Risk Assess.
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0145
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
– volume: 28
  start-page: 27
  year: 2016
  end-page: 36
  ident: b0185
  article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting
  publication-title: J. Water Land Develop.
– start-page: 1171
  year: 2015
  end-page: 1179
  ident: b0025
  article-title: Scheduled sampling for sequence prediction with recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Chiu, C.C., Sainath, T.N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A., Weiss, R.J., Rao, K., Gonina, E., Jaitly, N., Li, B., Chorowski, J., Bacchiani, M., 2018. State-of-the-art speech recognition with sequence-to-sequence models. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4774–4778.
– volume: 509
  start-page: 25
  year: 2014
  end-page: 41
  ident: b0120
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
– volume: 572
  start-page: 261
  year: 2019
  end-page: 273
  ident: b0095
  article-title: Comparative applications of data-driven models representing water table fluctuations
  publication-title: J. Hydrol.
– volume: 529
  start-page: 1633
  year: 2015
  end-page: 1643
  ident: b0020
  article-title: Hourly runoff forecasting for flood risk management: Application of various computational intelligence models
  publication-title: J. Hydrol.
– reference: Adikari, Y., Yoshitani, J. 2009. Global Trends in Water-Related Disasters: An Insight for Policymakers, International Centre for Water Hazard and Risk Management (ICHARM). The United Nations World Water Development Report 3, Tsukuba, Japan.
– volume: 561
  start-page: 918
  year: 2018
  end-page: 929
  ident: b0235
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b0115
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 68
  start-page: 866
  year: 2018
  end-page: 886
  ident: b0080
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manag. Assoc.
– volume: 4
  start-page: 1054
  year: 2015
  end-page: 1061
  ident: b0030
  article-title: Soft computing approach for rainfall-runoff modelling: a review
  publication-title: Aquat. Procedia
– volume: 64
  start-page: 39
  year: 2015
  end-page: 48
  ident: b0175
  article-title: Deep convolutional neural networks for large-scale speech tasks
  publication-title: Neural Networks
– volume: 581
  year: 2020
  ident: b0170
  article-title: Multi-step ahead modeling of reference evapotranspiration using a multi-model approach
  publication-title: J. Hydrol.
– volume: 576
  start-page: 98
  year: 2019
  end-page: 110
  ident: b0180
  article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models
  publication-title: J. Hydrol.
– volume: 28
  start-page: 1055
  year: 2014
  end-page: 1070
  ident: b0215
  article-title: Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan
  publication-title: Hydrol. Process.
– reference: Wiseman, S., Rush, A.M., 2016. Sequence-to-sequence learning as beam-search optimization. arXiv 1606.02960v2.
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b0250
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 497
  start-page: 71
  year: 2013
  end-page: 79
  ident: b0055
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
– volume: 11
  start-page: 1387
  year: 2019
  ident: b0110
  article-title: Application of long short-term memory (LSTM) neural network for flood forecasting
  publication-title: Water
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: b0200
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  start-page: 83
  year: 2018
  end-page: 103
  ident: b0195
  article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting
  publication-title: Water Resour. Manage.
– volume: 519
  start-page: 476
  year: 2014
  end-page: 489
  ident: b0040
  article-title: Regional flood inundation nowcast using hybrid SOM and dynamic neural networks
  publication-title: J. Hydrol.
– start-page: 1
  year: 2019
  end-page: 16
  ident: b0165
  article-title: Emotional artificial neural networks (EANNs) for multi-step ahead prediction of monthly precipitation; case study: northern Cyprus
  publication-title: Theor. Appl. Climatol.
– volume: 540
  start-page: 623
  year: 2016
  end-page: 640
  ident: b0090
  article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: J. Hydrol.
– volume: 30
  start-page: 641
  year: 2016
  end-page: 652
  ident: b0190
  article-title: Precipitation estimation using support vector machine with discrete wavelet transform
  publication-title: Water Resour. Manage.
– volume: 61
  start-page: 947
  year: 2018
  end-page: 974
  ident: b0065
  article-title: From feature to paradigm: deep learning in machine translation
  publication-title: J. Artificial Intelligence Res.
– volume: 490
  start-page: 41
  year: 2013
  end-page: 55
  ident: b0150
  article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process
  publication-title: J. Hydrol.
– volume: 125
  start-page: 110
  year: 2017
  end-page: 135
  ident: b0125
  article-title: Ask your neurons: a deep learning approach to visual question answering
  publication-title: Int. J. Comput. Vision
– volume: 24
  start-page: 67
  year: 2017
  end-page: 73
  ident: b0075
  article-title: Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network
  publication-title: J. China Univ. Posts Telecommun.
– volume: 135
  start-page: 158
  year: 2018
  end-page: 172
  ident: b0130
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 726
  year: 2006
  end-page: 733
  ident: b0050
  article-title: A review on integration of artificial intelligence into water quality modelling
  publication-title: Mar. Pollut. Bull.
– volume: 517
  start-page: 836
  year: 2014
  end-page: 846
  ident: b0035
  article-title: Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
  publication-title: J. Hydrol.
– volume: 533
  start-page: 141
  year: 2016
  end-page: 151
  ident: b0135
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: J. Hydrol.
– volume: 124
  start-page: 409
  year: 2017
  end-page: 421
  ident: b0245
  article-title: Uncovering the temporal context for video question answering
  publication-title: Int. J. Comput. Vision
– volume: 23
  start-page: 91
  year: 2016
  end-page: 100
  ident: b0220
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
– volume: 31
  start-page: 2645
  year: 2017
  end-page: 2658
  ident: b0160
  article-title: Threshold-based hybrid data mining method for long-term maximum precipitation forecasting
  publication-title: Water Resour. Manage.
– volume: 11
  start-page: 1351
  year: 2017
  end-page: 1359
  ident: b0015
  article-title: End-to-end ASR-free keyword search from speech
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: b0105
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 567
  start-page: 767
  year: 2018
  end-page: 780
  ident: b0205
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: J. Hydrol.
– volume: 544
  start-page: 267
  year: 2017
  end-page: 277
  ident: b0140
  article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process
  publication-title: J. Hydrol.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 533
  start-page: 141
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0135
  article-title: Coupling SWAT and ANN models for enhanced daily streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.11.050
– volume: 11
  start-page: 1387
  issue: 7
  year: 2019
  ident: 10.1016/j.jhydrol.2020.124631_b0110
  article-title: Application of long short-term memory (LSTM) neural network for flood forecasting
  publication-title: Water
  doi: 10.3390/w11071387
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0145
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 540
  start-page: 623
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0090
  article-title: A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.026
– volume: 25
  start-page: 80
  issue: 1
  year: 2001
  ident: 10.1016/j.jhydrol.2020.124631_b0070
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913330102500104
– volume: 529
  start-page: 1788
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0210
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.008
– volume: 135
  start-page: 158
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0130
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.009
– volume: 32
  start-page: 83
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0195
  article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-017-1796-1
– volume: 497
  start-page: 71
  year: 2013
  ident: 10.1016/j.jhydrol.2020.124631_b0055
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.05.038
– volume: 68
  start-page: 866
  issue: 8
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0080
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2018.1459956
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0105
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 31
  start-page: 2645
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0160
  article-title: Threshold-based hybrid data mining method for long-term maximum precipitation forecasting
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-017-1649-y
– volume: 509
  start-page: 25
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0120
  article-title: Improving real time flood forecasting using fuzzy inference system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.021
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0250
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– volume: 28
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0185
  article-title: A wavelet-SARIMA-ANN hybrid model for precipitation forecasting
  publication-title: J. Water Land Develop.
  doi: 10.1515/jwld-2016-0003
– start-page: 4534
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0225
  article-title: Sequence to sequence-video to text
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jhydrol.2020.124631_b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 125
  start-page: 110
  issue: 1–3
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0125
  article-title: Ask your neurons: a deep learning approach to visual question answering
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-017-1038-2
– volume: 64
  start-page: 39
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0175
  article-title: Deep convolutional neural networks for large-scale speech tasks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.08.005
– volume: 490
  start-page: 41
  year: 2013
  ident: 10.1016/j.jhydrol.2020.124631_b0150
  article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.03.024
– volume: 23
  start-page: 91
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0220
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1533
– ident: 10.1016/j.jhydrol.2020.124631_b0230
  doi: 10.18653/v1/D16-1137
– volume: 529
  start-page: 1633
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0020
  article-title: Hourly runoff forecasting for flood risk management: Application of various computational intelligence models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.057
– start-page: 1171
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0025
  article-title: Scheduled sampling for sequence prediction with recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 52
  start-page: 726
  issue: 7
  year: 2006
  ident: 10.1016/j.jhydrol.2020.124631_b0050
  article-title: A review on integration of artificial intelligence into water quality modelling
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2006.04.003
– volume: 23
  start-page: 835
  issue: 7
  year: 2008
  ident: 10.1016/j.jhydrol.2020.124631_b0100
  article-title: Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2007.10.001
– volume: 517
  start-page: 836
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0035
  article-title: Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.06.013
– start-page: 3104
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0200
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 61
  start-page: 947
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0065
  article-title: From feature to paradigm: deep learning in machine translation
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.11198
– volume: 576
  start-page: 98
  year: 2019
  ident: 10.1016/j.jhydrol.2020.124631_b0180
  article-title: Hydrological modelling of karst catchment using lumped conceptual and data mining models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.036
– volume: 30
  start-page: 641
  issue: 2
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0190
  article-title: Precipitation estimation using support vector machine with discrete wavelet transform
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-015-1182-9
– volume: 28
  start-page: 1055
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0215
  article-title: Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9559
– ident: 10.1016/j.jhydrol.2020.124631_b0010
– volume: 519
  start-page: 476
  year: 2014
  ident: 10.1016/j.jhydrol.2020.124631_b0040
  article-title: Regional flood inundation nowcast using hybrid SOM and dynamic neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.07.036
– volume: 544
  start-page: 267
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0140
  article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.033
– volume: 24
  start-page: 67
  issue: 6
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0075
  article-title: Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network
  publication-title: J. China Univ. Posts Telecommun.
  doi: 10.1016/S1005-8885(17)60243-7
– volume: 52
  start-page: 414
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2020.124631_b0005
  article-title: Timing error correction procedure applied to neural network rainfall—runoff modelling
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.52.3.414
– volume: 124
  start-page: 409
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0245
  article-title: Uncovering the temporal context for video question answering
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-017-1033-7
– ident: 10.1016/j.jhydrol.2020.124631_b0060
  doi: 10.1109/ICASSP.2018.8462105
– volume: 4
  start-page: 1054
  year: 2015
  ident: 10.1016/j.jhydrol.2020.124631_b0030
  article-title: Soft computing approach for rainfall-runoff modelling: a review
  publication-title: Aquat. Procedia
  doi: 10.1016/j.aqpro.2015.02.133
– start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2020.124631_b0165
  article-title: Emotional artificial neural networks (EANNs) for multi-step ahead prediction of monthly precipitation; case study: northern Cyprus
  publication-title: Theor. Appl. Climatol.
– volume: 535
  start-page: 256
  year: 2016
  ident: 10.1016/j.jhydrol.2020.124631_b0045
  article-title: A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.056
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0115
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 32
  start-page: 545
  issue: 2
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0155
  article-title: Hybrid denoising-jittering data pre-processing approach to enhance multi-step-ahead rainfall–runoff modeling
  publication-title: Stochastic Environ. Res. Risk Assess.
  doi: 10.1007/s00477-017-1400-5
– volume: 561
  start-page: 918
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0235
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.065
– volume: 209
  start-page: 134
  year: 2019
  ident: 10.1016/j.jhydrol.2020.124631_b0240
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.10.243
– volume: 581
  year: 2020
  ident: 10.1016/j.jhydrol.2020.124631_b0170
  article-title: Multi-step ahead modeling of reference evapotranspiration using a multi-model approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124434
– volume: 572
  start-page: 261
  year: 2019
  ident: 10.1016/j.jhydrol.2020.124631_b0095
  article-title: Comparative applications of data-driven models representing water table fluctuations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.02.051
– volume: 567
  start-page: 767
  year: 2018
  ident: 10.1016/j.jhydrol.2020.124631_b0205
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.015
– volume: 11
  start-page: 1351
  issue: 8
  year: 2017
  ident: 10.1016/j.jhydrol.2020.124631_b0015
  article-title: End-to-end ASR-free keyword search from speech
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2759726
SSID ssj0000334
Score 2.6915615
Snippet •For the first time a LSTM-ED model is proposed to model multi-step-ahead flood forecasting.•Sequence-to-sequence learning converts an input sequence into an...
Operational flood control systems depend on reliable and accurate forecasts with a suitable lead time to take necessary actions against flooding. This study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124631
SubjectTerms case studies
data collection
Encoder-Decoder (ED) model
flood control
Flood forecast
hydrologic data
Long Short-Term Memory (LSTM)
meteorological data
model validation
neural networks
rain
Recurrent neural network (RNN)
runoff
Sequence-to-sequence
Taiwan
typhoons
watersheds
Title Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
URI https://dx.doi.org/10.1016/j.jhydrol.2020.124631
https://www.proquest.com/docview/2400460037
Volume 583
WOSCitedRecordID wos000527388300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwkuiKdYXjISt8ildezEPlZLFxYtKySKtLfIiW2aqqRVH6vdP8LvZRznUVpg2QOXtHLrqZP5MjN1vplB6A0zITNKRHCL9w1hWaiITPuCMKkyG4nYxiwtm03EZ2fi_Fx-7nR-1LkwF7O4KMTlpVz8V1XDGCjbpc7eQN2NUBiA96B0OILa4fhPim9ZdSo4dZ2EvkwgxCZjMMHBJ8ervQqc69LBqHD57EvyzpSvga15WiX1sGQaEsDAgigw2DqwjuLuPjKZWq1rj7cf106u9NIXdoLgdfjdFWLQDnUtq1uV27MnBC7bt3bjer4p3YEqZirfIh14W3Sak6NJvtkbP85JQyau9i5of4vy0uYSDCLf5ri2x1yEWxYV4o_I-4k9Y-_3Haa9qT-xnvuFXvv9X4tr7zi9hopYs9ymSSUmcWISL-YWOqAxl6KLDoYno_OPrY8PQ1bXoXfrb3PD3v52PX-Kenb8fxnUjO-je5XW8NCj6AHqmOIhuvPeVHXMH6G8QRNW2KEJt2jCHk24RBPeQRNu0IQBMngXTbhEE95C02P09Xg0PvpAqu4cJGOcr4my3FiqBU01V5wrYSOaMh4qbgcDo6Srd6WMlin4FMmVhD8O0gpNWRzGhso0fIK6xbwwTxG2NIqtZrEZCMuUTlUfhIaUU51xlmlxiFh99ZKsKl3vOqjMkr9q7xD1mmkLX7vlugmiVk1SBaA-sEwActdNfV2rMgED7Z66qcLMN6vEkbRZ5Oo8Pbvpep6ju-1d8wJ118uNeYluZxfrfLV8VWHyJ0Dct4g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+a+Long+Short-Term+Memory+based+Encoder-Decoder+framework+for+multi-step-ahead+flood+forecasting&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Kao%2C+I-Feng&rft.au=Zhou%2C+Yanlai&rft.au=Chang%2C+Li-Chiu&rft.au=Chang%2C+Fi-John&rft.date=2020-04-01&rft.issn=0022-1694&rft.volume=583&rft.spage=124631&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.124631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2020_124631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon