Online verification and management scheme of gateway meter flow in the power system by machine learning

Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 9; S. e1581
Hauptverfasser: Li, Chong, Wang, Hao, Shen, Hongtao, Yang, Peng, Wang, Yi, Li, Qian, Li, Chuan, Li, Bing, Guo, Rongkun, Wang, Ruiming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 23.10.2023
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verification and management of gateway meter flow in the power system. The approach begins by applying the Faster Region Convolutional Neural Network (Faster-RCNN) model and the Single Shot MultiBox Detector (SSD) model to the recognition system for dial readings. Then, the collected measurement data is pre-processed, excluding data collected under light load conditions. Next, an estimation error model and a solution equation for the electricity meter are established based on the pre-processed data. The operation error of the electricity meter is estimated, and the estimation accuracy is verified using the limited memory recursive least squares algorithm (LMRLSA). Furthermore, business assistant decision-making is carried out by combining the remote verification results with the estimation outcomes. The proposed dial reading recognition system is tested using 528 images of meter readings, achieving an accuracy of 98.49%. In addition, the influence of various parameters on the error results of the electricity meter is also explored. The results demonstrate that a memory length ranging from 600 to 1,200 and a line loss error of less than 5% yield the most suitable accuracy for estimating the electricity meter error. Meanwhile, it is advisable to remove measurement data collected under light load to avoid unnecessary checks. The experiments manifest that the proposed algorithm can properly eliminate the influence of old measurement data on the error parameter estimation, thereby enhancing the accuracy of the estimation. The adjustment of the memory length ensures real-time performance in estimating meter errors and enables online monitoring. This research has certain reference significance for achieving the online verification and management of gateway meter flow in the power system.
AbstractList Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verification and management of gateway meter flow in the power system. The approach begins by applying the Faster Region Convolutional Neural Network (Faster-RCNN) model and the Single Shot MultiBox Detector (SSD) model to the recognition system for dial readings. Then, the collected measurement data is pre-processed, excluding data collected under light load conditions. Next, an estimation error model and a solution equation for the electricity meter are established based on the pre-processed data. The operation error of the electricity meter is estimated, and the estimation accuracy is verified using the limited memory recursive least squares algorithm (LMRLSA). Furthermore, business assistant decision-making is carried out by combining the remote verification results with the estimation outcomes. The proposed dial reading recognition system is tested using 528 images of meter readings, achieving an accuracy of 98.49%. In addition, the influence of various parameters on the error results of the electricity meter is also explored. The results demonstrate that a memory length ranging from 600 to 1,200 and a line loss error of less than 5% yield the most suitable accuracy for estimating the electricity meter error. Meanwhile, it is advisable to remove measurement data collected under light load to avoid unnecessary checks. The experiments manifest that the proposed algorithm can properly eliminate the influence of old measurement data on the error parameter estimation, thereby enhancing the accuracy of the estimation. The adjustment of the memory length ensures real-time performance in estimating meter errors and enables online monitoring. This research has certain reference significance for achieving the online verification and management of gateway meter flow in the power system.
Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verification and management of gateway meter flow in the power system. The approach begins by applying the Faster Region Convolutional Neural Network (Faster-RCNN) model and the Single Shot MultiBox Detector (SSD) model to the recognition system for dial readings. Then, the collected measurement data is pre-processed, excluding data collected under light load conditions. Next, an estimation error model and a solution equation for the electricity meter are established based on the pre-processed data. The operation error of the electricity meter is estimated, and the estimation accuracy is verified using the limited memory recursive least squares algorithm (LMRLSA). Furthermore, business assistant decision-making is carried out by combining the remote verification results with the estimation outcomes. The proposed dial reading recognition system is tested using 528 images of meter readings, achieving an accuracy of 98.49%. In addition, the influence of various parameters on the error results of the electricity meter is also explored. The results demonstrate that a memory length ranging from 600 to 1,200 and a line loss error of less than 5% yield the most suitable accuracy for estimating the electricity meter error. Meanwhile, it is advisable to remove measurement data collected under light load to avoid unnecessary checks. The experiments manifest that the proposed algorithm can properly eliminate the influence of old measurement data on the error parameter estimation, thereby enhancing the accuracy of the estimation. The adjustment of the memory length ensures real-time performance in estimating meter errors and enables online monitoring. This research has certain reference significance for achieving the online verification and management of gateway meter flow in the power system.Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by professionals. To improve work efficiency and verification accuracy, this research integrates machine learning into the scheme of online verification and management of gateway meter flow in the power system. The approach begins by applying the Faster Region Convolutional Neural Network (Faster-RCNN) model and the Single Shot MultiBox Detector (SSD) model to the recognition system for dial readings. Then, the collected measurement data is pre-processed, excluding data collected under light load conditions. Next, an estimation error model and a solution equation for the electricity meter are established based on the pre-processed data. The operation error of the electricity meter is estimated, and the estimation accuracy is verified using the limited memory recursive least squares algorithm (LMRLSA). Furthermore, business assistant decision-making is carried out by combining the remote verification results with the estimation outcomes. The proposed dial reading recognition system is tested using 528 images of meter readings, achieving an accuracy of 98.49%. In addition, the influence of various parameters on the error results of the electricity meter is also explored. The results demonstrate that a memory length ranging from 600 to 1,200 and a line loss error of less than 5% yield the most suitable accuracy for estimating the electricity meter error. Meanwhile, it is advisable to remove measurement data collected under light load to avoid unnecessary checks. The experiments manifest that the proposed algorithm can properly eliminate the influence of old measurement data on the error parameter estimation, thereby enhancing the accuracy of the estimation. The adjustment of the memory length ensures real-time performance in estimating meter errors and enables online monitoring. This research has certain reference significance for achieving the online verification and management of gateway meter flow in the power system.
ArticleNumber e1581
Audience Academic
Author Wang, Yi
Li, Qian
Shen, Hongtao
Yang, Peng
Wang, Ruiming
Li, Chuan
Li, Chong
Guo, Rongkun
Li, Bing
Wang, Hao
Author_xml – sequence: 1
  givenname: Chong
  surname: Li
  fullname: Li, Chong
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 3
  givenname: Hongtao
  surname: Shen
  fullname: Shen, Hongtao
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 4
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: State Grid Hebei Electric Power Company, Shijiazhuang, HeBei, China
– sequence: 5
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 6
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 7
  givenname: Chuan
  surname: Li
  fullname: Li, Chuan
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 8
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 9
  givenname: Rongkun
  surname: Guo
  fullname: Guo, Rongkun
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
– sequence: 10
  givenname: Ruiming
  surname: Wang
  fullname: Wang, Ruiming
  organization: State Grid Hebei Marketing Service Center, Shijiazhuang, HeBei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38077539$$D View this record in MEDLINE/PubMed
BookMark eNptkk2P2yAQhq1qq-423WOvFVIv7cGpwcaY42rVj0grrdSPMxrjwSGyIQXSNP--ZLNdNVLhwGj0zDvAvC-LC-cdFsVrWi2FoOLDFjFsSh2XlHf0WXHFatGWXEp28U98WVzHuKmqinKal3xRXNZdJQSv5VUx3rvJOiS_MFhjNSTrHQE3kBkcjDijSyTqdQ6IN2SEhHs4kBkTBmImvyfWkbRGsvX7nImHmHAmfSZAr4-6E0Jw1o2viucGpojXj-ei-PHp4_fbL-Xd_efV7c1dqRvOUykpDB32LfCualnLGuxaLRoQvZEwIBemp8i57ITuOlmj0WBoz6QYBm6kGepFsTrpDh42ahvsDOGgPFj1kPBhVBCS1RMqSgVw5Mz0Vd9Q0YExLYLB3FkAA5m13p20tsH_3GFMarZR4zSBQ7-LismKSc66_JOL4u0JHSErW2d8CqCPuLrpaFO1nNEmU8v_UHkPOFudR2tszp8VvD8ryEzC32mEXYxq9e3rOfvm8ba7fsbh6e1_Z52B8gTo4GMMaJ4QWqmjndSDnZSO6min-g8uyb0r
Cites_doi 10.1016/j.sigpro.2021.108161
10.1016/j.measurement.2020.107915
10.1016/j.future.2020.03.039
10.1016/j.compchemeng.2020.106780
10.1007/s13369-021-05471-4
10.4018/IJISMD.2021010107
10.1088/2631-8695/abca7a
10.1016/j.ijepes.2021.107744
10.1007/s11554-021-01108-9
10.1007/s00500-019-04544-9
10.1109/ACCESS.2020.3022419
10.3389/fnins.2021.705323
10.18280/isi.250108
10.26760/elkomika.v9i2.359
10.1016/j.energy.2021.121873
10.1016/j.asoc.2021.107525
10.1088/1742-6596/1544/1/012157
10.1088/1742-6596/1748/4/042011
10.1088/1742-6596/1962/1/012056
10.1016/j.imavis.2021.104229
10.1088/1742-6596/2005/1/012082
10.21014/acta_imeko.v9i2.777
10.1007/s11018-020-01795-z
10.1088/1757-899X/864/1/012085
10.3390/app10238625
10.1016/j.jisa.2019.02.008
ContentType Journal Article
Copyright 2023 Li et al.
COPYRIGHT 2023 PeerJ. Ltd.
Copyright_xml – notice: 2023 Li et al.
– notice: COPYRIGHT 2023 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
DOA
DOI 10.7717/peerj-cs.1581
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_117a5e52fb0b4178aff6eafe8067a2a9
A814065214
38077539
10_7717_peerj_cs_1581
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
H13
M0N
NPM
7X8
PUEGO
ID FETCH-LOGICAL-c455t-91ad8eb6a58062624e86c74a7bf9ade57fb1e55987c8893efcaf1b297dd5f9fd3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090092300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Fri Oct 03 12:41:45 EDT 2025
Thu Sep 04 18:33:08 EDT 2025
Tue Nov 11 10:53:59 EST 2025
Tue Nov 04 18:14:32 EST 2025
Thu Nov 13 16:09:24 EST 2025
Thu Jan 02 22:40:55 EST 2025
Sat Nov 29 05:31:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Limited memory recursive least squares algorithm
SSD model
Faster-RCNN model
Line loss
Machine learning
Online verification
Dial reading identification
Light load condition
Language English
License https://creativecommons.org/licenses/by/4.0
2023 Li et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-91ad8eb6a58062624e86c74a7bf9ade57fb1e55987c8893efcaf1b297dd5f9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/117a5e52fb0b4178aff6eafe8067a2a9
PMID 38077539
PQID 2902952875
PQPubID 23479
PageCount e1581
ParticipantIDs doaj_primary_oai_doaj_org_article_117a5e52fb0b4178aff6eafe8067a2a9
proquest_miscellaneous_2902952875
gale_infotracmisc_A814065214
gale_infotracacademiconefile_A814065214
gale_incontextgauss_ISR_A814065214
pubmed_primary_38077539
crossref_primary_10_7717_peerj_cs_1581
PublicationCentury 2000
PublicationDate 2023-10-23
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2023
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Kumar (10.7717/peerj-cs.1581/ref-9) 2021; 109
Nasir (10.7717/peerj-cs.1581/ref-18) 2020; 864
Wan (10.7717/peerj-cs.1581/ref-25) 2021; 15
Ghifari (10.7717/peerj-cs.1581/ref-6) 2021; 9
Liu (10.7717/peerj-cs.1581/ref-13) 2021; 766
Sajeevan (10.7717/peerj-cs.1581/ref-20) 2020; 6
Zhang (10.7717/peerj-cs.1581/ref-33) 2022; 136
Zhang (10.7717/peerj-cs.1581/ref-34) 2021; 18
Sindhwani (10.7717/peerj-cs.1581/ref-22) 2021; 12
Song (10.7717/peerj-cs.1581/ref-23) 2020; 10
Mansour (10.7717/peerj-cs.1581/ref-16) 2021; 2021
Wang (10.7717/peerj-cs.1581/ref-27) 2021; 2021
Zhang (10.7717/peerj-cs.1581/ref-32) 2021; 1748
Guo (10.7717/peerj-cs.1581/ref-7) 2022; 238
Xiong (10.7717/peerj-cs.1581/ref-29) 2021; 198
Feizi (10.7717/peerj-cs.1581/ref-5) 2020; 24
Tan (10.7717/peerj-cs.1581/ref-24) 2020; 1637
Albahli (10.7717/peerj-cs.1581/ref-1) 2021; 46
Cui (10.7717/peerj-cs.1581/ref-3) 2021; 769
Shi (10.7717/peerj-cs.1581/ref-21) 2020; 135
Kalinov (10.7717/peerj-cs.1581/ref-8) 2020; 63
Li (10.7717/peerj-cs.1581/ref-10) 2020; 8
Wang (10.7717/peerj-cs.1581/ref-26) 2019; 46
Yang (10.7717/peerj-cs.1581/ref-31) 2021; 2005
Mulashani (10.7717/peerj-cs.1581/ref-17) 2021; 239
Lv (10.7717/peerj-cs.1581/ref-14) 2020; 1544
Wang (10.7717/peerj-cs.1581/ref-28) 2020; 164
Zhao (10.7717/peerj-cs.1581/ref-35) 2021; 188
Liu (10.7717/peerj-cs.1581/ref-12) 2020; 9
Dai (10.7717/peerj-cs.1581/ref-4) 2020; 1486
Yadav (10.7717/peerj-cs.1581/ref-30) 2020; 25
Li (10.7717/peerj-cs.1581/ref-11) 2020; 6
Bohnker (10.7717/peerj-cs.1581/ref-2) 2020; 2
Rani (10.7717/peerj-cs.1581/ref-19) 2021; 1962
Lv (10.7717/peerj-cs.1581/ref-15) 2020; 109
References_xml – volume: 188
  start-page: 108161
  issue: C
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-35
  article-title: General fuzzy C-means clustering algorithm using minkowski metric
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108161
– volume: 164
  start-page: 107915
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-28
  article-title: Dynamic test signal modelling and a Compressed Sensing based test for electric energy meter errors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107915
– volume: 109
  start-page: 103
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-15
  article-title: Analysis of healthcare big data—ScienceDirect
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.039
– volume: 135
  start-page: 106780
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-21
  article-title: Real-time leak detection using an infrared camera and faster R-CNN technique
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2020.106780
– volume: 1637
  start-page: 6
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-24
  article-title: Research on the development status, strategic choice and business model of China’s charging pile industry
  publication-title: Journal of Physics: Conference Series
– volume: 198
  start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-29
  article-title: Attention aware cross faster RCNN model and simulation
  publication-title: Wireless Networks
– volume: 46
  start-page: 8509
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-1
  article-title: An improved faster-RCNN model for handwritten character recognition
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-021-05471-4
– volume: 12
  start-page: 131
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-22
  article-title: Comparative analysis of intelligent driving and safety assistance systems using YOLO and SSD model of deep learning
  publication-title: International Journal of Information System Modeling and Design (IJISMD)
  doi: 10.4018/IJISMD.2021010107
– volume: 2
  start-page: 046001
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-2
  article-title: Optimization of the recursive least squares algorithm for capacitive strain sensing
  publication-title: Engineering Research Express
  doi: 10.1088/2631-8695/abca7a
– volume: 136
  start-page: 107744
  issue: 78
  year: 2022
  ident: 10.7717/peerj-cs.1581/ref-33
  article-title: Review on deep learning applications in frequency analysis and control of modern power system
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2021.107744
– volume: 18
  start-page: 2211
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-34
  article-title: A fast SSD model based on parameter reduction and dilated convolution
  publication-title: Journal of Real-Time Image Processing
  doi: 10.1007/s11554-021-01108-9
– volume: 769
  start-page: 6
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-3
  article-title: Design and research of constant magnetic field verification device for electric energy meter
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 24
  start-page: 10401
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-5
  article-title: Hierarchical detection of abnormal behaviors in video surveillance through modeling normal behaviors based on AUC maximization
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04544-9
– volume: 8
  start-page: 164214
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-10
  article-title: An automatic detection method of bird’s nest on transmission line tower based on faster_RCNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022419
– volume: 15
  start-page: 705323
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-25
  article-title: Semi-supervised support vector machine for digital twins based brain image fusion
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.705323
– volume: 6
  start-page: 74
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-11
  article-title: Improved faster RCNN object detection
  publication-title: World Scientific Research Journal
– volume: 239
  start-page: 121915
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-17
  article-title: Enhanced group method of data handling (GMDH) for permeability prediction based on the modified levenberg marquardt technique from well log data
  publication-title: Energy
– volume: 25
  start-page: 59
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-30
  article-title: Task allocation model for optimal system cost using fuzzy C-means clustering technique in distributed system
  publication-title: ISI
  doi: 10.18280/isi.250108
– volume: 9
  start-page: 359
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-6
  article-title: Pendeteksi Golongan Darah Manusia Berbasis Tensorflow menggunakan ESP32-CAM
  publication-title: ELKOMIKA Jurnal Teknik Energi Elektrik Teknik Telekomunikasi & Teknik Elektronika
  doi: 10.26760/elkomika.v9i2.359
– volume: 238
  start-page: 121873
  issue: 11
  year: 2022
  ident: 10.7717/peerj-cs.1581/ref-7
  article-title: Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121873
– volume: 109
  start-page: 107525
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-9
  article-title: Genetically optimized Fuzzy C-means data clustering of IoMT-based biomarkers for fast affective state recognition in intelligent edge analytics
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107525
– volume: 1544
  start-page: 012157
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-14
  article-title: Automatic defect detection based on improved faster RCNN for substation equipment
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/1544/1/012157
– volume: 1748
  start-page: 042011
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-32
  article-title: Research on spatial positioning system of fruits to be picked in field based on binocular vision and SSD model
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/1748/4/042011
– volume: 1486
  start-page: 6
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-4
  article-title: Research on verification error of smart electricity meter based on regression analysis
  publication-title: Journal of Physics: Conference Series
– volume: 1962
  start-page: 012056
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-19
  article-title: Mobile green E-waste management systems using IoT for smart campus
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/1962/1/012056
– volume: 6
  start-page: 223
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-20
  article-title: DNN design for object detection in airport runway operations
  publication-title: International Journal of Advanced Science and Engineering
– volume: 2021
  start-page: 104229
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-16
  article-title: Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2021.104229
– volume: 766
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-13
  article-title: The development of integrated centralized control platform for electricity meter verification device
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 2005
  start-page: 012082
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-31
  article-title: SSD model selection method based on machine learning algorithm
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/2005/1/012082
– volume: 9
  start-page: 32
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-12
  article-title: A data-based approach for smart meter online calibration
  publication-title: ACTA IMEKO
  doi: 10.21014/acta_imeko.v9i2.777
– volume: 63
  start-page: 353
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-8
  article-title: Pre-calibration of the phase interpolator of a precision time interval meter
  publication-title: Measurement Techniques
  doi: 10.1007/s11018-020-01795-z
– volume: 864
  start-page: 012085
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-18
  article-title: Pre-processing streamflow data through singular spectrum analysis with fuzzy C-means clustering
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/864/1/012085
– volume: 10
  start-page: 8625
  issue: 23
  year: 2020
  ident: 10.7717/peerj-cs.1581/ref-23
  article-title: The assisted positioning technology for high speed train based on deep learning
  publication-title: Applied Sciences
  doi: 10.3390/app10238625
– volume: 46
  start-page: 42
  issue: 17
  year: 2019
  ident: 10.7717/peerj-cs.1581/ref-26
  article-title: Detection of power grid disturbances and cyber-attacks based on machine learning
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2019.02.008
– volume: 2021
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.1581/ref-27
  article-title: Fuzzy target detection algorithm based on improved SSD and transfer learning
  publication-title: Journal of Intelligent and Fuzzy Systems
SSID ssj0001511119
Score 2.2499745
Snippet Currently, the calibration of electric energy meters often involves manual meter reading, dismantling inspection, or regular sampling inspection conducted by...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e1581
SubjectTerms Detectors
Dial reading identification
Electric power systems
Faster-RCNN model
Inspection
Investment analysis
Limited memory recursive least squares algorithm
Machine learning
Neural networks
Online verification
SSD model
Title Online verification and management scheme of gateway meter flow in the power system by machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/38077539
https://www.proquest.com/docview/2902952875
https://doaj.org/article/117a5e52fb0b4178aff6eafe8067a2a9
Volume 9
WOSCitedRecordID wos001090092300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cCF9yOwVAYhOIVtHo7t4y7qihVsFS0PFS7WxI9qEZtUTQs3fjszSVpt4cCFixXFc4hn7PF8zvgbxl7kmQL6HxXDuHBxXjkXa1_JWGYuk5bQdpeb8_m9nE7VbKbLS6W-KCespwfuFXeQJBKEF2moxlWeSAUhFB6CV-hmIYXu6t5Y6ktgqr8fTK5A96SaEiHLwcL75bfYtq8ToZKdTajj6v_bI_8RZ3b7zfFtdnMIFPlh_4F32BVf32W3NkUY-LAm77F5TxbKcUpS1k-naA614xfbxBaOCBYfeBP4cGjGLygLhofvzU9-XnMMAvmCyqXxntiZVyjRZVl6PpSVmN9nn44nH9-8jYfqCbHNhVihFwOnfFWAQFWlRZp7VViZg6yCBueFDFXiiZ5dWoVBiw8WQlKlWjongg4ue8D26qb2jxhHe6USkQdYCkBAag2VFhLdgXOgpI_Yy406zaInyTAILkjvptO7sa0hvUfsiJS9FSJu6-4FWtwMFjf_snjEnpOpDLFX1JQeM4d125qTD2fmkPi7CoxI8oi9GoRCs1qCheG2AQ6ICK92JPd3JHF52Z3uZ5sZYaiLctJq36xbk-pxqgUiThGxh_1U2Q6MaPwRCOrH_2PAT9gNKnJPO2aa7bO91XLtn7Lr9sfqvF2O2FU5UyN27WgyLc9G3TLA9p2MsT39NcG2FF-xvzw5Lb_8BgFRET8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+verification+and+management+scheme+of+gateway+meter+flow+in+the+power+system+by+machine+learning&rft.jtitle=PeerJ.+Computer+science&rft.au=Li%2C+Chong&rft.au=Wang%2C+Hao&rft.au=Shen%2C+Hongtao&rft.au=Yang%2C+Peng&rft.date=2023-10-23&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=9&rft.spage=e1581&rft_id=info:doi/10.7717%2Fpeerj-cs.1581&rft.externalDocID=A814065214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon