Variant Interpretation: Functional Assays to the Rescue
Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clini...
Uloženo v:
| Vydáno v: | American journal of human genetics Ročník 101; číslo 3; s. 315 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
07.09.2017
|
| Témata: | |
| ISSN: | 1537-6605, 1537-6605 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. |
|---|---|
| AbstractList | Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. |
| Author | Starita, Lea M Kitzman, Jacob O Shendure, Jay Ahituv, Nadav Dunham, Maitreya J Fowler, Douglas M Roth, Frederick P Seelig, Georg |
| Author_xml | – sequence: 1 givenname: Lea M surname: Starita fullname: Starita, Lea M email: lstarita@uw.edu organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Electronic address: lstarita@uw.edu – sequence: 2 givenname: Nadav surname: Ahituv fullname: Ahituv, Nadav organization: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 3 givenname: Maitreya J surname: Dunham fullname: Dunham, Maitreya J organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Jacob O surname: Kitzman fullname: Kitzman, Jacob O organization: Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Bioinformatics & Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 5 givenname: Frederick P surname: Roth fullname: Roth, Frederick P organization: Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada – sequence: 6 givenname: Georg surname: Seelig fullname: Seelig, Georg organization: Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA – sequence: 7 givenname: Jay surname: Shendure fullname: Shendure, Jay organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA – sequence: 8 givenname: Douglas M surname: Fowler fullname: Fowler, Douglas M email: dfowler@uw.edu organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA. Electronic address: dfowler@uw.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28886340$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81Kw0AYRQep2B99AReSpZvE75vJ_LkrpdVCQZDiNkwmE5uSTmpmsujbW7GCcOGexeHCnZKR77wj5B4hQ0DxtM_MfveZUUCZwTmYX5EJciZTIYCP_vGYTEPYAyAqYDdkTJVSguUwIfLD9I3xMVn76Ppj76KJTeefk9Xg7Q-ZNpmHYE4hiV0Sdy55d8EO7pZc16YN7u7SM7JdLbeL13Tz9rJezDepzTmPqeKlZFqXKHKhreJYMSmsVEJJZKKkNa2dVlUlSqiZdgBMWFoxqEFTapHOyOPv7LHvvgYXYnFognVta7zrhlCgZpIzzHV-Vh8u6lAeXFUc--Zg-lPx95V-A2gJVw0 |
| CitedBy_id | crossref_primary_10_1016_j_hrthm_2020_05_041 crossref_primary_10_1002_gcc_22900 crossref_primary_10_1136_thoraxjnl_2017_210776 crossref_primary_10_1038_s41586_020_2817_4 crossref_primary_10_1038_s41587_021_01201_1 crossref_primary_10_1159_000543615 crossref_primary_10_1186_s40246_025_00740_x crossref_primary_10_1371_journal_pgen_1008375 crossref_primary_10_1136_jnnp_2024_333436 crossref_primary_10_1016_j_ajhg_2023_11_005 crossref_primary_10_3390_cells14120908 crossref_primary_10_1016_j_biochi_2020_10_009 crossref_primary_10_1016_j_gde_2021_08_006 crossref_primary_10_1371_journal_pgen_1008922 crossref_primary_10_1038_s41467_022_32009_5 crossref_primary_10_1016_j_ajhg_2021_11_001 crossref_primary_10_1016_j_gim_2025_101404 crossref_primary_10_3390_ijms24076138 crossref_primary_10_1002_jimd_12227 crossref_primary_10_1038_s41525_021_00265_x crossref_primary_10_1093_nar_gky1016 crossref_primary_10_1038_s41576_025_00870_x crossref_primary_10_1101_gr_267997_120 crossref_primary_10_1186_s40246_024_00586_9 crossref_primary_10_1016_j_ajhg_2023_03_019 crossref_primary_10_1038_s41588_019_0432_9 crossref_primary_10_1016_j_jbc_2024_107739 crossref_primary_10_1007_s00239_024_10179_8 crossref_primary_10_1080_17843286_2017_1413809 crossref_primary_10_3390_genes11010088 crossref_primary_10_1146_annurev_biodatasci_122220_112147 crossref_primary_10_1186_s13059_022_02661_7 crossref_primary_10_1016_j_cels_2017_12_009 crossref_primary_10_1093_bioadv_vbab045 crossref_primary_10_1016_j_ajhg_2021_07_001 crossref_primary_10_1093_hmg_ddac194 crossref_primary_10_1186_s13059_023_02856_6 crossref_primary_10_1093_genetics_iyab058 crossref_primary_10_1016_j_cancergen_2024_08_081 crossref_primary_10_1242_dmm_036517 crossref_primary_10_1016_j_ajhg_2025_07_013 crossref_primary_10_1186_s13073_021_00984_x crossref_primary_10_1002_ggn2_202100038 crossref_primary_10_1016_j_drudis_2019_09_014 crossref_primary_10_1016_j_hrthm_2023_05_006 crossref_primary_10_1016_j_ajhg_2021_06_015 crossref_primary_10_1038_s41467_021_27156_0 crossref_primary_10_1186_s13059_019_1845_6 crossref_primary_10_3389_fendo_2023_1177268 crossref_primary_10_1016_j_ajhg_2020_08_016 crossref_primary_10_1038_s41569_025_01201_7 crossref_primary_10_1242_dmm_035972 crossref_primary_10_1242_dmm_050573 crossref_primary_10_1038_s41586_024_08349_1 crossref_primary_10_1016_j_ajhg_2017_11_012 crossref_primary_10_1016_j_cell_2019_02_003 crossref_primary_10_1136_jmedgenet_2018_105266 crossref_primary_10_1186_s13073_022_01026_w crossref_primary_10_1002_pro_4688 crossref_primary_10_1371_journal_pgen_1009496 crossref_primary_10_1038_s41525_025_00502_7 crossref_primary_10_1038_s42256_022_00561_w crossref_primary_10_1038_s41467_019_11526_w crossref_primary_10_1002_mds_27893 crossref_primary_10_1038_s41598_022_16661_x crossref_primary_10_1186_s13059_025_03647_x crossref_primary_10_1016_j_ajhg_2025_04_009 crossref_primary_10_1186_s12887_021_02609_z crossref_primary_10_1002_humu_23427 crossref_primary_10_1016_j_molcel_2023_06_009 crossref_primary_10_1007_s12551_022_01005_w crossref_primary_10_1186_s13073_020_0711_1 crossref_primary_10_1038_s41467_022_31483_1 crossref_primary_10_1016_j_jmoldx_2021_04_010 crossref_primary_10_1111_cge_13966 crossref_primary_10_1161_CIRCGEN_123_004377 crossref_primary_10_1186_s13059_023_02922_z crossref_primary_10_1177_20480040241310748 crossref_primary_10_1016_j_yamp_2019_08_001 crossref_primary_10_1146_annurev_genom_083118_014845 crossref_primary_10_1186_s13578_024_01224_6 crossref_primary_10_1016_j_xkme_2020_12_007 crossref_primary_10_1038_nbt_4147 crossref_primary_10_1186_s13059_022_02839_z crossref_primary_10_1093_nar_gkz808 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_3390_ijms221910375 crossref_primary_10_3390_genes14061241 crossref_primary_10_1534_genetics_118_301733 crossref_primary_10_1038_s41431_022_01185_9 crossref_primary_10_1016_j_csbj_2023_11_017 crossref_primary_10_1186_s13059_025_03476_y crossref_primary_10_1002_pld3_147 crossref_primary_10_1016_j_sbi_2025_102994 crossref_primary_10_1073_pnas_1912049116 crossref_primary_10_1002_humu_24416 crossref_primary_10_1038_s41431_022_01162_2 crossref_primary_10_1002_jimd_12045 crossref_primary_10_1007_s10545_018_0219_7 crossref_primary_10_1016_j_ajhg_2021_05_009 crossref_primary_10_1186_s13023_024_03361_0 crossref_primary_10_1186_s13059_023_02986_x crossref_primary_10_1016_j_tibs_2019_01_003 crossref_primary_10_1038_s44320_024_00043_8 crossref_primary_10_1038_s12276_025_01500_6 crossref_primary_10_1097_MNH_0000000000000408 crossref_primary_10_1371_journal_pgen_1011375 crossref_primary_10_1016_j_xpro_2023_102702 crossref_primary_10_3390_biomedicines7010015 crossref_primary_10_7554_eLife_54895 crossref_primary_10_1038_s41587_024_02240_0 crossref_primary_10_15302_J_QB_021_0252 crossref_primary_10_3389_fcvm_2022_900431 crossref_primary_10_1016_j_ajhg_2018_10_001 crossref_primary_10_7554_eLife_63364 crossref_primary_10_1200_PO_24_00847 crossref_primary_10_1161_CIRCULATIONAHA_121_055562 crossref_primary_10_3390_genes15020219 crossref_primary_10_1186_s13059_024_03223_9 crossref_primary_10_1093_jamia_ocac232 crossref_primary_10_1101_gad_351800_124 crossref_primary_10_1002_ppul_24809 crossref_primary_10_1016_j_ajhg_2023_10_012 crossref_primary_10_1074_jbc_RA118_005274 crossref_primary_10_1371_journal_pgen_1010940 crossref_primary_10_1186_s40246_024_00605_9 crossref_primary_10_1038_s41467_022_30936_x crossref_primary_10_1186_s13023_021_02041_7 crossref_primary_10_1371_journal_pgen_1009835 crossref_primary_10_1007_s10689_025_00470_y crossref_primary_10_1016_j_ajhg_2017_11_002 crossref_primary_10_1139_bcb_2018_0007 crossref_primary_10_26508_lsa_202302043 crossref_primary_10_1038_s41467_022_34742_3 crossref_primary_10_1158_0008_5472_CAN_20_0895 crossref_primary_10_1007_s10545_018_0146_7 crossref_primary_10_15252_msb_20177908 crossref_primary_10_1016_j_cell_2021_01_012 crossref_primary_10_2217_pgs_2023_0187 crossref_primary_10_1016_j_jmb_2021_167196 crossref_primary_10_1111_joim_13655 crossref_primary_10_1161_CIRCGEN_119_002786 crossref_primary_10_1161_CIRCGEN_123_004464 crossref_primary_10_7554_eLife_104725_3 crossref_primary_10_1002_cam4_5202 crossref_primary_10_1186_s13023_024_03307_6 crossref_primary_10_1038_s41586_018_0461_z crossref_primary_10_3390_genes13020382 crossref_primary_10_1038_s41592_018_0138_4 crossref_primary_10_3389_fmolb_2020_00169 crossref_primary_10_1038_s41598_019_45939_w crossref_primary_10_1007_s00586_025_09261_6 crossref_primary_10_1016_j_jlr_2023_100455 crossref_primary_10_1007_s10897_017_0184_6 crossref_primary_10_1186_s13073_024_01340_5 crossref_primary_10_1007_s40142_019_00170_x crossref_primary_10_1007_s00018_024_05262_8 crossref_primary_10_1002_cpt_1468 crossref_primary_10_1002_humu_24363 crossref_primary_10_1007_s40291_020_00495_2 crossref_primary_10_1016_j_ajhg_2020_12_003 crossref_primary_10_1002_humu_23837 crossref_primary_10_1038_s41467_024_52407_1 crossref_primary_10_1371_journal_pgen_1009774 crossref_primary_10_1093_jnci_djae173 crossref_primary_10_1371_journal_pone_0258375 crossref_primary_10_3390_ijms23074049 crossref_primary_10_1038_s41467_022_31686_6 crossref_primary_10_7554_eLife_88231 crossref_primary_10_1002_humu_23833 crossref_primary_10_1093_hmg_ddae070 crossref_primary_10_1016_j_jacc_2018_06_037 crossref_primary_10_1101_gr_278291_123 crossref_primary_10_1016_j_ajhg_2018_03_018 crossref_primary_10_1016_j_str_2024_11_017 crossref_primary_10_1073_pnas_1915680117 crossref_primary_10_1186_s13059_024_03314_7 crossref_primary_10_1007_s00586_025_09321_x crossref_primary_10_1016_j_mrrev_2024_108492 crossref_primary_10_1158_1078_0432_CCR_24_1601 crossref_primary_10_7554_eLife_104725 crossref_primary_10_1016_j_ajhg_2018_04_003 crossref_primary_10_3390_jpm8010001 crossref_primary_10_1093_genetics_iyad131 crossref_primary_10_1016_j_sbi_2024_102952 crossref_primary_10_1186_s13040_019_0197_9 crossref_primary_10_1093_brain_awab451 crossref_primary_10_3390_jpm8010009 crossref_primary_10_1016_j_cell_2024_08_039 crossref_primary_10_1016_j_cll_2020_02_006 crossref_primary_10_1016_j_xpro_2025_103851 crossref_primary_10_1007_s00239_024_10154_3 crossref_primary_10_1038_s41416_022_02059_z crossref_primary_10_1186_s13059_023_03113_6 crossref_primary_10_1242_dmm_052218 crossref_primary_10_1038_s41467_024_52474_4 crossref_primary_10_1146_annurev_pharmtox_032221_085807 crossref_primary_10_1016_j_heliyon_2020_e03990 crossref_primary_10_1186_s13073_019_0698_7 crossref_primary_10_1186_s13229_024_00590_9 crossref_primary_10_1093_humupd_dmaa044 crossref_primary_10_1038_s41586_019_1231_2 crossref_primary_10_1007_s00439_018_1916_x crossref_primary_10_1016_j_gim_2022_04_021 crossref_primary_10_3389_fped_2021_663752 crossref_primary_10_1007_s11892_019_1142_5 crossref_primary_10_1016_j_cell_2024_10_040 crossref_primary_10_1161_CIRCULATIONAHA_124_069828 crossref_primary_10_1002_humu_23730 crossref_primary_10_1038_s44320_025_00137_x crossref_primary_10_1126_science_aat5056 crossref_primary_10_1186_s12859_020_3439_4 crossref_primary_10_1073_pnas_2002660117 crossref_primary_10_1097_MOP_0000000000000815 crossref_primary_10_3390_jpm14060648 crossref_primary_10_1016_j_ajhg_2021_08_012 crossref_primary_10_1016_j_cell_2024_08_047 crossref_primary_10_1038_s41467_023_43041_4 crossref_primary_10_1002_humu_23609 crossref_primary_10_1002_humu_23848 crossref_primary_10_1016_j_copbio_2020_02_005 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ajhg.2017.07.014 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1537-6605 |
| ExternalDocumentID | 28886340 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA207029 – fundername: NHGRI NIH HHS grantid: DP1 HG007811 – fundername: NIGMS NIH HHS grantid: R01 GM109110 – fundername: NHGRI NIH HHS grantid: U41 HG001715 – fundername: NCI NIH HHS grantid: R01 CA197139 – fundername: NHGRI NIH HHS grantid: UM1 HG009408 – fundername: NHGRI NIH HHS grantid: U01 HG001715 – fundername: NHGRI NIH HHS grantid: P50 HG004233 – fundername: NHGRI NIH HHS grantid: R01 HG009136 |
| GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 85S AAEDT AAEDW AAFWJ AAKRW AALRI AAMRU AAVLU AAWTL AAXUO ABDGV ABJNI ABMAC ABOCM ACGFO ACGFS ACGOD ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFRAH AFTJW AGCQF AGKMS AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF D0L DIK E3Z EBS ECM ECV EFKBS EIF EJD F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 NPM O-L O9- OK1 P2P PQQKQ RIG RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT WH7 ZCA 7X8 ABUFD |
| ID | FETCH-LOGICAL-c455t-85b7399b16469c851d376c78687136b2f2fe98dd6b0f39e0036c2d30f0922c12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 227 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409530900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-6605 |
| IngestDate | Sun Nov 09 10:17:25 EST 2025 Mon Jul 21 05:49:20 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-85b7399b16469c851d376c78687136b2f2fe98dd6b0f39e0036c2d30f0922c12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1016/j.ajhg.2017.07.014 |
| PMID | 28886340 |
| PQID | 1937531494 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1937531494 pubmed_primary_28886340 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-07 |
| PublicationDateYYYYMMDD | 2017-09-07 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of human genetics |
| PublicationTitleAlternate | Am J Hum Genet |
| PublicationYear | 2017 |
| SSID | ssj0011803 |
| Score | 2.6414733 |
| Snippet | Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 315 |
| SubjectTerms | Computational Biology - methods Disease - genetics Genetic Variation Genome, Human Humans |
| Title | Variant Interpretation: Functional Assays to the Rescue |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28886340 https://www.proquest.com/docview/1937531494 |
| Volume | 101 |
| WOSCitedRecordID | wos000409530900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6oo-DFfRk3IngtdpI0Sb2IiIMXh0EGmVtJk9Tl0I52Rph_70vaQTwIgpfeAuV7S7635D2ACxnmndJe5GevYYCic_SDlkVWOFZYk9I452HZhBwM1HicDtuEW922VS58YnDUtjI-R36JRAOZNfJ5fj15j_zWKF9dbVdoLEOHIZXxWi3H31WEngqbkdGoZSSQt7ePZpr-Lv328uxbu2QY3ulf8fxGMcNV09_8709uwUZLMslNoxXbsOTKHVhr1k7Od0E-YYCMiJKfHYdXpI-XXJMbJCg2Pa_JtCLIEMmjq83M7cGofze6vY_aBQqR4UkyjVSSS0Ql9zPEUoPcyqI7MVIJjJKYyGlBC5cqa0UeFyx1fjaNoZbFRZxSanp0H1bKqnSHQNB0rVJa2MRwrmOrBdfUsSTnxmnEuQvnC0Ay1E9fdNClq2Z19g1JFw4aVLNJM0gjoxh-C8bjoz-cPoZ1L6zQ3iVPoFOgdbpTWDWf09f64ywIHr-D4cMXiM21ew |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variant+Interpretation%3A+Functional+Assays+to+the+Rescue&rft.jtitle=American+journal+of+human+genetics&rft.au=Starita%2C+Lea+M&rft.au=Ahituv%2C+Nadav&rft.au=Dunham%2C+Maitreya+J&rft.au=Kitzman%2C+Jacob+O&rft.date=2017-09-07&rft.eissn=1537-6605&rft.volume=101&rft.issue=3&rft.spage=315&rft_id=info:doi/10.1016%2Fj.ajhg.2017.07.014&rft_id=info%3Apmid%2F28886340&rft_id=info%3Apmid%2F28886340&rft.externalDocID=28886340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-6605&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-6605&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-6605&client=summon |