Variant Interpretation: Functional Assays to the Rescue

Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clini...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of human genetics Ročník 101; číslo 3; s. 315
Hlavní autoři: Starita, Lea M, Ahituv, Nadav, Dunham, Maitreya J, Kitzman, Jacob O, Roth, Frederick P, Seelig, Georg, Shendure, Jay, Fowler, Douglas M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 07.09.2017
Témata:
ISSN:1537-6605, 1537-6605
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.
AbstractList Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.
Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.
Author Starita, Lea M
Kitzman, Jacob O
Shendure, Jay
Ahituv, Nadav
Dunham, Maitreya J
Fowler, Douglas M
Roth, Frederick P
Seelig, Georg
Author_xml – sequence: 1
  givenname: Lea M
  surname: Starita
  fullname: Starita, Lea M
  email: lstarita@uw.edu
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Electronic address: lstarita@uw.edu
– sequence: 2
  givenname: Nadav
  surname: Ahituv
  fullname: Ahituv, Nadav
  organization: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 3
  givenname: Maitreya J
  surname: Dunham
  fullname: Dunham, Maitreya J
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Jacob O
  surname: Kitzman
  fullname: Kitzman, Jacob O
  organization: Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Bioinformatics & Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 5
  givenname: Frederick P
  surname: Roth
  fullname: Roth, Frederick P
  organization: Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
– sequence: 6
  givenname: Georg
  surname: Seelig
  fullname: Seelig, Georg
  organization: Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
– sequence: 7
  givenname: Jay
  surname: Shendure
  fullname: Shendure, Jay
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
– sequence: 8
  givenname: Douglas M
  surname: Fowler
  fullname: Fowler, Douglas M
  email: dfowler@uw.edu
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA. Electronic address: dfowler@uw.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28886340$$D View this record in MEDLINE/PubMed
BookMark eNpNj81Kw0AYRQep2B99AReSpZvE75vJ_LkrpdVCQZDiNkwmE5uSTmpmsujbW7GCcOGexeHCnZKR77wj5B4hQ0DxtM_MfveZUUCZwTmYX5EJciZTIYCP_vGYTEPYAyAqYDdkTJVSguUwIfLD9I3xMVn76Ppj76KJTeefk9Xg7Q-ZNpmHYE4hiV0Sdy55d8EO7pZc16YN7u7SM7JdLbeL13Tz9rJezDepzTmPqeKlZFqXKHKhreJYMSmsVEJJZKKkNa2dVlUlSqiZdgBMWFoxqEFTapHOyOPv7LHvvgYXYnFognVta7zrhlCgZpIzzHV-Vh8u6lAeXFUc--Zg-lPx95V-A2gJVw0
CitedBy_id crossref_primary_10_1016_j_hrthm_2020_05_041
crossref_primary_10_1002_gcc_22900
crossref_primary_10_1136_thoraxjnl_2017_210776
crossref_primary_10_1038_s41586_020_2817_4
crossref_primary_10_1038_s41587_021_01201_1
crossref_primary_10_1159_000543615
crossref_primary_10_1186_s40246_025_00740_x
crossref_primary_10_1371_journal_pgen_1008375
crossref_primary_10_1136_jnnp_2024_333436
crossref_primary_10_1016_j_ajhg_2023_11_005
crossref_primary_10_3390_cells14120908
crossref_primary_10_1016_j_biochi_2020_10_009
crossref_primary_10_1016_j_gde_2021_08_006
crossref_primary_10_1371_journal_pgen_1008922
crossref_primary_10_1038_s41467_022_32009_5
crossref_primary_10_1016_j_ajhg_2021_11_001
crossref_primary_10_1016_j_gim_2025_101404
crossref_primary_10_3390_ijms24076138
crossref_primary_10_1002_jimd_12227
crossref_primary_10_1038_s41525_021_00265_x
crossref_primary_10_1093_nar_gky1016
crossref_primary_10_1038_s41576_025_00870_x
crossref_primary_10_1101_gr_267997_120
crossref_primary_10_1186_s40246_024_00586_9
crossref_primary_10_1016_j_ajhg_2023_03_019
crossref_primary_10_1038_s41588_019_0432_9
crossref_primary_10_1016_j_jbc_2024_107739
crossref_primary_10_1007_s00239_024_10179_8
crossref_primary_10_1080_17843286_2017_1413809
crossref_primary_10_3390_genes11010088
crossref_primary_10_1146_annurev_biodatasci_122220_112147
crossref_primary_10_1186_s13059_022_02661_7
crossref_primary_10_1016_j_cels_2017_12_009
crossref_primary_10_1093_bioadv_vbab045
crossref_primary_10_1016_j_ajhg_2021_07_001
crossref_primary_10_1093_hmg_ddac194
crossref_primary_10_1186_s13059_023_02856_6
crossref_primary_10_1093_genetics_iyab058
crossref_primary_10_1016_j_cancergen_2024_08_081
crossref_primary_10_1242_dmm_036517
crossref_primary_10_1016_j_ajhg_2025_07_013
crossref_primary_10_1186_s13073_021_00984_x
crossref_primary_10_1002_ggn2_202100038
crossref_primary_10_1016_j_drudis_2019_09_014
crossref_primary_10_1016_j_hrthm_2023_05_006
crossref_primary_10_1016_j_ajhg_2021_06_015
crossref_primary_10_1038_s41467_021_27156_0
crossref_primary_10_1186_s13059_019_1845_6
crossref_primary_10_3389_fendo_2023_1177268
crossref_primary_10_1016_j_ajhg_2020_08_016
crossref_primary_10_1038_s41569_025_01201_7
crossref_primary_10_1242_dmm_035972
crossref_primary_10_1242_dmm_050573
crossref_primary_10_1038_s41586_024_08349_1
crossref_primary_10_1016_j_ajhg_2017_11_012
crossref_primary_10_1016_j_cell_2019_02_003
crossref_primary_10_1136_jmedgenet_2018_105266
crossref_primary_10_1186_s13073_022_01026_w
crossref_primary_10_1002_pro_4688
crossref_primary_10_1371_journal_pgen_1009496
crossref_primary_10_1038_s41525_025_00502_7
crossref_primary_10_1038_s42256_022_00561_w
crossref_primary_10_1038_s41467_019_11526_w
crossref_primary_10_1002_mds_27893
crossref_primary_10_1038_s41598_022_16661_x
crossref_primary_10_1186_s13059_025_03647_x
crossref_primary_10_1016_j_ajhg_2025_04_009
crossref_primary_10_1186_s12887_021_02609_z
crossref_primary_10_1002_humu_23427
crossref_primary_10_1016_j_molcel_2023_06_009
crossref_primary_10_1007_s12551_022_01005_w
crossref_primary_10_1186_s13073_020_0711_1
crossref_primary_10_1038_s41467_022_31483_1
crossref_primary_10_1016_j_jmoldx_2021_04_010
crossref_primary_10_1111_cge_13966
crossref_primary_10_1161_CIRCGEN_123_004377
crossref_primary_10_1186_s13059_023_02922_z
crossref_primary_10_1177_20480040241310748
crossref_primary_10_1016_j_yamp_2019_08_001
crossref_primary_10_1146_annurev_genom_083118_014845
crossref_primary_10_1186_s13578_024_01224_6
crossref_primary_10_1016_j_xkme_2020_12_007
crossref_primary_10_1038_nbt_4147
crossref_primary_10_1186_s13059_022_02839_z
crossref_primary_10_1093_nar_gkz808
crossref_primary_10_1146_annurev_genet_072920_032107
crossref_primary_10_3390_ijms221910375
crossref_primary_10_3390_genes14061241
crossref_primary_10_1534_genetics_118_301733
crossref_primary_10_1038_s41431_022_01185_9
crossref_primary_10_1016_j_csbj_2023_11_017
crossref_primary_10_1186_s13059_025_03476_y
crossref_primary_10_1002_pld3_147
crossref_primary_10_1016_j_sbi_2025_102994
crossref_primary_10_1073_pnas_1912049116
crossref_primary_10_1002_humu_24416
crossref_primary_10_1038_s41431_022_01162_2
crossref_primary_10_1002_jimd_12045
crossref_primary_10_1007_s10545_018_0219_7
crossref_primary_10_1016_j_ajhg_2021_05_009
crossref_primary_10_1186_s13023_024_03361_0
crossref_primary_10_1186_s13059_023_02986_x
crossref_primary_10_1016_j_tibs_2019_01_003
crossref_primary_10_1038_s44320_024_00043_8
crossref_primary_10_1038_s12276_025_01500_6
crossref_primary_10_1097_MNH_0000000000000408
crossref_primary_10_1371_journal_pgen_1011375
crossref_primary_10_1016_j_xpro_2023_102702
crossref_primary_10_3390_biomedicines7010015
crossref_primary_10_7554_eLife_54895
crossref_primary_10_1038_s41587_024_02240_0
crossref_primary_10_15302_J_QB_021_0252
crossref_primary_10_3389_fcvm_2022_900431
crossref_primary_10_1016_j_ajhg_2018_10_001
crossref_primary_10_7554_eLife_63364
crossref_primary_10_1200_PO_24_00847
crossref_primary_10_1161_CIRCULATIONAHA_121_055562
crossref_primary_10_3390_genes15020219
crossref_primary_10_1186_s13059_024_03223_9
crossref_primary_10_1093_jamia_ocac232
crossref_primary_10_1101_gad_351800_124
crossref_primary_10_1002_ppul_24809
crossref_primary_10_1016_j_ajhg_2023_10_012
crossref_primary_10_1074_jbc_RA118_005274
crossref_primary_10_1371_journal_pgen_1010940
crossref_primary_10_1186_s40246_024_00605_9
crossref_primary_10_1038_s41467_022_30936_x
crossref_primary_10_1186_s13023_021_02041_7
crossref_primary_10_1371_journal_pgen_1009835
crossref_primary_10_1007_s10689_025_00470_y
crossref_primary_10_1016_j_ajhg_2017_11_002
crossref_primary_10_1139_bcb_2018_0007
crossref_primary_10_26508_lsa_202302043
crossref_primary_10_1038_s41467_022_34742_3
crossref_primary_10_1158_0008_5472_CAN_20_0895
crossref_primary_10_1007_s10545_018_0146_7
crossref_primary_10_15252_msb_20177908
crossref_primary_10_1016_j_cell_2021_01_012
crossref_primary_10_2217_pgs_2023_0187
crossref_primary_10_1016_j_jmb_2021_167196
crossref_primary_10_1111_joim_13655
crossref_primary_10_1161_CIRCGEN_119_002786
crossref_primary_10_1161_CIRCGEN_123_004464
crossref_primary_10_7554_eLife_104725_3
crossref_primary_10_1002_cam4_5202
crossref_primary_10_1186_s13023_024_03307_6
crossref_primary_10_1038_s41586_018_0461_z
crossref_primary_10_3390_genes13020382
crossref_primary_10_1038_s41592_018_0138_4
crossref_primary_10_3389_fmolb_2020_00169
crossref_primary_10_1038_s41598_019_45939_w
crossref_primary_10_1007_s00586_025_09261_6
crossref_primary_10_1016_j_jlr_2023_100455
crossref_primary_10_1007_s10897_017_0184_6
crossref_primary_10_1186_s13073_024_01340_5
crossref_primary_10_1007_s40142_019_00170_x
crossref_primary_10_1007_s00018_024_05262_8
crossref_primary_10_1002_cpt_1468
crossref_primary_10_1002_humu_24363
crossref_primary_10_1007_s40291_020_00495_2
crossref_primary_10_1016_j_ajhg_2020_12_003
crossref_primary_10_1002_humu_23837
crossref_primary_10_1038_s41467_024_52407_1
crossref_primary_10_1371_journal_pgen_1009774
crossref_primary_10_1093_jnci_djae173
crossref_primary_10_1371_journal_pone_0258375
crossref_primary_10_3390_ijms23074049
crossref_primary_10_1038_s41467_022_31686_6
crossref_primary_10_7554_eLife_88231
crossref_primary_10_1002_humu_23833
crossref_primary_10_1093_hmg_ddae070
crossref_primary_10_1016_j_jacc_2018_06_037
crossref_primary_10_1101_gr_278291_123
crossref_primary_10_1016_j_ajhg_2018_03_018
crossref_primary_10_1016_j_str_2024_11_017
crossref_primary_10_1073_pnas_1915680117
crossref_primary_10_1186_s13059_024_03314_7
crossref_primary_10_1007_s00586_025_09321_x
crossref_primary_10_1016_j_mrrev_2024_108492
crossref_primary_10_1158_1078_0432_CCR_24_1601
crossref_primary_10_7554_eLife_104725
crossref_primary_10_1016_j_ajhg_2018_04_003
crossref_primary_10_3390_jpm8010001
crossref_primary_10_1093_genetics_iyad131
crossref_primary_10_1016_j_sbi_2024_102952
crossref_primary_10_1186_s13040_019_0197_9
crossref_primary_10_1093_brain_awab451
crossref_primary_10_3390_jpm8010009
crossref_primary_10_1016_j_cell_2024_08_039
crossref_primary_10_1016_j_cll_2020_02_006
crossref_primary_10_1016_j_xpro_2025_103851
crossref_primary_10_1007_s00239_024_10154_3
crossref_primary_10_1038_s41416_022_02059_z
crossref_primary_10_1186_s13059_023_03113_6
crossref_primary_10_1242_dmm_052218
crossref_primary_10_1038_s41467_024_52474_4
crossref_primary_10_1146_annurev_pharmtox_032221_085807
crossref_primary_10_1016_j_heliyon_2020_e03990
crossref_primary_10_1186_s13073_019_0698_7
crossref_primary_10_1186_s13229_024_00590_9
crossref_primary_10_1093_humupd_dmaa044
crossref_primary_10_1038_s41586_019_1231_2
crossref_primary_10_1007_s00439_018_1916_x
crossref_primary_10_1016_j_gim_2022_04_021
crossref_primary_10_3389_fped_2021_663752
crossref_primary_10_1007_s11892_019_1142_5
crossref_primary_10_1016_j_cell_2024_10_040
crossref_primary_10_1161_CIRCULATIONAHA_124_069828
crossref_primary_10_1002_humu_23730
crossref_primary_10_1038_s44320_025_00137_x
crossref_primary_10_1126_science_aat5056
crossref_primary_10_1186_s12859_020_3439_4
crossref_primary_10_1073_pnas_2002660117
crossref_primary_10_1097_MOP_0000000000000815
crossref_primary_10_3390_jpm14060648
crossref_primary_10_1016_j_ajhg_2021_08_012
crossref_primary_10_1016_j_cell_2024_08_047
crossref_primary_10_1038_s41467_023_43041_4
crossref_primary_10_1002_humu_23609
crossref_primary_10_1002_humu_23848
crossref_primary_10_1016_j_copbio_2020_02_005
ContentType Journal Article
Copyright Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ajhg.2017.07.014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
ExternalDocumentID 28886340
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA207029
– fundername: NHGRI NIH HHS
  grantid: DP1 HG007811
– fundername: NIGMS NIH HHS
  grantid: R01 GM109110
– fundername: NHGRI NIH HHS
  grantid: U41 HG001715
– fundername: NCI NIH HHS
  grantid: R01 CA197139
– fundername: NHGRI NIH HHS
  grantid: UM1 HG009408
– fundername: NHGRI NIH HHS
  grantid: U01 HG001715
– fundername: NHGRI NIH HHS
  grantid: P50 HG004233
– fundername: NHGRI NIH HHS
  grantid: R01 HG009136
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
85S
AAEDT
AAEDW
AAFWJ
AAKRW
AALRI
AAMRU
AAVLU
AAWTL
AAXUO
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFRAH
AFTJW
AGCQF
AGKMS
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
D0L
DIK
E3Z
EBS
ECM
ECV
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
NPM
O-L
O9-
OK1
P2P
PQQKQ
RIG
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
WH7
ZCA
7X8
ABUFD
ID FETCH-LOGICAL-c455t-85b7399b16469c851d376c78687136b2f2fe98dd6b0f39e0036c2d30f0922c12
IEDL.DBID 7X8
ISICitedReferencesCount 227
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409530900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-6605
IngestDate Sun Nov 09 10:17:25 EST 2025
Mon Jul 21 05:49:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-85b7399b16469c851d376c78687136b2f2fe98dd6b0f39e0036c2d30f0922c12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.ajhg.2017.07.014
PMID 28886340
PQID 1937531494
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1937531494
pubmed_primary_28886340
PublicationCentury 2000
PublicationDate 2017-09-07
PublicationDateYYYYMMDD 2017-09-07
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2017
SSID ssj0011803
Score 2.6414733
Snippet Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 315
SubjectTerms Computational Biology - methods
Disease - genetics
Genetic Variation
Genome, Human
Humans
Title Variant Interpretation: Functional Assays to the Rescue
URI https://www.ncbi.nlm.nih.gov/pubmed/28886340
https://www.proquest.com/docview/1937531494
Volume 101
WOSCitedRecordID wos000409530900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6oo-DFfRk3IngtdpI0Sb2IiIMXh0EGmVtJk9Tl0I52Rph_70vaQTwIgpfeAuV7S7635D2ACxnmndJe5GevYYCic_SDlkVWOFZYk9I452HZhBwM1HicDtuEW922VS58YnDUtjI-R36JRAOZNfJ5fj15j_zWKF9dbVdoLEOHIZXxWi3H31WEngqbkdGoZSSQt7ePZpr-Lv328uxbu2QY3ulf8fxGMcNV09_8709uwUZLMslNoxXbsOTKHVhr1k7Od0E-YYCMiJKfHYdXpI-XXJMbJCg2Pa_JtCLIEMmjq83M7cGofze6vY_aBQqR4UkyjVSSS0Ql9zPEUoPcyqI7MVIJjJKYyGlBC5cqa0UeFyx1fjaNoZbFRZxSanp0H1bKqnSHQNB0rVJa2MRwrmOrBdfUsSTnxmnEuQvnC0Ay1E9fdNClq2Z19g1JFw4aVLNJM0gjoxh-C8bjoz-cPoZ1L6zQ3iVPoFOgdbpTWDWf09f64ywIHr-D4cMXiM21ew
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variant+Interpretation%3A+Functional+Assays+to+the+Rescue&rft.jtitle=American+journal+of+human+genetics&rft.au=Starita%2C+Lea+M&rft.au=Ahituv%2C+Nadav&rft.au=Dunham%2C+Maitreya+J&rft.au=Kitzman%2C+Jacob+O&rft.date=2017-09-07&rft.eissn=1537-6605&rft.volume=101&rft.issue=3&rft.spage=315&rft_id=info:doi/10.1016%2Fj.ajhg.2017.07.014&rft_id=info%3Apmid%2F28886340&rft_id=info%3Apmid%2F28886340&rft.externalDocID=28886340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-6605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-6605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-6605&client=summon