Stable 3D Deep Convolutional Autoencoder Method for Ultrasonic Testing of Defects in Polymer Composites
Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasou...
Uloženo v:
| Vydáno v: | Polymers Ročník 16; číslo 11; s. 1561 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
31.05.2024
MDPI |
| Témata: | |
| ISSN: | 2073-4360, 2073-4360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers. |
|---|---|
| AbstractList | Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers. Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers.Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers. |
| Audience | Academic |
| Author | Yu, Qing Zhu, Ningtao Liu, Kaixin Yao, Yuan Liu, Yi |
| AuthorAffiliation | 3 Xi’an Zhanshi Testing & Engineering Co., Ltd., Xi’an 710000, China; zhuningtao270@163.com 2 The State Key Laboratory for Electronic Testing Technology, North University of China, Taiyuan 030051, China 4 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan 1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China; yliuzju@zjut.edu.cn (Y.L.); 2112102164@zjut.edu.cn (Q.Y.) |
| AuthorAffiliation_xml | – name: 2 The State Key Laboratory for Electronic Testing Technology, North University of China, Taiyuan 030051, China – name: 3 Xi’an Zhanshi Testing & Engineering Co., Ltd., Xi’an 710000, China; zhuningtao270@163.com – name: 1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China; yliuzju@zjut.edu.cn (Y.L.); 2112102164@zjut.edu.cn (Q.Y.) – name: 4 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0002-4066-689X surname: Liu fullname: Liu, Yi – sequence: 2 givenname: Qing surname: Yu fullname: Yu, Qing – sequence: 3 givenname: Kaixin orcidid: 0000-0001-5573-1781 surname: Liu fullname: Liu, Kaixin – sequence: 4 givenname: Ningtao surname: Zhu fullname: Zhu, Ningtao – sequence: 5 givenname: Yuan orcidid: 0000-0002-0025-6175 surname: Yao fullname: Yao, Yuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38891506$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUt9v1SAYJWbGzblHXw2JL750QmmhfTI3d-pMZjRxeyYt_bhjoXy10CX776W527ItwgNf4JzD-X68JQcBAxDynrNTIVr2eUJ_N3LJOa8lf0WOSqZEUQnJDp7Eh-QkxhuWV1VLydUbciiapuU1k0dk9yd1vQcqzugZwES3GG7RL8lh6DzdLAkhGBxgpj8hXeNALc70yqe5ixicoZcQkws7ijbzLZgUqQv09-orc7Y4ThhdgviOvLadj3Byfx6Tq29fL7fnxcWv7z-2m4vCVHWdikaUxkC2KpRtoFaMg7Tc9sYOpQI5cGFrq1pVDby3tWlYJUqw5VBapVhfN-KYfNnrTks_wmAgZKteT7Mbu_lOY-f085fgrvUOb3Wuoaq5kFnh073CjH-XnJ4eXTTgfRcAl6gFU0y17R768QX0Bpc5F25FSVWJqhSrpdM9atd50C5YzB-bvAcYnckNtS7fb3JWLStlW2XCh6c5PJp_6FoGiD3AzBjjDFYbl7q1Z1nZec2ZXsdDPxuPzCpesB6E_4__B_GvvRI |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_120972 crossref_primary_10_1016_j_coco_2025_102542 crossref_primary_10_1002_cssc_202500480 crossref_primary_10_3390_ai6060124 crossref_primary_10_3390_polym17162222 |
| Cites_doi | 10.1016/j.engappai.2022.104978 10.1088/0957-0233/3/1/018 10.3390/s18113958 10.3390/ma16062161 10.1016/S0377-0427(03)00645-9 10.3390/ma16041564 10.3390/ma13245755 10.3390/polym15132970 10.1016/j.ndteint.2023.102804 10.1016/j.chemolab.2016.06.014 10.1109/JSEN.2023.3339245 10.1016/j.conbuildmat.2022.130116 10.1177/0021998320916545 10.1784/insi.2006.48.4.218 10.1109/TII.2022.3172902 10.1016/j.chemolab.2017.02.007 10.1016/j.measurement.2018.06.049 10.1016/0098-3004(93)90090-R 10.1016/S1350-4495(02)00138-X 10.1016/j.conbuildmat.2014.08.056 10.1016/j.apacoust.2017.10.002 10.1063/5.0087202 10.3390/polym15010173 10.1088/1361-6501/acc963 10.1109/JSTARS.2021.3112469 10.1109/TUFFC.2020.3008920 10.3390/polym15244691 10.3390/nano13202741 10.1109/TNNLS.2021.3105367 10.1016/j.ultras.2015.03.007 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.3390/polym16111561 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | PMC11175136 A797902694 38891506 10_3390_polym16111561 |
| Genre | Journal Article |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U23A20328 – fundername: National Science and Technology Council, Taiwan grantid: 112-2221-E-007-105 – fundername: National Natural Science Foundation of China grantid: 62301507 – fundername: National Natural Science Foundation of China grantid: 62301507; U23A20328 – fundername: National Science and Technology Council grantid: NSTC 112-2221-E-007-105 |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI 7X8 ESTFP PUEGO 5PM |
| ID | FETCH-LOGICAL-c455t-832cce00037f8e5701e6f1fbcfd27e6d13f5f7974d1bf5c80432ef2d2f770b583 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245757600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4360 |
| IngestDate | Tue Nov 04 02:05:32 EST 2025 Fri Sep 05 08:41:01 EDT 2025 Fri Jul 25 11:51:48 EDT 2025 Sat Nov 29 10:32:25 EST 2025 Mon Jul 21 05:49:47 EDT 2025 Sat Nov 29 07:13:20 EST 2025 Tue Nov 18 21:06:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | carbon-fiber-reinforced polymer receptive field 3D convolution deep autoencoder ultrasonic testing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-832cce00037f8e5701e6f1fbcfd27e6d13f5f7974d1bf5c80432ef2d2f770b583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0025-6175 0000-0002-4066-689X 0000-0001-5573-1781 |
| OpenAccessLink | https://www.proquest.com/docview/3067434238?pq-origsite=%requestingapplication% |
| PMID | 38891506 |
| PQID | 3067434238 |
| PQPubID | 2032345 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175136 proquest_miscellaneous_3070799136 proquest_journals_3067434238 gale_infotracacademiconefile_A797902694 pubmed_primary_38891506 crossref_citationtrail_10_3390_polym16111561 crossref_primary_10_3390_polym16111561 |
| PublicationCentury | 2000 |
| PublicationDate | 20240531 |
| PublicationDateYYYYMMDD | 2024-05-31 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240531 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Polymers |
| PublicationTitleAlternate | Polymers (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Gaydecki (ref_26) 1992; 3 ref_14 You (ref_28) 2017; 163 Chen (ref_23) 2021; 14 Azari (ref_27) 2014; 71 Du (ref_5) 2020; 54 Wang (ref_24) 2020; 68 Shao (ref_1) 2023; 367 Pintelas (ref_22) 2022; 113 ref_18 Kharrat (ref_7) 2015; 61 Liu (ref_10) 2018; 131 Wu (ref_12) 2017; 2017 Maldague (ref_6) 2002; 43 Le (ref_11) 2018; 128 ref_25 Lyu (ref_13) 2023; 34 Berke (ref_30) 2020; 48 You (ref_15) 2016; 157 ref_20 Malfliet (ref_29) 2004; 164 Ratajczak (ref_31) 1993; 19 Liu (ref_21) 2023; 19 ref_3 ref_2 Wang (ref_19) 2021; 34 Liu (ref_9) 2022; 132 ref_8 Cheng (ref_17) 2023; 135 Dai (ref_16) 2024; 24 ref_4 |
| References_xml | – volume: 113 start-page: 104978 year: 2022 ident: ref_22 article-title: A 3D-CAE-CNN model for Deep Representation Learning of 3D images publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104978 – volume: 3 start-page: 126 year: 1992 ident: ref_26 article-title: The propagation and attenuation of medium-frequency ultrasonic waves in concrete: A signal analytical approach publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/3/1/018 – ident: ref_8 doi: 10.3390/s18113958 – ident: ref_20 doi: 10.3390/ma16062161 – volume: 164 start-page: 529 year: 2004 ident: ref_29 article-title: The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(03)00645-9 – ident: ref_2 doi: 10.3390/ma16041564 – ident: ref_18 doi: 10.3390/ma13245755 – ident: ref_3 doi: 10.3390/polym15132970 – volume: 135 start-page: 102804 year: 2023 ident: ref_17 article-title: Automatic defect depth estimation for ultrasonic testing in carbon fiber reinforced composites using deep learning publication-title: NDT E Int. doi: 10.1016/j.ndteint.2023.102804 – volume: 2017 start-page: 7283450 year: 2017 ident: ref_12 article-title: A signal decomposition method for ultrasonic guided wave generated from debonding combining smoothed pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking publication-title: Shock Vib. – volume: 157 start-page: 35 year: 2016 ident: ref_15 article-title: Feature-selective clustering for ultrasonic-based automatic defect detection in FRP structures publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.06.014 – volume: 24 start-page: 2145 year: 2024 ident: ref_16 article-title: TimeDDPM: Time series augmentation strategy for industrial soft sensing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3339245 – volume: 367 start-page: 130116 year: 2023 ident: ref_1 article-title: Durability life prediction and horizontal bearing characteristics of CFRP composite piles in marine environments publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.130116 – volume: 54 start-page: 3527 year: 2020 ident: ref_5 article-title: Reconstruction of cracks in a carbon fiber-reinforced polymer laminate plate from signals of eddy current testing publication-title: J. Compos Mater. doi: 10.1177/0021998320916545 – volume: 48 start-page: 218 year: 2020 ident: ref_30 article-title: Phased array technology for standard ultrasonic testing publication-title: Insight doi: 10.1784/insi.2006.48.4.218 – volume: 19 start-page: 6429 year: 2023 ident: ref_21 article-title: Deep autoencoder thermography for defect detection of carbon fiber composites publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3172902 – volume: 163 start-page: 24 year: 2017 ident: ref_28 article-title: Tensor-based ultrasonic data analysis for defect detection in fiber reinforced polymer (FRP) composites publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.02.007 – volume: 128 start-page: 495 year: 2018 ident: ref_11 article-title: B-scan ultrasonic testing of rivets in multilayer structures based on short-time Fourier transform analysis publication-title: Measurement doi: 10.1016/j.measurement.2018.06.049 – volume: 19 start-page: 303 year: 1993 ident: ref_31 article-title: Principal components analysis (PCA) publication-title: Comput. Geosci. doi: 10.1016/0098-3004(93)90090-R – volume: 43 start-page: 175 year: 2002 ident: ref_6 article-title: Advances in pulsed phase thermography publication-title: Infrared Phys. Technol. doi: 10.1016/S1350-4495(02)00138-X – volume: 71 start-page: 384 year: 2014 ident: ref_27 article-title: Assessing sensitivity of impact echo and ultrasonic surface waves methods for nondestructive evaluation of concrete structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.08.056 – volume: 131 start-page: 16 year: 2018 ident: ref_10 article-title: A time-frequency analysis algorithm for ultrasonic waves generating from a debonding defect by using empirical wavelet transform publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.10.002 – volume: 132 start-page: 024901 year: 2022 ident: ref_9 article-title: Manifold learning and segmentation for ultrasonic inspection of defects in polymer composites publication-title: J. Appl. Phys. doi: 10.1063/5.0087202 – ident: ref_14 doi: 10.3390/polym15010173 – volume: 34 start-page: 075107 year: 2023 ident: ref_13 article-title: Wavelet packet energy-based damage detection using guided ultrasonic waves and support vector machine publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acc963 – volume: 14 start-page: 9518 year: 2021 ident: ref_23 article-title: Shape similarity intersection-over-union loss hybrid model for detection of synthetic aperture radar small ship objects in complex scenes publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3112469 – volume: 68 start-page: 446 year: 2020 ident: ref_24 article-title: An improved chirp coded excitation based on compression pulse weighting method in endoscopic ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.3008920 – ident: ref_4 doi: 10.3390/polym15244691 – ident: ref_25 doi: 10.3390/nano13202741 – volume: 34 start-page: 1395 year: 2021 ident: ref_19 article-title: Massive ultrasonic data compression using wavelet packet transformation optimized by convolutional autoencoders publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3105367 – volume: 61 start-page: 52 year: 2015 ident: ref_7 article-title: Non-destructive evaluation of anchorage zones by ultrasonics techniques publication-title: Ultrasonics doi: 10.1016/j.ultras.2015.03.007 |
| SSID | ssj0000456617 |
| Score | 2.3677433 |
| Snippet | Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high... |
| SourceID | pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1561 |
| SubjectTerms | Analysis Carbon fiber reinforced plastics Deep learning Defects Dimensional stability Fiber reinforced polymers Fourier transforms Machine learning Methods Neural networks Nondestructive testing Performance evaluation Polymer matrix composites Polymeric composites Three dimensional composites Time series Ultrasonic testing Wavelet transforms |
| Title | Stable 3D Deep Convolutional Autoencoder Method for Ultrasonic Testing of Defects in Polymer Composites |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38891506 https://www.proquest.com/docview/3067434238 https://www.proquest.com/docview/3070799136 https://pubmed.ncbi.nlm.nih.gov/PMC11175136 |
| Volume | 16 |
| WOSCitedRecordID | wos001245757600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KB. dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9NAEIBHtEWCC--HoUSLhOCCadaP9fqE2rQVCBpZqJXCybL3USIFO8RJJf49M_bG1Ehw4WjtQyPP7M7sevwNwCsb6CJFx-YXhSj8SIyVn-o49UP0nmXIiXrXcmY_J9OpnM3SzF24NS6tcrsnthu1rhXdkR9QaBsRrk6-X_7wqWoUfV11JTR2YI8oCVS64dPRu_6OhcIV9NAdWjPE0_3Bsl78_I5BDsZBgg9c0Z8b8jWPNMyWvOZ-Tu_-r-D34I4LPNlhZyn34YapHsCtybbe20O4xLizXBgWHrNjY5ZsUldXzi5p3GZdE_NSmxU7a6tOMwx32cUChW0Ir8vOiddRXbLa4vg2SYTNK5bRq8AxtO9QfphpHsHF6cn55IPvyjD4KorjtY9rXinTkmqsNHEy5kZYbktldZAYoXloY5vguUTz0sZKEuTPoA0ENknGZSzDx7Bb1ZV5CkwbHelACql0ESkhUjyvCZVwLWxc2iDw4O1WI7lyjHIqlbHI8axCCswHCvTgdd992cE5_tbxDak3p0WL86nC_XuAUhH-Kj9E8dMx_dTrwf5Wi7lbzU3-W4UevOybUT30caWoTL2hPsQaTHkoPHjSGUwvUyhlSiRHD-TAlPoOxPgetlTzby3rmxNKFSd99m-5nsPtAKOtLq1hH3bXq415ATfV1XrerEawk8zkCPaOTqbZl1G7RvAp-3iWff0Fav0dKg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKVK5sC-GAoPEcsGq1_H4gFCVUDVqEuWQSuVk7FlKpGCHLEX9U_xG3vNGjQS3Hjh7ZjTLN-9943nzPYDXxlNpjI7NTlOe2gF3pB2rMLZ99J6Z75LqXakzO4omE3F2Fk934GfzFobCKhubWBpqVUj6R35A1DYguTrxcfndpqxRdLvapNCoYHGiL3_gkW39YTjA9X3jeUefZv1ju84qYMsgDDc2QlhKXQqvGKHDyHE1N67JpFFepLlyfROaCGm2cjMTSkGadRqH5JkocrJQ-NjuDdgNEOyiB7vT4Xj6uf2rQwQJOUEl5un7sXOwLBaX35BWIfPibsf5_ekCrvjAbnzmFYd3dOd_m6q7cLum1uyw2gv3YEfn92Gv32S0ewDnyKyzhWb-gA20XrJ-kV_UO4_qbTcFqXoqvWLjMq82Q0LPThc4OWsSEGYzUiTJz1lhsH4ZBsPmOZvS1GMdsqwUAafXD-H0Wsb5CHp5kesnwJRWgfIEF1KlgeQ8xhMpl5GruAkz43kWvG8QkMhahZ2SgSwSPI0RYJIOYCx42xZfVvIjfyv4juCUkFnC9mRav67AXpHAV3KI3Y8derZswX6DmqS2V-vkN2QseNV-xuWh66M018WWypCaYuz63ILHFUDbPvlCxKRVaYHoQLctQCrm3S_5_GupZu6SWCw2-vTf_XoJe8ez8SgZDScnz-CWh9yyCuLYh95mtdXP4aa82MzXqxf1nmTw5bqx_Qulh3f3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74KhwCLxuODGz_X6gFBJiKhSohxaqTdj76NECnaIk6L-NX4dM35RI8GtB87eXY2938586539BuCl8VQaY2Cz05SndsAdaccqjG0fo2fmu6R6V-nMHkbTqTg5iWdb8LO9C0Npla1PrBy1KiT9Ix8QtQ1Irk4MTJMWMRuN3y-_21RBik5a23IaNUQm-vwHbt_KdwcjnOtXnjf-eDT8ZDcVBmwZhOHaRjhLqSsRFiN0GDmu5sY1mTTKizRXrm9CEyHlVm5mQilIv07j63kmipwsFD6OewWuomGcqidMPux1_3eIKiE7qGU9fT92Bsticf4NCRZyMO72wuCfweBCNOxnal4IfePb__NHuwO3GsLN9usVche2dH4PbgzbOnf34RT5drbQzB-xkdZLNizys2Y9Ur_NuiCtT6VX7HNVbZshzWfHC_xQJckKsyPSKclPWWGwf5Ucw-Y5m9E0YB_yt5QXp8sHcHwp77kD23mR60fAlFaB8gQXUqWB5DzGfSqXkau4CTPjeRa8bdGQyEabnUqELBLcoxF4kh54LHjdNV_WoiR_a_iGoJWQs8LxZNrcuUCrSPYr2UfzY4cuM1uw2yIoabxYmfyGjwUvusc4PXSolOa62FAb0liMXZ9b8LAGa2eTL0RMCpYWiB6Muwakbd5_ks-_VhrnLknI4qCP_23Xc7iOgE4OD6aTJ3DTQ8JZZ3bswvZ6tdFP4Zo8W8_L1bNqcTL4ctnA_gX7XX8I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+3D+Deep+Convolutional+Autoencoder+Method+for+Ultrasonic+Testing+of+Defects+in+Polymer+Composites&rft.jtitle=Polymers&rft.au=Liu%2C+Yi&rft.au=Yu%2C+Qing&rft.au=Liu%2C+Kaixin&rft.au=Zhu%2C+Ningtao&rft.date=2024-05-31&rft.pub=MDPI+AG&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=16&rft.issue=11&rft_id=info:doi/10.3390%2Fpolym16111561&rft.externalDocID=A797902694 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |