Stable 3D Deep Convolutional Autoencoder Method for Ultrasonic Testing of Defects in Polymer Composites

Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymers Ročník 16; číslo 11; s. 1561
Hlavní autoři: Liu, Yi, Yu, Qing, Liu, Kaixin, Zhu, Ningtao, Yao, Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 31.05.2024
MDPI
Témata:
ISSN:2073-4360, 2073-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers.
AbstractList Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers.
Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers.Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high reliability, and real-time monitoring. However, defect information in ultrasound images is not easily detectable because of the influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolutional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through 3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the defect information to the original depth location, thereby mitigating the effects of the defect surface and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer visualization results. Consequently, the size, shape, and depth of the defects can be accurately determined. The feasibility of the method was demonstrated through its application to defect detection in carbon-fiber-reinforced polymers.
Audience Academic
Author Yu, Qing
Zhu, Ningtao
Liu, Kaixin
Yao, Yuan
Liu, Yi
AuthorAffiliation 3 Xi’an Zhanshi Testing & Engineering Co., Ltd., Xi’an 710000, China; zhuningtao270@163.com
2 The State Key Laboratory for Electronic Testing Technology, North University of China, Taiyuan 030051, China
4 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China; yliuzju@zjut.edu.cn (Y.L.); 2112102164@zjut.edu.cn (Q.Y.)
AuthorAffiliation_xml – name: 2 The State Key Laboratory for Electronic Testing Technology, North University of China, Taiyuan 030051, China
– name: 3 Xi’an Zhanshi Testing & Engineering Co., Ltd., Xi’an 710000, China; zhuningtao270@163.com
– name: 1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China; yliuzju@zjut.edu.cn (Y.L.); 2112102164@zjut.edu.cn (Q.Y.)
– name: 4 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-4066-689X
  surname: Liu
  fullname: Liu, Yi
– sequence: 2
  givenname: Qing
  surname: Yu
  fullname: Yu, Qing
– sequence: 3
  givenname: Kaixin
  orcidid: 0000-0001-5573-1781
  surname: Liu
  fullname: Liu, Kaixin
– sequence: 4
  givenname: Ningtao
  surname: Zhu
  fullname: Zhu, Ningtao
– sequence: 5
  givenname: Yuan
  orcidid: 0000-0002-0025-6175
  surname: Yao
  fullname: Yao, Yuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38891506$$D View this record in MEDLINE/PubMed
BookMark eNptUt9v1SAYJWbGzblHXw2JL750QmmhfTI3d-pMZjRxeyYt_bhjoXy10CX776W527ItwgNf4JzD-X68JQcBAxDynrNTIVr2eUJ_N3LJOa8lf0WOSqZEUQnJDp7Eh-QkxhuWV1VLydUbciiapuU1k0dk9yd1vQcqzugZwES3GG7RL8lh6DzdLAkhGBxgpj8hXeNALc70yqe5ixicoZcQkws7ijbzLZgUqQv09-orc7Y4ThhdgviOvLadj3Byfx6Tq29fL7fnxcWv7z-2m4vCVHWdikaUxkC2KpRtoFaMg7Tc9sYOpQI5cGFrq1pVDby3tWlYJUqw5VBapVhfN-KYfNnrTks_wmAgZKteT7Mbu_lOY-f085fgrvUOb3Wuoaq5kFnh073CjH-XnJ4eXTTgfRcAl6gFU0y17R768QX0Bpc5F25FSVWJqhSrpdM9atd50C5YzB-bvAcYnckNtS7fb3JWLStlW2XCh6c5PJp_6FoGiD3AzBjjDFYbl7q1Z1nZec2ZXsdDPxuPzCpesB6E_4__B_GvvRI
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_120972
crossref_primary_10_1016_j_coco_2025_102542
crossref_primary_10_1002_cssc_202500480
crossref_primary_10_3390_ai6060124
crossref_primary_10_3390_polym17162222
Cites_doi 10.1016/j.engappai.2022.104978
10.1088/0957-0233/3/1/018
10.3390/s18113958
10.3390/ma16062161
10.1016/S0377-0427(03)00645-9
10.3390/ma16041564
10.3390/ma13245755
10.3390/polym15132970
10.1016/j.ndteint.2023.102804
10.1016/j.chemolab.2016.06.014
10.1109/JSEN.2023.3339245
10.1016/j.conbuildmat.2022.130116
10.1177/0021998320916545
10.1784/insi.2006.48.4.218
10.1109/TII.2022.3172902
10.1016/j.chemolab.2017.02.007
10.1016/j.measurement.2018.06.049
10.1016/0098-3004(93)90090-R
10.1016/S1350-4495(02)00138-X
10.1016/j.conbuildmat.2014.08.056
10.1016/j.apacoust.2017.10.002
10.1063/5.0087202
10.3390/polym15010173
10.1088/1361-6501/acc963
10.1109/JSTARS.2021.3112469
10.1109/TUFFC.2020.3008920
10.3390/polym15244691
10.3390/nano13202741
10.1109/TNNLS.2021.3105367
10.1016/j.ultras.2015.03.007
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.3390/polym16111561
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC11175136
A797902694
38891506
10_3390_polym16111561
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U23A20328
– fundername: National Science and Technology Council, Taiwan
  grantid: 112-2221-E-007-105
– fundername: National Natural Science Foundation of China
  grantid: 62301507
– fundername: National Natural Science Foundation of China
  grantid: 62301507; U23A20328
– fundername: National Science and Technology Council
  grantid: NSTC 112-2221-E-007-105
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c455t-832cce00037f8e5701e6f1fbcfd27e6d13f5f7974d1bf5c80432ef2d2f770b583
IEDL.DBID KB.
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245757600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4360
IngestDate Tue Nov 04 02:05:32 EST 2025
Fri Sep 05 08:41:01 EDT 2025
Fri Jul 25 11:51:48 EDT 2025
Sat Nov 29 10:32:25 EST 2025
Mon Jul 21 05:49:47 EDT 2025
Sat Nov 29 07:13:20 EST 2025
Tue Nov 18 21:06:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords carbon-fiber-reinforced polymer
receptive field
3D convolution
deep autoencoder
ultrasonic testing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-832cce00037f8e5701e6f1fbcfd27e6d13f5f7974d1bf5c80432ef2d2f770b583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0025-6175
0000-0002-4066-689X
0000-0001-5573-1781
OpenAccessLink https://www.proquest.com/docview/3067434238?pq-origsite=%requestingapplication%
PMID 38891506
PQID 3067434238
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175136
proquest_miscellaneous_3070799136
proquest_journals_3067434238
gale_infotracacademiconefile_A797902694
pubmed_primary_38891506
crossref_citationtrail_10_3390_polym16111561
crossref_primary_10_3390_polym16111561
PublicationCentury 2000
PublicationDate 20240531
PublicationDateYYYYMMDD 2024-05-31
PublicationDate_xml – month: 5
  year: 2024
  text: 20240531
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gaydecki (ref_26) 1992; 3
ref_14
You (ref_28) 2017; 163
Chen (ref_23) 2021; 14
Azari (ref_27) 2014; 71
Du (ref_5) 2020; 54
Wang (ref_24) 2020; 68
Shao (ref_1) 2023; 367
Pintelas (ref_22) 2022; 113
ref_18
Kharrat (ref_7) 2015; 61
Liu (ref_10) 2018; 131
Wu (ref_12) 2017; 2017
Maldague (ref_6) 2002; 43
Le (ref_11) 2018; 128
ref_25
Lyu (ref_13) 2023; 34
Berke (ref_30) 2020; 48
You (ref_15) 2016; 157
ref_20
Malfliet (ref_29) 2004; 164
Ratajczak (ref_31) 1993; 19
Liu (ref_21) 2023; 19
ref_3
ref_2
Wang (ref_19) 2021; 34
Liu (ref_9) 2022; 132
ref_8
Cheng (ref_17) 2023; 135
Dai (ref_16) 2024; 24
ref_4
References_xml – volume: 113
  start-page: 104978
  year: 2022
  ident: ref_22
  article-title: A 3D-CAE-CNN model for Deep Representation Learning of 3D images
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104978
– volume: 3
  start-page: 126
  year: 1992
  ident: ref_26
  article-title: The propagation and attenuation of medium-frequency ultrasonic waves in concrete: A signal analytical approach
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/3/1/018
– ident: ref_8
  doi: 10.3390/s18113958
– ident: ref_20
  doi: 10.3390/ma16062161
– volume: 164
  start-page: 529
  year: 2004
  ident: ref_29
  article-title: The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(03)00645-9
– ident: ref_2
  doi: 10.3390/ma16041564
– ident: ref_18
  doi: 10.3390/ma13245755
– ident: ref_3
  doi: 10.3390/polym15132970
– volume: 135
  start-page: 102804
  year: 2023
  ident: ref_17
  article-title: Automatic defect depth estimation for ultrasonic testing in carbon fiber reinforced composites using deep learning
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2023.102804
– volume: 2017
  start-page: 7283450
  year: 2017
  ident: ref_12
  article-title: A signal decomposition method for ultrasonic guided wave generated from debonding combining smoothed pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking
  publication-title: Shock Vib.
– volume: 157
  start-page: 35
  year: 2016
  ident: ref_15
  article-title: Feature-selective clustering for ultrasonic-based automatic defect detection in FRP structures
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.06.014
– volume: 24
  start-page: 2145
  year: 2024
  ident: ref_16
  article-title: TimeDDPM: Time series augmentation strategy for industrial soft sensing
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3339245
– volume: 367
  start-page: 130116
  year: 2023
  ident: ref_1
  article-title: Durability life prediction and horizontal bearing characteristics of CFRP composite piles in marine environments
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.130116
– volume: 54
  start-page: 3527
  year: 2020
  ident: ref_5
  article-title: Reconstruction of cracks in a carbon fiber-reinforced polymer laminate plate from signals of eddy current testing
  publication-title: J. Compos Mater.
  doi: 10.1177/0021998320916545
– volume: 48
  start-page: 218
  year: 2020
  ident: ref_30
  article-title: Phased array technology for standard ultrasonic testing
  publication-title: Insight
  doi: 10.1784/insi.2006.48.4.218
– volume: 19
  start-page: 6429
  year: 2023
  ident: ref_21
  article-title: Deep autoencoder thermography for defect detection of carbon fiber composites
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3172902
– volume: 163
  start-page: 24
  year: 2017
  ident: ref_28
  article-title: Tensor-based ultrasonic data analysis for defect detection in fiber reinforced polymer (FRP) composites
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.02.007
– volume: 128
  start-page: 495
  year: 2018
  ident: ref_11
  article-title: B-scan ultrasonic testing of rivets in multilayer structures based on short-time Fourier transform analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.06.049
– volume: 19
  start-page: 303
  year: 1993
  ident: ref_31
  article-title: Principal components analysis (PCA)
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(93)90090-R
– volume: 43
  start-page: 175
  year: 2002
  ident: ref_6
  article-title: Advances in pulsed phase thermography
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/S1350-4495(02)00138-X
– volume: 71
  start-page: 384
  year: 2014
  ident: ref_27
  article-title: Assessing sensitivity of impact echo and ultrasonic surface waves methods for nondestructive evaluation of concrete structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.08.056
– volume: 131
  start-page: 16
  year: 2018
  ident: ref_10
  article-title: A time-frequency analysis algorithm for ultrasonic waves generating from a debonding defect by using empirical wavelet transform
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.10.002
– volume: 132
  start-page: 024901
  year: 2022
  ident: ref_9
  article-title: Manifold learning and segmentation for ultrasonic inspection of defects in polymer composites
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0087202
– ident: ref_14
  doi: 10.3390/polym15010173
– volume: 34
  start-page: 075107
  year: 2023
  ident: ref_13
  article-title: Wavelet packet energy-based damage detection using guided ultrasonic waves and support vector machine
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acc963
– volume: 14
  start-page: 9518
  year: 2021
  ident: ref_23
  article-title: Shape similarity intersection-over-union loss hybrid model for detection of synthetic aperture radar small ship objects in complex scenes
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3112469
– volume: 68
  start-page: 446
  year: 2020
  ident: ref_24
  article-title: An improved chirp coded excitation based on compression pulse weighting method in endoscopic ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3008920
– ident: ref_4
  doi: 10.3390/polym15244691
– ident: ref_25
  doi: 10.3390/nano13202741
– volume: 34
  start-page: 1395
  year: 2021
  ident: ref_19
  article-title: Massive ultrasonic data compression using wavelet packet transformation optimized by convolutional autoencoders
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3105367
– volume: 61
  start-page: 52
  year: 2015
  ident: ref_7
  article-title: Non-destructive evaluation of anchorage zones by ultrasonics techniques
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2015.03.007
SSID ssj0000456617
Score 2.3677433
Snippet Ultrasonic testing is widely used for defect detection in polymer composites owing to advantages such as fast processing speed, simple operation, high...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1561
SubjectTerms Analysis
Carbon fiber reinforced plastics
Deep learning
Defects
Dimensional stability
Fiber reinforced polymers
Fourier transforms
Machine learning
Methods
Neural networks
Nondestructive testing
Performance evaluation
Polymer matrix composites
Polymeric composites
Three dimensional composites
Time series
Ultrasonic testing
Wavelet transforms
Title Stable 3D Deep Convolutional Autoencoder Method for Ultrasonic Testing of Defects in Polymer Composites
URI https://www.ncbi.nlm.nih.gov/pubmed/38891506
https://www.proquest.com/docview/3067434238
https://www.proquest.com/docview/3070799136
https://pubmed.ncbi.nlm.nih.gov/PMC11175136
Volume 16
WOSCitedRecordID wos001245757600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KB.
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9NAEIBHtEWCC--HoUSLhOCCadaP9fqE2rQVCBpZqJXCybL3USIFO8RJJf49M_bG1Ehw4WjtQyPP7M7sevwNwCsb6CJFx-YXhSj8SIyVn-o49UP0nmXIiXrXcmY_J9OpnM3SzF24NS6tcrsnthu1rhXdkR9QaBsRrk6-X_7wqWoUfV11JTR2YI8oCVS64dPRu_6OhcIV9NAdWjPE0_3Bsl78_I5BDsZBgg9c0Z8b8jWPNMyWvOZ-Tu_-r-D34I4LPNlhZyn34YapHsCtybbe20O4xLizXBgWHrNjY5ZsUldXzi5p3GZdE_NSmxU7a6tOMwx32cUChW0Ir8vOiddRXbLa4vg2SYTNK5bRq8AxtO9QfphpHsHF6cn55IPvyjD4KorjtY9rXinTkmqsNHEy5kZYbktldZAYoXloY5vguUTz0sZKEuTPoA0ENknGZSzDx7Bb1ZV5CkwbHelACql0ESkhUjyvCZVwLWxc2iDw4O1WI7lyjHIqlbHI8axCCswHCvTgdd992cE5_tbxDak3p0WL86nC_XuAUhH-Kj9E8dMx_dTrwf5Wi7lbzU3-W4UevOybUT30caWoTL2hPsQaTHkoPHjSGUwvUyhlSiRHD-TAlPoOxPgetlTzby3rmxNKFSd99m-5nsPtAKOtLq1hH3bXq415ATfV1XrerEawk8zkCPaOTqbZl1G7RvAp-3iWff0Fav0dKg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKVK5sC-GAoPEcsGq1_H4gFCVUDVqEuWQSuVk7FlKpGCHLEX9U_xG3vNGjQS3Hjh7ZjTLN-9943nzPYDXxlNpjI7NTlOe2gF3pB2rMLZ99J6Z75LqXakzO4omE3F2Fk934GfzFobCKhubWBpqVUj6R35A1DYguTrxcfndpqxRdLvapNCoYHGiL3_gkW39YTjA9X3jeUefZv1ju84qYMsgDDc2QlhKXQqvGKHDyHE1N67JpFFepLlyfROaCGm2cjMTSkGadRqH5JkocrJQ-NjuDdgNEOyiB7vT4Xj6uf2rQwQJOUEl5un7sXOwLBaX35BWIfPibsf5_ekCrvjAbnzmFYd3dOd_m6q7cLum1uyw2gv3YEfn92Gv32S0ewDnyKyzhWb-gA20XrJ-kV_UO4_qbTcFqXoqvWLjMq82Q0LPThc4OWsSEGYzUiTJz1lhsH4ZBsPmOZvS1GMdsqwUAafXD-H0Wsb5CHp5kesnwJRWgfIEF1KlgeQ8xhMpl5GruAkz43kWvG8QkMhahZ2SgSwSPI0RYJIOYCx42xZfVvIjfyv4juCUkFnC9mRav67AXpHAV3KI3Y8derZswX6DmqS2V-vkN2QseNV-xuWh66M018WWypCaYuz63ILHFUDbPvlCxKRVaYHoQLctQCrm3S_5_GupZu6SWCw2-vTf_XoJe8ez8SgZDScnz-CWh9yyCuLYh95mtdXP4aa82MzXqxf1nmTw5bqx_Qulh3f3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74KhwCLxuODGz_X6gFBJiKhSohxaqTdj76NECnaIk6L-NX4dM35RI8GtB87eXY2938586539BuCl8VQaY2Cz05SndsAdaccqjG0fo2fmu6R6V-nMHkbTqTg5iWdb8LO9C0Npla1PrBy1KiT9Ix8QtQ1Irk4MTJMWMRuN3y-_21RBik5a23IaNUQm-vwHbt_KdwcjnOtXnjf-eDT8ZDcVBmwZhOHaRjhLqSsRFiN0GDmu5sY1mTTKizRXrm9CEyHlVm5mQilIv07j63kmipwsFD6OewWuomGcqidMPux1_3eIKiE7qGU9fT92Bsticf4NCRZyMO72wuCfweBCNOxnal4IfePb__NHuwO3GsLN9usVche2dH4PbgzbOnf34RT5drbQzB-xkdZLNizys2Y9Ur_NuiCtT6VX7HNVbZshzWfHC_xQJckKsyPSKclPWWGwf5Ucw-Y5m9E0YB_yt5QXp8sHcHwp77kD23mR60fAlFaB8gQXUqWB5DzGfSqXkau4CTPjeRa8bdGQyEabnUqELBLcoxF4kh54LHjdNV_WoiR_a_iGoJWQs8LxZNrcuUCrSPYr2UfzY4cuM1uw2yIoabxYmfyGjwUvusc4PXSolOa62FAb0liMXZ9b8LAGa2eTL0RMCpYWiB6Muwakbd5_ks-_VhrnLknI4qCP_23Xc7iOgE4OD6aTJ3DTQ8JZZ3bswvZ6tdFP4Zo8W8_L1bNqcTL4ctnA_gX7XX8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+3D+Deep+Convolutional+Autoencoder+Method+for+Ultrasonic+Testing+of+Defects+in+Polymer+Composites&rft.jtitle=Polymers&rft.au=Liu%2C+Yi&rft.au=Yu%2C+Qing&rft.au=Liu%2C+Kaixin&rft.au=Zhu%2C+Ningtao&rft.date=2024-05-31&rft.pub=MDPI+AG&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=16&rft.issue=11&rft_id=info:doi/10.3390%2Fpolym16111561&rft.externalDocID=A797902694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon