An exploration-enhanced hybrid algorithm based on regularity evolution for multi-objective multi-UAV 3-D path planning
Path planning poses a complex optimization challenge essential for the safe operation and successful mission execution of unmanned aerial vehicles (UAVs). Developing objectives, constraints, and decision-making processes for three-dimensional path planning involving multiple UAVs presents substantia...
Uložené v:
| Vydané v: | Complex & intelligent systems Ročník 11; číslo 5; s. 225 - 20 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.05.2025
Springer Nature B.V Springer |
| Predmet: | |
| ISSN: | 2199-4536, 2198-6053 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Path planning poses a complex optimization challenge essential for the safe operation and successful mission execution of unmanned aerial vehicles (UAVs). Developing objectives, constraints, and decision-making processes for three-dimensional path planning involving multiple UAVs presents substantial challenges within the multi-objective optimization community. Traditional modeling approaches primarily aim to minimize path length and collision risks, often overlooking the need for a quantitative assessment of communication quality among UAVs. This neglect causes an inadequate representation of their true cooperative capabilities. In addition, there is difficulty in achieving an optimal balance between convergence, diversity, and feasibility. Therefore, this study introduces a bi-objective, three-dimensional path planning model specifically designed for UAVs. This model features an objective function that quantitatively evaluates inter-UAV communication quality throughout their flights. To solve this problem, this study proposes the dual-population regularity evolution algorithm (DPREA), which incorporates an auto-switching regularity evolutionary reproduction operator known as autoRE. It conducts extensive experiments across six testing suites and three path-planning simulation cases to validate the effectiveness of DPREA. The simulation results showed that its performance in addressing constrained multi-objective problems is significantly superior or at least comparable to that of state-of-the-art algorithms in most instances. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2199-4536 2198-6053 |
| DOI: | 10.1007/s40747-025-01846-4 |