Biological effects of inhaled hydraulic fracturing sand dust. III. Cytotoxicity and pro-inflammatory responses in cultured murine macrophage cells

Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crys...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology and applied pharmacology Vol. 408; p. 115281
Main Authors: Olgun, Nicole S., Morris, Anna M., Stefaniak, Aleksandr B., Bowers, Lauren N., Knepp, Alycia K., Duling, Matthew G., Mercer, Robert R., Kashon, Michael L., Fedan, Jeffrey S., Leonard, Stephen S.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.12.2020
Subjects:
ISSN:0041-008X, 1096-0333, 1096-0333
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur. •FSD is cytotoxic to RAW 264.7 cells, causing inflammation and cell death.•Enhanced dark-field microscopy revealed engulfment of FSD by macrophages.•Immunofluorescent staining against TNFα showed cellular blebbing caused by FSD.
AbstractList Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (˙OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.
Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.
Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur. •FSD is cytotoxic to RAW 264.7 cells, causing inflammation and cell death.•Enhanced dark-field microscopy revealed engulfment of FSD by macrophages.•Immunofluorescent staining against TNFα showed cellular blebbing caused by FSD.
Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical ( OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.
ArticleNumber 115281
Author Fedan, Jeffrey S.
Knepp, Alycia K.
Morris, Anna M.
Bowers, Lauren N.
Duling, Matthew G.
Olgun, Nicole S.
Stefaniak, Aleksandr B.
Leonard, Stephen S.
Mercer, Robert R.
Kashon, Michael L.
AuthorAffiliation a Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
b Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
AuthorAffiliation_xml – name: b Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– name: a Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
Author_xml – sequence: 1
  givenname: Nicole S.
  surname: Olgun
  fullname: Olgun, Nicole S.
  email: nolgun@cdc.gov
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 2
  givenname: Anna M.
  surname: Morris
  fullname: Morris, Anna M.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 3
  givenname: Aleksandr B.
  surname: Stefaniak
  fullname: Stefaniak, Aleksandr B.
  organization: Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 4
  givenname: Lauren N.
  surname: Bowers
  fullname: Bowers, Lauren N.
  organization: Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 5
  givenname: Alycia K.
  surname: Knepp
  fullname: Knepp, Alycia K.
  organization: Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 6
  givenname: Matthew G.
  surname: Duling
  fullname: Duling, Matthew G.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 7
  givenname: Robert R.
  surname: Mercer
  fullname: Mercer, Robert R.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 8
  givenname: Michael L.
  surname: Kashon
  fullname: Kashon, Michael L.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 9
  givenname: Jeffrey S.
  surname: Fedan
  fullname: Fedan, Jeffrey S.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
– sequence: 10
  givenname: Stephen S.
  surname: Leonard
  fullname: Leonard, Stephen S.
  organization: Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33065155$$D View this record in MEDLINE/PubMed
BookMark eNp9ks2KFDEUhYOMOD2jL-BCsnRTbVJJ6gdEcBp_GgbcKLgL6dRNd5pUUiapwX4Nn9gUPSPqYlaB3HO-y73nXqELHzwg9JKSNSW0eXNcZ6WmdU3q8kFF3dEnaEVJ31SEMXaBVoRwWhHSfb9EVykdCSE95_QZumSMNIIKsUK_bmxwYW-1chiMAZ0TDgZbf1AOBnw4DVHNzmpsotJ5jtbvcVJ-wMOc8hpvt9s13pxyyOGn1Taf8FKbYqisN06No8ohnnCENAWfIBUw1rMroAIfFxzgUekYpoPaA9bgXHqOnhrlEry4f6_Rt48fvm4-V7dfPm03728rzYXIVds0zdAIU-ue7wgfeMsVJTvChp512jBWM256AKZ6MB0ps-2AMlW3grQt6QW7Ru_O3GnejTBo8DkqJ6doRxVPMigr_614e5D7cCfbXtSE0gJ4fQ-I4ccMKcvRpmUE5SHMSdZc0I43NW2L9NXfvf40eQiiCLqzoOwipQhGlm2qbMPS2jpJiVwyl0e5ZC6XzOU582Kt_7M-0B81vT2boGz4zkKUSVvwGgYbyxHIIdjH7L8Bsq7I7g
CitedBy_id crossref_primary_10_1080_09637486_2020_1849039
crossref_primary_10_1016_j_taap_2020_115329
crossref_primary_10_1016_j_taap_2020_115284
crossref_primary_10_1016_j_taap_2020_115282
crossref_primary_10_1016_j_taap_2020_115256
crossref_primary_10_1016_j_taap_2020_115300
crossref_primary_10_3390_atmos13111818
crossref_primary_10_1016_j_scitotenv_2023_168948
crossref_primary_10_1016_j_taap_2020_115242
crossref_primary_10_1016_j_taap_2020_115330
crossref_primary_10_1016_j_cej_2021_133452
crossref_primary_10_1016_j_jep_2021_113941
crossref_primary_10_1016_j_taap_2020_115280
crossref_primary_10_1016_j_scitotenv_2022_153727
Cites_doi 10.1016/S0891-5849(03)00149-7
10.1186/s12931-016-0478-5
10.1164/ajrccm.164.9.2101036
10.1371/journal.pone.0092634
10.1186/s12989-018-0259-z
10.1128/AEM.00692-07
10.3389/fphys.2014.00352
10.1080/10937409809524551
10.1016/j.nano.2015.03.004
10.3109/08958378.2015.1066905
10.1186/1743-8977-9-32
10.2353/ajpath.2010.100281
10.1021/es062347t
10.1016/j.taap.2020.115256
10.1006/bbrc.1995.2383
10.3109/10408444.2011.576008
10.1016/j.taap.2020.115300
10.1016/j.taap.2020.115242
10.1016/j.freeradbiomed.2004.09.010
10.1039/C3EM00441D
10.1080/15459624.2013.788352
10.1097/ACI.0b013e32802bf8a5
10.1016/j.freeradbiomed.2007.12.027
10.1080/15287390903129291
10.1016/j.taap.2020.115280
10.1016/j.taap.2020.115282
10.1016/j.petlm.2015.11.001
10.2174/157016107781024082
10.1371/journal.pone.0014647
10.1080/10937400701436460
10.1038/ni.1631
10.18632/oncotarget.5722
10.1016/j.taap.2014.09.008
10.7150/ijms.24715
10.1155/2016/5091838
10.1080/08958370701496202
10.1165/rcmb.2008-0046OC
10.1039/C6EM00413J
10.1371/journal.pone.0101310
10.1016/j.taap.2020.115284
10.3109/17435390.2010.501913
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.taap.2020.115281
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1096-0333
EndPage 115281
ExternalDocumentID PMC7952011
33065155
10_1016_j_taap_2020_115281
S0041008X20304075
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural CDC HHS
  grantid: CC999999
– fundername: NIGMS NIH HHS
  grantid: U54 GM104942
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AATCM
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
C45
CS3
DM4
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LG5
M33
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSJ
SSP
SSZ
T5K
TEORI
TWZ
WH7
ZU3
~G-
.55
.GJ
.HR
29Q
3O-
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
R2-
SEW
SPT
UHS
WUQ
X7M
XPP
Y6R
ZGI
ZKB
ZMT
ZXP
~HD
~KM
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c455t-7666d65f2c94b04d474a10b03d938cf33234f9ee3a9ef80ffebe13a2750770953
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591879400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0041-008X
1096-0333
IngestDate Tue Sep 30 16:55:44 EDT 2025
Mon Sep 29 06:08:49 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Sat Nov 29 07:26:45 EST 2025
Tue Nov 18 22:28:50 EST 2025
Fri Feb 23 02:46:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cytotoxicity
Inflammation
Occupational exposure
Macrophages
Fracking sand dust
Language English
License Copyright © 2020. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-7666d65f2c94b04d474a10b03d938cf33234f9ee3a9ef80ffebe13a2750770953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Nicole S. Olgun: Methodology, Conceptualization, Formal analysis, Investigation, Writing - original draft, Visualization. Anna M. Morris: Investigation. Aleksandr B. Stefaniak: Investigation, Validation, Formal analysis, Methodology. Lauren N. Bowers: Investigation, Validation, Formal analysis. Alycia K. Knepp: Investigation, Validation, Formal analysis. Matthew G. Duling: Investigation, Validation, Formal analysis, Methodology. Robert R. Mercer: Investigation, Validation, Formal analysis, Methodology. Michael L. Kashon: Formal analysis. Jeffrey S. Fedan: Conceptualization, Resources, Writing - review & editing, Supervision, Funding acquisition, Methodology. Stephen S. Leonard: Writing - review & editing, Supervision, Methodology, Conceptualization.
CRediT authorship contribution statement
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7952011
PMID 33065155
PQID 2451846217
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7952011
proquest_miscellaneous_2451846217
pubmed_primary_33065155
crossref_citationtrail_10_1016_j_taap_2020_115281
crossref_primary_10_1016_j_taap_2020_115281
elsevier_sciencedirect_doi_10_1016_j_taap_2020_115281
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Toxicology and applied pharmacology
PublicationTitleAlternate Toxicol Appl Pharmacol
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Borm, Fowler, Kirkland (bb0030) 2018; 15
Huaux (bb0120) 2007; 7
Nemmar, Vanbilloen, Hoylaerts, Hoet, Verbruggen, Nemery (bb0190) 2001; 164
Benson, Wilson (bb0020) 2015
Costantini, Gilberti, Knecht (bb0060) 2011; 6
Leonard, Harris, Shi (bb0165) 2004; 37
Rittenour, Ciaccio, Barnes, Kashon, Lemons, Beezhold, Green (bb0215) 2014; 16
Kim, Joachim, Choi, Kim (bb0145) 2015; 11
Pitkaranta, Meklin, Hyvarinen, Paulin, Auvinen, Nevalainen, Rintala (bb0210) 2008; 74
Kawasaki (bb0140) 2015; 27
McCabe, Khan, Zhang, Mason, McCabe (bb0185) 1995; 95
Sandberg, Lag, Holme, Friede, Gualtieri, Kruszewski, Schwarze, Skuland, Refsnes (bb0230) 2012; 9
Investigative Team (bb0135) 2020
Chen, Sun, Kuh, Gaydos, Demers (bb0050) 1995; 214
Shi, Castranova, Halliwell, Vallyathan (bb0240) 1998; 1
Azad, Rojanasakul, Vallyathan (bb0010) 2008; 11
Sager, Roberts, Umbright, Barger, Kashon, Fedan, Joseph (bb0225) 2020
Vallyathan, Shi, Castranova (bb0255) 1998; 106
Hamilton, Thakur, Holian (bb0105) 2008; 44
Gwinn, Leonard, Sargent, Lowry, McKinstry, Meighan, Reynolds, Kashon, Castranova, Vallyathan (bb0100) 2009; 72
Harijith, Ebenezer, Natarajan (bb0110) 2014; 5
Anderson, Shane, Long, Marrocco, Lukomska, Roberts, Marshall, Fedan (bb0005) 2020
Olgun, Hanna, Reznik (bb0205) 2015; 282
Fedan, Hubbs, Barger, Schwegler-Berry, Friend, Leonard, Thompson, Jackson, Snawder, C, Dozier, Coyle, Kashon, Park, McKinney, Roberts (bb0080) 2020
Chan, Tsui, Law, So, Leung, Sham, Tsui, Chan (bb0040) 2018; 15
Liang, Sayed, Al-Muntasheri, Chang, Leiming (bb0170) 2016; 2
Smollich, Wulfing (bb0245) 2007; 5
IARC (bb0125) 1997; Vol. 68
Chester, Yacoub (bb0055) 2014; 2014
Russ, Thompson, Reynolds, Roberts, Mercer, Porter, McKinney, Dey, Barger, Cumpston, Batchelor, Kashon, Kodali, Sriram, Fedan (bb0220) 2020
Lopes-Pacheco, Bandeira, Morales (bb0175) 2016; 2016
Esswein, Breitenstein, Snawder, Kiefer, Silber (bb0070) 2012; 10
Fedan (bb0075) 2020
Badding, Fix, Antonini, Leonard (bb0015) 2014; 9
Borm, Tran, Donaldson (bb0025) 2011; 41
Dalal, Shi, Vallyathan (bb0065) 1990
Niechi, Silva, Cabello, Huerta, Carrasco, Villar, Cataldo, Marcelain, Armisen, Varas-Godoy, Fernandez, Tapia (bb0195) 2015; 6
(bb0035) 1996
IARC (bb0130) 2012; 100C
Gilberti, Joshi, Knecht (bb0090) 2008; 39
Hornung, Bauernfeind, Halle, Samstad, Kono, Rock, Fitzgerald, Latz (bb0115) 2008; 9
Chang, Chang, Hwang, Kong (bb0045) 2007; 41
Gonzalez, Thomassen, Plas, Rabolli, Napierska, Decordier, Roelants, Hoet, Kirschhock, Martens, Lison, Kirsch-Volders (bb0095) 2010; 4
Kusaka, Nakayama, Nakamura, Ishimiya, Furusawa, Ogasawara (bb0155) 2014; 9
Olgun, Patel, Stephani, Lengyel, Reznik (bb0200) 2010; 177
Zelko, Zhu, Ritzenthaler, Roman (bb0260) 2016; 17
Lemons, Hogan, Gault, Holland, Sobek, Olsen-Wilson, Park, Park, Gu, Kashon, Green (bb0160) 2017; 19
Krajnak, Russ, McKinney, Waugh, Zheng, Kan, Kashon, Johnson, Cumpston, Fedan (bb0150) 2020
Fubini, Hubbard (bb0085) 2003; 34
Lu, Qian, Zhou, Gan, Tang, Lu, Yuan, Liu (bb0180) 2011; 6
Sriram, Lin, Jefferson, McKinney, Jackson, Cumpston, Cumpston, Cumpston, Leonard, Kashon, Fedan (bb0250) 2020
Schins, Knaapen (bb0235) 2007; 19
Sriram (10.1016/j.taap.2020.115281_bb0250) 2020
Vallyathan (10.1016/j.taap.2020.115281_bb0255) 1998; 106
Fedan (10.1016/j.taap.2020.115281_bb0075) 2020
(10.1016/j.taap.2020.115281_bb0035) 1996
Esswein (10.1016/j.taap.2020.115281_bb0070) 2012; 10
Shi (10.1016/j.taap.2020.115281_bb0240) 1998; 1
Badding (10.1016/j.taap.2020.115281_bb0015) 2014; 9
Chang (10.1016/j.taap.2020.115281_bb0045) 2007; 41
Costantini (10.1016/j.taap.2020.115281_bb0060) 2011; 6
Dalal (10.1016/j.taap.2020.115281_bb0065) 1990
Gilberti (10.1016/j.taap.2020.115281_bb0090) 2008; 39
Hornung (10.1016/j.taap.2020.115281_bb0115) 2008; 9
Liang (10.1016/j.taap.2020.115281_bb0170) 2016; 2
Lu (10.1016/j.taap.2020.115281_bb0180) 2011; 6
Rittenour (10.1016/j.taap.2020.115281_bb0215) 2014; 16
Zelko (10.1016/j.taap.2020.115281_bb0260) 2016; 17
Russ (10.1016/j.taap.2020.115281_bb0220) 2020
McCabe (10.1016/j.taap.2020.115281_bb0185) 1995; 95
Investigative Team (10.1016/j.taap.2020.115281_bb0135) 2020
Kusaka (10.1016/j.taap.2020.115281_bb0155) 2014; 9
Sandberg (10.1016/j.taap.2020.115281_bb0230) 2012; 9
Pitkaranta (10.1016/j.taap.2020.115281_bb0210) 2008; 74
Borm (10.1016/j.taap.2020.115281_bb0025) 2011; 41
Olgun (10.1016/j.taap.2020.115281_bb0205) 2015; 282
Azad (10.1016/j.taap.2020.115281_bb0010) 2008; 11
Hamilton (10.1016/j.taap.2020.115281_bb0105) 2008; 44
Nemmar (10.1016/j.taap.2020.115281_bb0190) 2001; 164
Harijith (10.1016/j.taap.2020.115281_bb0110) 2014; 5
Kim (10.1016/j.taap.2020.115281_bb0145) 2015; 11
Huaux (10.1016/j.taap.2020.115281_bb0120) 2007; 7
Gonzalez (10.1016/j.taap.2020.115281_bb0095) 2010; 4
Sager (10.1016/j.taap.2020.115281_bb0225) 2020
Borm (10.1016/j.taap.2020.115281_bb0030) 2018; 15
Chester (10.1016/j.taap.2020.115281_bb0055) 2014; 2014
Chan (10.1016/j.taap.2020.115281_bb0040) 2018; 15
Lopes-Pacheco (10.1016/j.taap.2020.115281_bb0175) 2016; 2016
Chen (10.1016/j.taap.2020.115281_bb0050) 1995; 214
IARC (10.1016/j.taap.2020.115281_bb0125) 1997; Vol. 68
IARC (10.1016/j.taap.2020.115281_bb0130) 2012; 100C
Benson (10.1016/j.taap.2020.115281_bb0020) 2015
Leonard (10.1016/j.taap.2020.115281_bb0165) 2004; 37
Smollich (10.1016/j.taap.2020.115281_bb0245) 2007; 5
Olgun (10.1016/j.taap.2020.115281_bb0200) 2010; 177
Fubini (10.1016/j.taap.2020.115281_bb0085) 2003; 34
Anderson (10.1016/j.taap.2020.115281_bb0005) 2020
Schins (10.1016/j.taap.2020.115281_bb0235) 2007; 19
Gwinn (10.1016/j.taap.2020.115281_bb0100) 2009; 72
Niechi (10.1016/j.taap.2020.115281_bb0195) 2015; 6
Kawasaki (10.1016/j.taap.2020.115281_bb0140) 2015; 27
Krajnak (10.1016/j.taap.2020.115281_bb0150) 2020
Fedan (10.1016/j.taap.2020.115281_bb0080) 2020
Lemons (10.1016/j.taap.2020.115281_bb0160) 2017; 19
References_xml – volume: 15
  start-page: 23
  year: 2018
  ident: bb0030
  article-title: An updated review of the genotoxicity of respirable crystalline silica
  publication-title: Part Fibre Toxicol
– volume: 44
  start-page: 1246
  year: 2008
  end-page: 1258
  ident: bb0105
  article-title: Silica binding and toxicity in alveolar macrophages
  publication-title: Free Radic. Biol. Med.
– volume: 100C
  start-page: 355
  year: 2012
  end-page: 405
  ident: bb0130
  article-title: Silica dust, crystalline, in the form of quartz or cristobalite
  publication-title: IARC Monogr. Eval. Carcinog. Risks Hum.
– volume: 15
  start-page: 986
  year: 2018
  end-page: 991
  ident: bb0040
  article-title: Regulation of TLR4 in silica-induced inflammation: an underlying mechanism of silicosis
  publication-title: Int. J. Med. Sci.
– volume: 19
  start-page: 189
  year: 2007
  end-page: 198
  ident: bb0235
  article-title: Genotoxicity of poorly soluble particles
  publication-title: Inhal. Toxicol.
– year: 2020
  ident: bb0135
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 19
  start-page: 101
  year: 2017
  end-page: 110
  ident: bb0160
  article-title: Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States
  publication-title: Environ. Sci. Process. Impacts
– volume: 106
  start-page: 1151
  year: 1998
  end-page: 1155
  ident: bb0255
  article-title: Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis
  publication-title: Environ. Health Perspect.
– year: 2015
  ident: bb0020
  article-title: Frac Sand in the United States – A Geological and Industry Overview
– year: 2020
  ident: bb0220
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IV. Pulmonary effects
  publication-title: Toxicol. Appl. Pharmacol.
– year: 2020
  ident: bb0225
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. V. Pulmonary inflammatory, cytotoxic and oxidant effects
  publication-title: Toxicol. Appl. Pharmacol.
– year: 2020
  ident: bb0005
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. VIII. Immunotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 9
  start-page: e92634
  year: 2014
  ident: bb0155
  article-title: Effect of silica particle size on macrophage inflammatory responses
  publication-title: PLoS One
– volume: 17
  start-page: 160
  year: 2016
  ident: bb0260
  article-title: Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica
  publication-title: Respir. Res.
– volume: 5
  start-page: 352
  year: 2014
  ident: bb0110
  article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation
  publication-title: Front. Physiol.
– volume: 177
  start-page: 1929
  year: 2010
  end-page: 1935
  ident: bb0200
  article-title: Blockade of endothelin-1 with a novel series of 1,3,6-trisubstituted-2-carboxy-quinol-4-ones controls infection-associated preterm birth
  publication-title: Am. J. Pathol.
– volume: 16
  start-page: 33
  year: 2014
  end-page: 43
  ident: bb0215
  article-title: Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments
  publication-title: Environ. Sci. Process. Impacts
– volume: 72
  start-page: 1509
  year: 2009
  end-page: 1519
  ident: bb0100
  article-title: The role of p53 in silica-induced cellular and molecular responses associated with carcinogenesis
  publication-title: J Toxicol Environ Health A
– volume: 9
  start-page: 32
  year: 2012
  ident: bb0230
  article-title: Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages
  publication-title: Part. Fibre Toxicol.
– volume: 7
  start-page: 168
  year: 2007
  end-page: 173
  ident: bb0120
  article-title: New developments in the understanding of immunology in silicosis
  publication-title: Curr. Opin. Allergy Clin. Immunol.
– volume: 1
  start-page: 181
  year: 1998
  end-page: 197
  ident: bb0240
  article-title: Reactive oxygen species and silica-induced carcinogenesis
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
– volume: 6
  start-page: 1889
  year: 2011
  end-page: 1901
  ident: bb0180
  article-title: In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells
  publication-title: Int. J. Nanomedicine
– volume: 214
  start-page: 985
  year: 1995
  end-page: 992
  ident: bb0050
  article-title: Essential role of NF-kappa B activation in silica-induced inflammatory mediator production in macrophages
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 5
  start-page: 239
  year: 2007
  end-page: 248
  ident: bb0245
  article-title: The endothelin axis: a novel target for pharmacotherapy of female malignancies
  publication-title: Curr. Vasc. Pharmacol.
– volume: 4
  start-page: 382
  year: 2010
  end-page: 395
  ident: bb0095
  article-title: Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models
  publication-title: Nanotoxicology
– volume: 27
  start-page: 363
  year: 2015
  end-page: 377
  ident: bb0140
  article-title: A mechanistic review of silica-induced inhalation toxicity
  publication-title: Inhal. Toxicol.
– volume: 39
  start-page: 619
  year: 2008
  end-page: 627
  ident: bb0090
  article-title: The phagocytosis of crystalline silica particles by macrophages
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 2016
  year: 2016
  ident: bb0175
  article-title: Cell-based therapy for silicosis
  publication-title: Stem Cells Int.
– volume: 11
  start-page: 1
  year: 2008
  end-page: 15
  ident: bb0010
  article-title: Inflammation and lung cancer: roles of reactive oxygen/nitrogen species
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
– volume: 6
  start-page: 42749
  year: 2015
  end-page: 42760
  ident: bb0195
  article-title: Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability
  publication-title: Oncotarget
– volume: 9
  start-page: 847
  year: 2008
  end-page: 856
  ident: bb0115
  article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
  publication-title: Nat. Immunol.
– volume: 74
  start-page: 233
  year: 2008
  end-page: 244
  ident: bb0210
  article-title: Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture
  publication-title: Appl. Environ. Microbiol.
– year: 2020
  ident: bb0075
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. I. Scope of the investigation
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 2014
  start-page: 62
  year: 2014
  end-page: 78
  ident: bb0055
  article-title: The role of endothelin-1 in pulmonary arterial hypertension
  publication-title: Glob. Cardiol. Sci. Pract.
– year: 2020
  ident: bb0080
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. II. Inhalation exposure system, particle characterization, and effects following intratracheal instillation
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 37
  start-page: 1921
  year: 2004
  end-page: 1942
  ident: bb0165
  article-title: Metal-induced oxidative stress and signal transduction
  publication-title: Free Radic. Biol. Med.
– year: 2020
  ident: bb0250
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. VII. Neuroinflammation and altered synaptic protein expression
  publication-title: Toxicol. Appl. Pharmacol.
– year: 1996
  ident: bb0035
  publication-title: Silica and Silica-Induced Lung Diseases
– year: 2020
  ident: bb0150
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IV. Exposure to fracking sand dust results in changes in factors associated with cardiovascular dysfunction
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 41
  start-page: 2064
  year: 2007
  end-page: 2068
  ident: bb0045
  article-title: In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line
  publication-title: Environ. Sci. Technol.
– start-page: 250
  year: 1990
  end-page: 253
  ident: bb0065
  article-title: Proceedings of the VIIth International Pneumoconioses Conference, August 23-26, 1988, Pittsburgh, Pennsylvania, USA
– volume: 2
  start-page: 26
  year: 2016
  end-page: 39
  ident: bb0170
  article-title: A comprehensive review on proppant technologies
  publication-title: Petroleum
– volume: 9
  year: 2014
  ident: bb0015
  article-title: A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages
  publication-title: PLoS One
– volume: Vol. 68
  year: 1997
  ident: bb0125
  article-title: IARC Monographs on the Evaulation of Carcinogenic Risks to Humans: Silica, some Silicates, Coal Dust and Para-Aramid Fibrils
– volume: 10
  start-page: 347
  year: 2012
  end-page: 356
  ident: bb0070
  article-title: Worker exposure to crystalline silica during hydraulic fracturing
  publication-title: J. Occup. Environ. Hyg.
– volume: 11
  start-page: 1407
  year: 2015
  end-page: 1416
  ident: bb0145
  article-title: Toxicity of silica nanoparticles depends on size, dose, and cell type
  publication-title: Nanomedicine
– volume: 164
  start-page: 1665
  year: 2001
  end-page: 1668
  ident: bb0190
  article-title: Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 282
  start-page: 275
  year: 2015
  end-page: 284
  ident: bb0205
  article-title: BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 6
  start-page: e14647
  year: 2011
  ident: bb0060
  article-title: The phagocytosis and toxicity of amorphous silica
  publication-title: PLoS One
– volume: 34
  start-page: 1507
  year: 2003
  end-page: 1516
  ident: bb0085
  article-title: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis
  publication-title: Free Radic. Biol. Med.
– volume: 41
  start-page: 756
  year: 2011
  end-page: 770
  ident: bb0025
  article-title: The carcinogenic action of crystalline silica: a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism
  publication-title: Crit. Rev. Toxicol.
– volume: 95
  start-page: 165
  year: 1995
  end-page: 169
  ident: bb0185
  article-title: Amplification of bacterial DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis
  publication-title: Pediatrics
– volume: Vol. 68
  year: 1997
  ident: 10.1016/j.taap.2020.115281_bb0125
– volume: 100C
  start-page: 355
  year: 2012
  ident: 10.1016/j.taap.2020.115281_bb0130
  article-title: Silica dust, crystalline, in the form of quartz or cristobalite
  publication-title: IARC Monogr. Eval. Carcinog. Risks Hum.
– volume: 34
  start-page: 1507
  year: 2003
  ident: 10.1016/j.taap.2020.115281_bb0085
  article-title: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(03)00149-7
– volume: 17
  start-page: 160
  year: 2016
  ident: 10.1016/j.taap.2020.115281_bb0260
  article-title: Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica
  publication-title: Respir. Res.
  doi: 10.1186/s12931-016-0478-5
– year: 2015
  ident: 10.1016/j.taap.2020.115281_bb0020
– volume: 164
  start-page: 1665
  year: 2001
  ident: 10.1016/j.taap.2020.115281_bb0190
  article-title: Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.164.9.2101036
– volume: 9
  start-page: e92634
  year: 2014
  ident: 10.1016/j.taap.2020.115281_bb0155
  article-title: Effect of silica particle size on macrophage inflammatory responses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092634
– volume: 15
  start-page: 23
  year: 2018
  ident: 10.1016/j.taap.2020.115281_bb0030
  article-title: An updated review of the genotoxicity of respirable crystalline silica
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-018-0259-z
– volume: 74
  start-page: 233
  year: 2008
  ident: 10.1016/j.taap.2020.115281_bb0210
  article-title: Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00692-07
– volume: 2014
  start-page: 62
  year: 2014
  ident: 10.1016/j.taap.2020.115281_bb0055
  article-title: The role of endothelin-1 in pulmonary arterial hypertension
  publication-title: Glob. Cardiol. Sci. Pract.
– volume: 5
  start-page: 352
  year: 2014
  ident: 10.1016/j.taap.2020.115281_bb0110
  article-title: Reactive oxygen species at the crossroads of inflammasome and inflammation
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00352
– volume: 1
  start-page: 181
  year: 1998
  ident: 10.1016/j.taap.2020.115281_bb0240
  article-title: Reactive oxygen species and silica-induced carcinogenesis
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
  doi: 10.1080/10937409809524551
– volume: 11
  start-page: 1407
  year: 2015
  ident: 10.1016/j.taap.2020.115281_bb0145
  article-title: Toxicity of silica nanoparticles depends on size, dose, and cell type
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2015.03.004
– volume: 27
  start-page: 363
  year: 2015
  ident: 10.1016/j.taap.2020.115281_bb0140
  article-title: A mechanistic review of silica-induced inhalation toxicity
  publication-title: Inhal. Toxicol.
  doi: 10.3109/08958378.2015.1066905
– volume: 9
  start-page: 32
  year: 2012
  ident: 10.1016/j.taap.2020.115281_bb0230
  article-title: Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-9-32
– volume: 177
  start-page: 1929
  year: 2010
  ident: 10.1016/j.taap.2020.115281_bb0200
  article-title: Blockade of endothelin-1 with a novel series of 1,3,6-trisubstituted-2-carboxy-quinol-4-ones controls infection-associated preterm birth
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.100281
– volume: 41
  start-page: 2064
  year: 2007
  ident: 10.1016/j.taap.2020.115281_bb0045
  article-title: In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062347t
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0005
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. VIII. Immunotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115256
– volume: 214
  start-page: 985
  year: 1995
  ident: 10.1016/j.taap.2020.115281_bb0050
  article-title: Essential role of NF-kappa B activation in silica-induced inflammatory mediator production in macrophages
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1995.2383
– volume: 95
  start-page: 165
  year: 1995
  ident: 10.1016/j.taap.2020.115281_bb0185
  article-title: Amplification of bacterial DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis
  publication-title: Pediatrics
– volume: 41
  start-page: 756
  year: 2011
  ident: 10.1016/j.taap.2020.115281_bb0025
  article-title: The carcinogenic action of crystalline silica: a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408444.2011.576008
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0250
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. VII. Neuroinflammation and altered synaptic protein expression
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115300
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0150
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IV. Exposure to fracking sand dust results in changes in factors associated with cardiovascular dysfunction
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115242
– volume: 37
  start-page: 1921
  year: 2004
  ident: 10.1016/j.taap.2020.115281_bb0165
  article-title: Metal-induced oxidative stress and signal transduction
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.09.010
– volume: 16
  start-page: 33
  year: 2014
  ident: 10.1016/j.taap.2020.115281_bb0215
  article-title: Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C3EM00441D
– volume: 10
  start-page: 347
  year: 2012
  ident: 10.1016/j.taap.2020.115281_bb0070
  article-title: Worker exposure to crystalline silica during hydraulic fracturing
  publication-title: J. Occup. Environ. Hyg.
  doi: 10.1080/15459624.2013.788352
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0075
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. I. Scope of the investigation
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 7
  start-page: 168
  year: 2007
  ident: 10.1016/j.taap.2020.115281_bb0120
  article-title: New developments in the understanding of immunology in silicosis
  publication-title: Curr. Opin. Allergy Clin. Immunol.
  doi: 10.1097/ACI.0b013e32802bf8a5
– volume: 44
  start-page: 1246
  year: 2008
  ident: 10.1016/j.taap.2020.115281_bb0105
  article-title: Silica binding and toxicity in alveolar macrophages
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2007.12.027
– year: 1996
  ident: 10.1016/j.taap.2020.115281_bb0035
– volume: 72
  start-page: 1509
  year: 2009
  ident: 10.1016/j.taap.2020.115281_bb0100
  article-title: The role of p53 in silica-induced cellular and molecular responses associated with carcinogenesis
  publication-title: J Toxicol Environ Health A
  doi: 10.1080/15287390903129291
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0225
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. V. Pulmonary inflammatory, cytotoxic and oxidant effects
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115280
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0080
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. II. Inhalation exposure system, particle characterization, and effects following intratracheal instillation
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115282
– volume: 2
  start-page: 26
  year: 2016
  ident: 10.1016/j.taap.2020.115281_bb0170
  article-title: A comprehensive review on proppant technologies
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2015.11.001
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0135
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 5
  start-page: 239
  year: 2007
  ident: 10.1016/j.taap.2020.115281_bb0245
  article-title: The endothelin axis: a novel target for pharmacotherapy of female malignancies
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/157016107781024082
– volume: 6
  start-page: e14647
  year: 2011
  ident: 10.1016/j.taap.2020.115281_bb0060
  article-title: The phagocytosis and toxicity of amorphous silica
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014647
– volume: 11
  start-page: 1
  year: 2008
  ident: 10.1016/j.taap.2020.115281_bb0010
  article-title: Inflammation and lung cancer: roles of reactive oxygen/nitrogen species
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
  doi: 10.1080/10937400701436460
– volume: 106
  start-page: 1151
  issue: Suppl. 5
  year: 1998
  ident: 10.1016/j.taap.2020.115281_bb0255
  article-title: Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis
  publication-title: Environ. Health Perspect.
– volume: 9
  start-page: 847
  year: 2008
  ident: 10.1016/j.taap.2020.115281_bb0115
  article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1631
– volume: 6
  start-page: 42749
  year: 2015
  ident: 10.1016/j.taap.2020.115281_bb0195
  article-title: Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5722
– volume: 282
  start-page: 275
  year: 2015
  ident: 10.1016/j.taap.2020.115281_bb0205
  article-title: BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2014.09.008
– volume: 6
  start-page: 1889
  year: 2011
  ident: 10.1016/j.taap.2020.115281_bb0180
  article-title: In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells
  publication-title: Int. J. Nanomedicine
– start-page: 250
  year: 1990
  ident: 10.1016/j.taap.2020.115281_bb0065
– volume: 15
  start-page: 986
  year: 2018
  ident: 10.1016/j.taap.2020.115281_bb0040
  article-title: Regulation of TLR4 in silica-induced inflammation: an underlying mechanism of silicosis
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.24715
– volume: 2016
  year: 2016
  ident: 10.1016/j.taap.2020.115281_bb0175
  article-title: Cell-based therapy for silicosis
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/5091838
– volume: 19
  start-page: 189
  issue: Suppl. 1
  year: 2007
  ident: 10.1016/j.taap.2020.115281_bb0235
  article-title: Genotoxicity of poorly soluble particles
  publication-title: Inhal. Toxicol.
  doi: 10.1080/08958370701496202
– volume: 39
  start-page: 619
  year: 2008
  ident: 10.1016/j.taap.2020.115281_bb0090
  article-title: The phagocytosis of crystalline silica particles by macrophages
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2008-0046OC
– volume: 19
  start-page: 101
  year: 2017
  ident: 10.1016/j.taap.2020.115281_bb0160
  article-title: Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C6EM00413J
– volume: 9
  year: 2014
  ident: 10.1016/j.taap.2020.115281_bb0015
  article-title: A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101310
– year: 2020
  ident: 10.1016/j.taap.2020.115281_bb0220
  article-title: Biological effects of inhaled hydraulic fracturing sand dust. IV. Pulmonary effects
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2020.115284
– volume: 4
  start-page: 382
  year: 2010
  ident: 10.1016/j.taap.2020.115281_bb0095
  article-title: Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2010.501913
SSID ssj0009441
Score 2.408292
Snippet Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115281
SubjectTerms Animals
Cell Survival
Comet Assay
Cytotoxicity
Dust
Fracking sand dust
Hydraulic Fracking
Inflammation
Interleukin-6
Macrophages
Mice
Occupational exposure
RAW 264.7 Cells
Reactive Oxygen Species
Sand
Tumor Necrosis Factor-alpha
Title Biological effects of inhaled hydraulic fracturing sand dust. III. Cytotoxicity and pro-inflammatory responses in cultured murine macrophage cells
URI https://dx.doi.org/10.1016/j.taap.2020.115281
https://www.ncbi.nlm.nih.gov/pubmed/33065155
https://www.proquest.com/docview/2451846217
https://pubmed.ncbi.nlm.nih.gov/PMC7952011
Volume 408
WOSCitedRecordID wos000591879400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009441
  issn: 0041-008X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3battAEF2cpA-FUtr05l7CFkpeFBlZWlnaxxBS6tKmBrvgN7G6xU6clbHlYP9Gv6kf1hmttJIdGtpCX4TQZbXSHO3M7M6cIeSDJcIYFKln2rHfMxm3hBmCGjVZGIE-52DEsiJR-It3ceGPx3zQav2scmFuZ56U_nrN5_9V1HAMhI2ps38hbt0oHIB9EDpsQeyw_SPBq-qSxbdvBGtM5QRUQWxMNvFCrJDZOsX8KJWkuMTZcyzh0TH6_X7HONvkWZ6tpxGa6IpJIDOhb4CeG7Uqv1ChtUU0l6HYO6DxG2wOI2KxLtgEo4FwXWDZNIBH2GzN-yRKI3heM2jrOf5vs8uV1GhNjGFHoyNbLMoyylIK46s-McyTVMipuC5zd67xzTCbRs866KJwmBCeSOOi05z3sHdjSHRCzla8KNKHmWDWjJV6U2O6hXHWjuLbqAZ9VrBJ3FUgai7jqpMLgWymNuoU11ZVZXaIuYf4MHyWjcvLYHrtkQPbczmMrQen_fPx55r8mTFVubHsXJm8peIMd5_0OwPprgO0G8fbMIxGT8jj0qOhpwqJT0krkYfkeKAEujmhozrDb3lCj-mgIepD8kjNG1OVDveM_KjhS0v40iylJXyphi-t4UtRyLSAL0X40iZ8KZ7bhS_V8IWGaQVfquBLa_jSAr7PyfeP56OzT2ZZN8SMmOvmpgcuedxzUzviLLRYzDwmulZoOTF3_Ch1HNthKU8SR_Ak9S14lzDpOgIrHXge8i--IPsyk8krQp1eKCxu8bAXO0ygsuumaejanCWR6KVum3QrYQVRSaqPtV1mQRU9eRWggAMUcKAE3CaGvmeuKGXuvdqtMBCURrEydgOA7L33va8AE4DGwO8lZJKtloHN3C54HXbXa5OXCkC6H44DLgm4GG3ibUFLX4Bs9Ntn5HRSsNJ73EVn4vU_9vcNeVj_5W_Jfr5YJe_Ig-g2ny4XR2TPG_tH5X_1C48ODFk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+effects+of+inhaled+hydraulic+fracturing+sand+dust.+III.+Cytotoxicity+and+pro-inflammatory+responses+in+cultured+murine+macrophage+cells&rft.jtitle=Toxicology+and+applied+pharmacology&rft.au=Olgun%2C+Nicole+S.&rft.au=Morris%2C+Anna+M.&rft.au=Stefaniak%2C+Aleksandr+B.&rft.au=Bowers%2C+Lauren+N.&rft.date=2020-12-01&rft.pub=Elsevier+Inc&rft.issn=0041-008X&rft.eissn=1096-0333&rft.volume=408&rft_id=info:doi/10.1016%2Fj.taap.2020.115281&rft.externalDocID=S0041008X20304075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-008X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-008X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-008X&client=summon