Code Smells Detection and Visualization: A Systematic Literature Review

Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the su...

Full description

Saved in:
Bibliographic Details
Published in:Archives of computational methods in engineering Vol. 29; no. 1; pp. 47 - 94
Main Authors: Pereira dos Reis, José, Brito e Abreu, Fernando, de Figueiredo Carneiro, Glauco, Anslow, Craig
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.01.2022
Springer Nature B.V
Subjects:
ISSN:1134-3060, 1886-1784
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments.
AbstractList Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments.
Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments.
Author Brito e Abreu, Fernando
de Figueiredo Carneiro, Glauco
Anslow, Craig
Pereira dos Reis, José
Author_xml – sequence: 1
  givenname: José
  orcidid: 0000-0002-2505-9565
  surname: Pereira dos Reis
  fullname: Pereira dos Reis, José
  email: jvprs@iscte-iul.pt
  organization: ISTAR-Iscte, Iscte - Instituto Universitário de Lisboa
– sequence: 2
  givenname: Fernando
  orcidid: 0000-0002-9086-4122
  surname: Brito e Abreu
  fullname: Brito e Abreu, Fernando
  organization: ISTAR-Iscte, Iscte - Instituto Universitário de Lisboa
– sequence: 3
  givenname: Glauco
  orcidid: 0000-0001-6241-1612
  surname: de Figueiredo Carneiro
  fullname: de Figueiredo Carneiro, Glauco
  organization: Universidade Salvador (UNIFACS)
– sequence: 4
  givenname: Craig
  orcidid: 0000-0001-8064-6300
  surname: Anslow
  fullname: Anslow, Craig
  organization: Victoria University of Wellington
BookMark eNp9kFFLwzAQx4MouE2_gE8Bn6u5pk0b38bUKQwEp76GLLtKRtfOJNPNT2-2CoIPgxzJHf9f7u7fJ8dN2yAhF8CugLHi2gOUHBKWxpC5EMnmiPSgLEUCRZkdxzfwLOFMsFPS937BWJ5JmfbIeNTOkU6XWNee3mJAE2zbUN3M6Zv1a13bb72r3NAhnW59wGVMDZ3YgE6HtUP6jJ8Wv87ISaVrj-e_94C83t-9jB6SydP4cTScJCbL85AIU1YzLrUWWSHjqUyagtSQATMIwnAOM5AF5iBZUUmJuSjm1YxlRgqoNOMDctn9u3Ltxxp9UIt27ZrYUqUCBC95mhVRVXYq41rvHVbK2LDfIzhtawVM7WxTnW0q2qb2tqlNRNN_6MrZpXbbwxDvIB_FzTu6v6kOUD_zFoGT
CitedBy_id crossref_primary_10_1080_08874417_2023_2203088
crossref_primary_10_1155_2023_2973250
crossref_primary_10_1016_j_infsof_2025_107835
crossref_primary_10_1080_03772063_2025_2548380
crossref_primary_10_1007_s42979_024_03013_x
crossref_primary_10_1109_ACCESS_2023_3334258
crossref_primary_10_3390_app14146149
crossref_primary_10_1007_s10664_022_10227_1
crossref_primary_10_1142_S0218194025500287
crossref_primary_10_3390_app13158770
crossref_primary_10_1007_s10664_021_10110_5
crossref_primary_10_1109_ACCESS_2023_3302260
crossref_primary_10_1007_s10664_024_10478_0
crossref_primary_10_33889_IJMEMS_2024_9_3_025
crossref_primary_10_1007_s42979_024_02956_5
crossref_primary_10_1016_j_infsof_2025_107760
crossref_primary_10_1109_ACCESS_2024_3397055
Cites_doi 10.1007/s11219-018-9424-8
10.1007/s10664-008-9061-0
10.1007/s10664-011-9171-y
10.1145/2601248.2601268
10.1109/MOBILESoft.2017.29
10.1109/SANER.2017.7884659
10.1016/j.infsof.2013.08.002
10.1007/s10664-013-9290-8
10.1016/j.jss.2006.07.009
10.3390/e20050372
10.1002/smr.1737
10.1109/WCRE.2002.1173068
10.1016/j.cosrev.2020.100266
10.1016/j.jss.2020.110610
10.1007/978-3-642-14107-2_2
10.12688/f1000research.7070.1
10.1007/978-3-319-62407-5
10.23919/CISTI.2017.7975961
10.4135/9781412985000
10.1109/TSE.2014.2331057
10.1016/j.entcs.2005.02.059
10.11613/BM.2012.031
10.1002/spe.2639
10.1017/CBO9781107415324.004
10.1016/j.infsof.2013.01.008
10.1016/j.infsof.2010.12.010
10.1007/s10664-008-9060-1
10.1016/j.infsof.2010.12.006
10.1007/s11831-019-09348-6
10.1109/ICSM.2004.1357825
10.1109/TSE.2009.50
10.1109/ICPC.2016.7503704
10.1016/j.infsof.2014.08.002
10.1016/j.infsof.2008.01.006
10.1109/ICSM.2007.4362679
10.1145/2915970.2915984
10.1109/JCSSE.2016.7748884
10.1109/SATE.2016.10
10.1109/SCAM.2013.6648192
10.1145/1287624.1287632
10.2307/2529310
10.1016/j.asej.2017.03.002
10.1145/320384.320389
10.1109/CSMR.2008.4493342
10.1109/ICSM.2012.6405287
10.1016/j.jss.2018.06.027
10.1016/j.infsof.2018.12.009
10.1016/j.jss.2018.07.035
10.1109/ICSM.2010.5609564
ContentType Journal Article
Copyright CIMNE, Barcelona, Spain 2021
CIMNE, Barcelona, Spain 2021.
Copyright_xml – notice: CIMNE, Barcelona, Spain 2021
– notice: CIMNE, Barcelona, Spain 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11831-021-09566-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 94
ExternalDocumentID 10_1007_s11831_021_09566_x
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c455t-6c8fb39aa6479479fc2219a1410ce16c331b197e51907f99e567dfb04c961fa03
IEDL.DBID RSV
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627226000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
IngestDate Thu Sep 18 00:03:38 EDT 2025
Tue Nov 18 22:28:55 EST 2025
Sat Nov 29 06:21:47 EST 2025
Fri Feb 21 02:46:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-6c8fb39aa6479479fc2219a1410ce16c331b197e51907f99e567dfb04c961fa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9086-4122
0000-0002-2505-9565
0000-0001-6241-1612
0000-0001-8064-6300
OpenAccessLink http://hdl.handle.net/10071/23475
PQID 2616383247
PQPubID 1486352
PageCount 48
ParticipantIDs proquest_journals_2616383247
crossref_citationtrail_10_1007_s11831_021_09566_x
crossref_primary_10_1007_s11831_021_09566_x
springer_journals_10_1007_s11831_021_09566_x
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References MerinoLGhafariMAnslowCNierstraszOA systematic literature review of software visualization evaluationJ Syst Softw201814416518010.1016/j.jss.2018.06.027
ChenLBabarMAA systematic review of evaluation of variability management approaches in software product linesInf Softw Technol201153434436210.1016/j.infsof.2010.12.006
CarverJCJuristoNBaldassarreMTVegasSReplications of software engineering experimentsEmpir Softw Eng201419226727610.1007/s10664-013-9290-8
Chen Z, Chen L, Ma W, Xu B (2016) Detecting code smells in Python programs. In: 2016 international conference on Software Analysis, Testing and Evolution (SATE), pp 18–23. https://doi.org/10.1109/SATE.2016.10
Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic programming. In: 2017 IEEE/ACM 4th international conference on Mobile Software Engineering and Systems (MOBILESoft), pp 122–132. https://doi.org/10.1109/MOBILESoft.2017.29
Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell detection tools. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering. ACM, Limerick, Ireland. https://doi.org/10.1145/2915970.2915984
Sirikul K, Soomlek C (2016) Automated detection of code smells caused by null checking conditions in Java programs. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp 1–7. https://doi.org/10.1109/JCSSE.2016.7748884
RattanDBhatiaRSinghMSoftware clone detection: a systematic reviewInf Softw Technol20135571165119910.1016/j.infsof.2013.01.008
KhomhFPentaMDGuéhéneucYGAntoniolGAn exploratory study of the impact of antipatterns on class change- and fault-pronenessEmpir Softw Eng201217324327510.1007/s10664-011-9171-y
Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects? In: IEEE International Conference on Software Maintenance, ICSM, pp 306–315. https://doi.org/10.1109/ICSM.2012.6405287
FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley1034.62113
HammadMBasitHAJarzabekSKoschkeRA systematic mapping study of clone visualizationComput Sci Rev20203710026610.1016/j.cosrev.2020.100266
ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1
Gerlitz T, Tran QM, Dziobek C (2015) Detection and handling of model smells for matlab/simulink models. In: MASE@MoDELS
BrownWHMalveauRCMcCormickHWSMowbrayTJAntiPatterns: refactoring software, architectures, and projects in crisis19981HobokenWiley
NoblitGHareRMeta-ethnography: synthesizing qualitative studies. Qualitative research methods1988Thousand OaksSAGE Publications10.4135/9781412985000
BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009
McHughMLInterrater reliability: the kappa statisticBiochem Med2012223276282297024510.11613/BM.2012.031
SabirFPalmaFRasoolGGuéhéneucYGMohaNA systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systemsSoftw Pract Exp201949133910.1002/spe.2639
KitchenhamBThe role of replications in empirical software engineering—a word of warningEmpir Softw Eng200813221922110.1007/s10664-008-9061-0
YamashitaAMoonenLTo what extent can maintenance problems be predicted by code smell detection? An empirical studyInf Softw Technol201355122223224210.1016/j.infsof.2013.08.002
Travassos G, Shull F, Fredericks M, Basili VR (1999) Detecting defects in object-oriented designs: using reading techniques to increase software quality. In: Proceedings of the 14th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications. ACM, New York, NY, USA, OOPSLA ’99, pp 47–56. https://doi.org/10.1145/320384.320389
ZhangHBabarMATellPIdentifying relevant studies in software engineeringInf Softw Technol201153662563710.1016/j.infsof.2010.12.010
MartinRCAgile software development: principles, patterns, and practices20021Upper Saddle RiverPrentice Hall
FowlerMBeckKBrantJOpdykeWRobertsDRefactoring: improving the design of existing code1999BostonAddison-Wesley Longman Publishing Co., Inc
KaurAA systematic literature review on empirical analysis of the relationship between code smells and software quality attributesArch Comput Methods Eng201910.1007/s11831-019-09348-6
DybaTDingsøyrTEmpirical studies of agile software development: a systematic reviewInf Softw Technol2008509–1083385910.1016/j.infsof.2008.01.006
Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: identification and removal of type-checking bad smells. In: CSMR 2008—12th European conference on software maintenance and reengineering, pp 329–331. https://doi.org/10.1109/CSMR.2008.4493342
dos Reis JP, e Abreu FB, de F Carneiro G (2017) Code smells detection 2.0: crowdsmelling and visualization. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp 1–4. https://doi.org/10.23919/CISTI.2017.7975961
Palomba F, Nucci DD, Panichella A, Zaidman A, Lucia AD (2017) Lightweight detection of android-specific code smells: the adoctor project. In: 2017 IEEE 24th international conference on Software Analysis, Evolution and Reengineering (SANER), pp 487–491. https://doi.org/10.1109/SANER.2017.7884659
Wasylkowski A, Zeller A, Lindig C (2007) Detecting object usage anomalies. In: Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on the foundations of software engineering. ACM, Dubrovnik, Croatia. https://doi.org/10.1145/1287624.1287632
RasoolGArshadZA review of code smell mining techniquesJ Softw Evol Process2015271186789510.1002/smr.1737
Mantyla M, Vanhanen J, Lassenius C (2004) Bad smells—humans as code critics. In: 20th IEEE international conference on software maintenance, 2004 Proceedings, pp 399–408. https://doi.org/10.1109/ICSM.2004.1357825
WakeWCRefactoring workbook2003BostonAddison-Wesley Longman Publishing Co., Inc
AzeemMIPalombaFShiLWangQMachine learning techniques for code smell detection: a systematic literature review and meta-analysisInf Softw Technol201910811513810.1016/j.infsof.2018.12.009
Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on Evaluation and Assessment in Software Engineering—EASE ’14, pp 1–10. https://doi.org/10.1145/2601248.2601268, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3
MohaNGuéhéneucYGDuchienLLe MeurAFDECOR: a method for the specification and detection of code and design smellsIEEE Trans Softw Eng2010361203610.1109/TSE.2009.501209.68142
Abreu FB, Goulão M, Esteves R (1995) Toward the design quality evaluation of object-oriented software systems. In: 5th International Conference on Software Quality. American Society for Quality, American Society for Quality, Austin, Texas, EUA, pp 44–57
Lanza M, Marinescu R (2006) Object-oriented metrics in practice, vol 1. Springer. https://doi.org/10.1017/CBO9781107415324.004, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3
GuptaASuriBKumarVMisraSBlažauskasTDamaševičiusRSoftware code smell prediction model using Shannon, Rényi and Tsallis entropiesEntropy201820512010.3390/e20050372
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Keele University and Durham University
SantosJAMRocha-JuniorJBPratesLCLdo NascimentoRSFreitasMFde MendonçaMGA systematic review on the code smell effectJ Syst Softw201814445047710.1016/j.jss.2018.07.035
Fokaefs M, Tsantalis N, Chatzigeorgiou A (2007) Jdeodorant: identification and removal of feature envy bad smells. In: 2007 IEEE international conference on software maintenance, pp 519–520. https://doi.org/10.1109/ICSM.2007.4362679
LandisJRKochGGThe measurement of observer agreement for categorical dataBiometrics197733115917410.2307/25293100351.62039
AlkharabshehKCrespoYMansoETaboadaJASoftware design smell detection: a systematic mapping studySoftw Qual J201810.1007/s11219-018-9424-8
SinghSKaurSA systematic literature review: refactoring for disclosing code smells in object oriented softwareAin Shams Eng J201710.1016/j.asej.2017.03.002
Olbrich SM, Cruzes DS, Sjøberg DIK (2010) Are all code smells harmful? A study of god classes and brain classes in the evolution of three open source systems. In: 2010 IEEE international conference on software maintenance, pp 1–10
LacerdaGPetrilloFPimentaMGuéhéneucYGCode smells and refactoring: a tertiary systematic review of challenges and observationsJ Syst Softw202016711061010.1016/j.jss.2020.110610
ZhangMHallTBaddooNCode Bad Smells: a review of current knowledgeJ Softw Maint Evol2010261211721192
Kreimer J (2005) Adaptive detection of design flaws. In: Electronic notes in theoretical computer science, Research Group Programming Languages and Compilers, Department of Computer Science, University of Paderborn, Germany, vol 141, pp 117–136. https://doi.org/10.1016/j.entcs.2005.02.059
Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: 1st international workshop on replication in empirical software engineering. Citeseer
Marinescu C, Marinescu R, Mihancea PF, Wettel R (2005) iplasma: an integrated platform for quality assessment of object-oriented design. In: In ICSM (industrial and tool volume). Society Press, pp 77–80
MonperrusMBruchMMeziniMD’HondtTDetecting missing method calls in object-oriented softwareECOOP 2010—object-oriented programming2010BerlinSpringer22510.1007/978-3-642-14107-2_2
KessentiniWKessentiniMSahraouiHBechikhSOuniAA cooperative parallel search-based software engineering approach for code-smells detectionIEEE Trans Software Eng201440984186110.1109/TSE.2014.2331057
Fard AM, Mesbah A (2013) JSNOSE: detecting JavaScript code smells. In: 2013 IEEE 13th international working conference on Sour
M Zhang (9566_CR60) 2010; 26
K Alkharabsheh (9566_CR3) 2018
A Kaur (9566_CR23) 2019
L Merino (9566_CR37) 2018; 144
9566_CR29
G Rasool (9566_CR44) 2015; 27
9566_CR28
MI Azeem (9566_CR4) 2019; 108
9566_CR20
9566_CR24
H Zhang (9566_CR59) 2011; 53
WC Wake (9566_CR54) 2003
9566_CR52
FJ Shull (9566_CR48) 2008; 13
9566_CR51
9566_CR50
9566_CR1
P Brereton (9566_CR6) 2007; 80
D Rattan (9566_CR45) 2013; 55
JAM Santos (9566_CR47) 2018; 144
9566_CR19
9566_CR17
F Khomh (9566_CR26) 2012; 17
9566_CR12
9566_CR56
9566_CR11
9566_CR55
M Monperrus (9566_CR39) 2010
A Belikov (9566_CR5) 2015; 4
M Hammad (9566_CR22) 2020; 37
9566_CR53
9566_CR15
S Singh (9566_CR49) 2017
9566_CR14
B Kitchenham (9566_CR27) 2008; 13
9566_CR57
9566_CR41
N Moha (9566_CR38) 2010; 36
A Gupta (9566_CR21) 2018; 20
G Noblit (9566_CR40) 1988
M Fowler (9566_CR18) 1999
F Sabir (9566_CR46) 2019; 49
9566_CR2
9566_CR43
9566_CR42
G Lacerda (9566_CR30) 2020; 167
WH Brown (9566_CR7) 1998
9566_CR8
JR Landis (9566_CR31) 1977; 33
W Kessentini (9566_CR25) 2014; 40
A Yamashita (9566_CR58) 2013; 55
ML McHugh (9566_CR36) 2012; 22
RC Martin (9566_CR35) 2002
9566_CR34
JL Fleiss (9566_CR16) 2013
9566_CR33
JC Carver (9566_CR9) 2014; 19
T Dyba (9566_CR13) 2008; 50
9566_CR32
L Chen (9566_CR10) 2011; 53
References_xml – reference: MartinRCAgile software development: principles, patterns, and practices20021Upper Saddle RiverPrentice Hall
– reference: McHughMLInterrater reliability: the kappa statisticBiochem Med2012223276282297024510.11613/BM.2012.031
– reference: ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1
– reference: Sirikul K, Soomlek C (2016) Automated detection of code smells caused by null checking conditions in Java programs. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp 1–7. https://doi.org/10.1109/JCSSE.2016.7748884
– reference: CarverJCJuristoNBaldassarreMTVegasSReplications of software engineering experimentsEmpir Softw Eng201419226727610.1007/s10664-013-9290-8
– reference: Gupta A, Suri B, Misra S (2017) A systematic literature review: code bad smells in Java Source Code. In: ICCSA 2017, vol 10409, pp 665–682. https://doi.org/10.1007/978-3-319-62407-5
– reference: KhomhFPentaMDGuéhéneucYGAntoniolGAn exploratory study of the impact of antipatterns on class change- and fault-pronenessEmpir Softw Eng201217324327510.1007/s10664-011-9171-y
– reference: DybaTDingsøyrTEmpirical studies of agile software development: a systematic reviewInf Softw Technol2008509–1083385910.1016/j.infsof.2008.01.006
– reference: Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic programming. In: 2017 IEEE/ACM 4th international conference on Mobile Software Engineering and Systems (MOBILESoft), pp 122–132. https://doi.org/10.1109/MOBILESoft.2017.29
– reference: Lanza M, Marinescu R (2006) Object-oriented metrics in practice, vol 1. Springer. https://doi.org/10.1017/CBO9781107415324.004, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3
– reference: Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Keele University and Durham University
– reference: dos Reis JP, e Abreu FB, de F Carneiro G (2017) Code smells detection 2.0: crowdsmelling and visualization. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp 1–4. https://doi.org/10.23919/CISTI.2017.7975961
– reference: Fokaefs M, Tsantalis N, Chatzigeorgiou A (2007) Jdeodorant: identification and removal of feature envy bad smells. In: 2007 IEEE international conference on software maintenance, pp 519–520. https://doi.org/10.1109/ICSM.2007.4362679
– reference: Marinescu C, Marinescu R, Mihancea PF, Wettel R (2005) iplasma: an integrated platform for quality assessment of object-oriented design. In: In ICSM (industrial and tool volume). Society Press, pp 77–80
– reference: KessentiniWKessentiniMSahraouiHBechikhSOuniAA cooperative parallel search-based software engineering approach for code-smells detectionIEEE Trans Software Eng201440984186110.1109/TSE.2014.2331057
– reference: ZhangHBabarMATellPIdentifying relevant studies in software engineeringInf Softw Technol201153662563710.1016/j.infsof.2010.12.010
– reference: Chen Z, Chen L, Ma W, Xu B (2016) Detecting code smells in Python programs. In: 2016 international conference on Software Analysis, Testing and Evolution (SATE), pp 18–23. https://doi.org/10.1109/SATE.2016.10
– reference: Travassos G, Shull F, Fredericks M, Basili VR (1999) Detecting defects in object-oriented designs: using reading techniques to increase software quality. In: Proceedings of the 14th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications. ACM, New York, NY, USA, OOPSLA ’99, pp 47–56. https://doi.org/10.1145/320384.320389
– reference: Palomba F, Panichella A, Lucia AD, Oliveto R, Zaidman A (2016) A textual-based technique for smell detection. In: IEEE 24th International Conference on Program Comprehension (ICPC), pp 1–10. https://doi.org/10.1109/ICPC.2016.7503704
– reference: SabirFPalmaFRasoolGGuéhéneucYGMohaNA systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systemsSoftw Pract Exp201949133910.1002/spe.2639
– reference: NoblitGHareRMeta-ethnography: synthesizing qualitative studies. Qualitative research methods1988Thousand OaksSAGE Publications10.4135/9781412985000
– reference: Abreu FB, Goulão M, Esteves R (1995) Toward the design quality evaluation of object-oriented software systems. In: 5th International Conference on Software Quality. American Society for Quality, American Society for Quality, Austin, Texas, EUA, pp 44–57
– reference: BelikovABelikovVA citation-based, author- and age-normalized, logarithmic index for evaluation of individual researchers independently of publication counts [version 1; peer review: 2 approved]F1000Research2015488410.12688/f1000research.7070.1
– reference: Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: 1st international workshop on replication in empirical software engineering. Citeseer
– reference: FowlerMBeckKBrantJOpdykeWRobertsDRefactoring: improving the design of existing code1999BostonAddison-Wesley Longman Publishing Co., Inc
– reference: FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley1034.62113
– reference: AzeemMIPalombaFShiLWangQMachine learning techniques for code smell detection: a systematic literature review and meta-analysisInf Softw Technol201910811513810.1016/j.infsof.2018.12.009
– reference: Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects? In: IEEE International Conference on Software Maintenance, ICSM, pp 306–315. https://doi.org/10.1109/ICSM.2012.6405287
– reference: LacerdaGPetrilloFPimentaMGuéhéneucYGCode smells and refactoring: a tertiary systematic review of challenges and observationsJ Syst Softw202016711061010.1016/j.jss.2020.110610
– reference: Mantyla M, Vanhanen J, Lassenius C (2004) Bad smells—humans as code critics. In: 20th IEEE international conference on software maintenance, 2004 Proceedings, pp 399–408. https://doi.org/10.1109/ICSM.2004.1357825
– reference: AlkharabshehKCrespoYMansoETaboadaJASoftware design smell detection: a systematic mapping studySoftw Qual J201810.1007/s11219-018-9424-8
– reference: KaurAA systematic literature review on empirical analysis of the relationship between code smells and software quality attributesArch Comput Methods Eng201910.1007/s11831-019-09348-6
– reference: MerinoLGhafariMAnslowCNierstraszOA systematic literature review of software visualization evaluationJ Syst Softw201814416518010.1016/j.jss.2018.06.027
– reference: Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: identification and removal of type-checking bad smells. In: CSMR 2008—12th European conference on software maintenance and reengineering, pp 329–331. https://doi.org/10.1109/CSMR.2008.4493342
– reference: WakeWCRefactoring workbook2003BostonAddison-Wesley Longman Publishing Co., Inc
– reference: RasoolGArshadZA review of code smell mining techniquesJ Softw Evol Process2015271186789510.1002/smr.1737
– reference: van Emden E, Moonen L (2002) Java quality assurance by detecting code smells. In: Ninth working conference on reverse engineering, 2002. Proceedings, pp 97–106. https://doi.org/10.1109/WCRE.2002.1173068
– reference: Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on Evaluation and Assessment in Software Engineering—EASE ’14, pp 1–10. https://doi.org/10.1145/2601248.2601268, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3
– reference: LandisJRKochGGThe measurement of observer agreement for categorical dataBiometrics197733115917410.2307/25293100351.62039
– reference: BrownWHMalveauRCMcCormickHWSMowbrayTJAntiPatterns: refactoring software, architectures, and projects in crisis19981HobokenWiley
– reference: Fard AM, Mesbah A (2013) JSNOSE: detecting JavaScript code smells. In: 2013 IEEE 13th international working conference on Source Code Analysis and Manipulation (SCAM), pp 116–125. https://doi.org/10.1109/SCAM.2013.6648192
– reference: Kreimer J (2005) Adaptive detection of design flaws. In: Electronic notes in theoretical computer science, Research Group Programming Languages and Compilers, Department of Computer Science, University of Paderborn, Germany, vol 141, pp 117–136. https://doi.org/10.1016/j.entcs.2005.02.059
– reference: MonperrusMBruchMMeziniMD’HondtTDetecting missing method calls in object-oriented softwareECOOP 2010—object-oriented programming2010BerlinSpringer22510.1007/978-3-642-14107-2_2
– reference: MohaNGuéhéneucYGDuchienLLe MeurAFDECOR: a method for the specification and detection of code and design smellsIEEE Trans Softw Eng2010361203610.1109/TSE.2009.501209.68142
– reference: Wasylkowski A, Zeller A, Lindig C (2007) Detecting object usage anomalies. In: Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on the foundations of software engineering. ACM, Dubrovnik, Croatia. https://doi.org/10.1145/1287624.1287632
– reference: HammadMBasitHAJarzabekSKoschkeRA systematic mapping study of clone visualizationComput Sci Rev20203710026610.1016/j.cosrev.2020.100266
– reference: SinghSKaurSA systematic literature review: refactoring for disclosing code smells in object oriented softwareAin Shams Eng J201710.1016/j.asej.2017.03.002
– reference: ZhangMHallTBaddooNCode Bad Smells: a review of current knowledgeJ Softw Maint Evol2010261211721192
– reference: Al Dallal J (2015) Identifying refactoring opportunities in object-oriented code: a systematic literature review. Inf Softw Technol 58:231–249. https://doi.org/10.1016/j.infsof.2014.08.002, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3
– reference: SantosJAMRocha-JuniorJBPratesLCLdo NascimentoRSFreitasMFde MendonçaMGA systematic review on the code smell effectJ Syst Softw201814445047710.1016/j.jss.2018.07.035
– reference: KitchenhamBThe role of replications in empirical software engineering—a word of warningEmpir Softw Eng200813221922110.1007/s10664-008-9061-0
– reference: GuptaASuriBKumarVMisraSBlažauskasTDamaševičiusRSoftware code smell prediction model using Shannon, Rényi and Tsallis entropiesEntropy201820512010.3390/e20050372
– reference: YamashitaAMoonenLTo what extent can maintenance problems be predicted by code smell detection? An empirical studyInf Softw Technol201355122223224210.1016/j.infsof.2013.08.002
– reference: Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell detection tools. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering. ACM, Limerick, Ireland. https://doi.org/10.1145/2915970.2915984
– reference: Olbrich SM, Cruzes DS, Sjøberg DIK (2010) Are all code smells harmful? A study of god classes and brain classes in the evolution of three open source systems. In: 2010 IEEE international conference on software maintenance, pp 1–10
– reference: RattanDBhatiaRSinghMSoftware clone detection: a systematic reviewInf Softw Technol20135571165119910.1016/j.infsof.2013.01.008
– reference: ChenLBabarMAA systematic review of evaluation of variability management approaches in software product linesInf Softw Technol201153434436210.1016/j.infsof.2010.12.006
– reference: Palomba F, Nucci DD, Panichella A, Zaidman A, Lucia AD (2017) Lightweight detection of android-specific code smells: the adoctor project. In: 2017 IEEE 24th international conference on Software Analysis, Evolution and Reengineering (SANER), pp 487–491. https://doi.org/10.1109/SANER.2017.7884659
– reference: Gerlitz T, Tran QM, Dziobek C (2015) Detection and handling of model smells for matlab/simulink models. In: MASE@MoDELS
– reference: BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009
– year: 2018
  ident: 9566_CR3
  publication-title: Softw Qual J
  doi: 10.1007/s11219-018-9424-8
– volume: 13
  start-page: 219
  issue: 2
  year: 2008
  ident: 9566_CR27
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9061-0
– volume: 17
  start-page: 243
  issue: 3
  year: 2012
  ident: 9566_CR26
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-011-9171-y
– volume-title: Refactoring workbook
  year: 2003
  ident: 9566_CR54
– ident: 9566_CR28
– volume-title: Agile software development: principles, patterns, and practices
  year: 2002
  ident: 9566_CR35
– ident: 9566_CR56
  doi: 10.1145/2601248.2601268
– ident: 9566_CR24
  doi: 10.1109/MOBILESoft.2017.29
– ident: 9566_CR43
  doi: 10.1109/SANER.2017.7884659
– volume-title: Refactoring: improving the design of existing code
  year: 1999
  ident: 9566_CR18
– volume: 55
  start-page: 2223
  issue: 12
  year: 2013
  ident: 9566_CR58
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2013.08.002
– volume: 19
  start-page: 267
  issue: 2
  year: 2014
  ident: 9566_CR9
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-013-9290-8
– ident: 9566_CR8
– volume: 26
  start-page: 1172
  issue: 12
  year: 2010
  ident: 9566_CR60
  publication-title: J Softw Maint Evol
– volume: 80
  start-page: 571
  issue: 4
  year: 2007
  ident: 9566_CR6
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2006.07.009
– volume: 20
  start-page: 1
  issue: 5
  year: 2018
  ident: 9566_CR21
  publication-title: Entropy
  doi: 10.3390/e20050372
– volume: 27
  start-page: 867
  issue: 11
  year: 2015
  ident: 9566_CR44
  publication-title: J Softw Evol Process
  doi: 10.1002/smr.1737
– ident: 9566_CR53
  doi: 10.1109/WCRE.2002.1173068
– volume: 37
  start-page: 100266
  year: 2020
  ident: 9566_CR22
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2020.100266
– volume: 167
  start-page: 110610
  year: 2020
  ident: 9566_CR30
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2020.110610
– start-page: 2
  volume-title: ECOOP 2010—object-oriented programming
  year: 2010
  ident: 9566_CR39
  doi: 10.1007/978-3-642-14107-2_2
– volume: 4
  start-page: 884
  year: 2015
  ident: 9566_CR5
  publication-title: F1000Research
  doi: 10.12688/f1000research.7070.1
– ident: 9566_CR20
  doi: 10.1007/978-3-319-62407-5
– ident: 9566_CR12
  doi: 10.23919/CISTI.2017.7975961
– volume-title: Meta-ethnography: synthesizing qualitative studies. Qualitative research methods
  year: 1988
  ident: 9566_CR40
  doi: 10.4135/9781412985000
– ident: 9566_CR1
– volume: 40
  start-page: 841
  issue: 9
  year: 2014
  ident: 9566_CR25
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2014.2331057
– ident: 9566_CR29
  doi: 10.1016/j.entcs.2005.02.059
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 9566_CR36
  publication-title: Biochem Med
  doi: 10.11613/BM.2012.031
– volume: 49
  start-page: 3
  issue: 1
  year: 2019
  ident: 9566_CR46
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2639
– ident: 9566_CR19
– ident: 9566_CR32
  doi: 10.1017/CBO9781107415324.004
– volume: 55
  start-page: 1165
  issue: 7
  year: 2013
  ident: 9566_CR45
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2013.01.008
– volume: 53
  start-page: 625
  issue: 6
  year: 2011
  ident: 9566_CR59
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2010.12.010
– volume: 13
  start-page: 211
  issue: 2
  year: 2008
  ident: 9566_CR48
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9060-1
– volume: 53
  start-page: 344
  issue: 4
  year: 2011
  ident: 9566_CR10
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2010.12.006
– year: 2019
  ident: 9566_CR23
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09348-6
– ident: 9566_CR33
  doi: 10.1109/ICSM.2004.1357825
– volume: 36
  start-page: 20
  issue: 1
  year: 2010
  ident: 9566_CR38
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2009.50
– ident: 9566_CR42
  doi: 10.1109/ICPC.2016.7503704
– ident: 9566_CR2
  doi: 10.1016/j.infsof.2014.08.002
– volume: 50
  start-page: 833
  issue: 9–10
  year: 2008
  ident: 9566_CR13
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2008.01.006
– ident: 9566_CR17
  doi: 10.1109/ICSM.2007.4362679
– ident: 9566_CR15
  doi: 10.1145/2915970.2915984
– ident: 9566_CR50
  doi: 10.1109/JCSSE.2016.7748884
– volume-title: AntiPatterns: refactoring software, architectures, and projects in crisis
  year: 1998
  ident: 9566_CR7
– volume-title: Statistical methods for rates and proportions
  year: 2013
  ident: 9566_CR16
– ident: 9566_CR11
  doi: 10.1109/SATE.2016.10
– ident: 9566_CR14
  doi: 10.1109/SCAM.2013.6648192
– ident: 9566_CR55
  doi: 10.1145/1287624.1287632
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: 9566_CR31
  publication-title: Biometrics
  doi: 10.2307/2529310
– year: 2017
  ident: 9566_CR49
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2017.03.002
– ident: 9566_CR51
  doi: 10.1145/320384.320389
– ident: 9566_CR52
  doi: 10.1109/CSMR.2008.4493342
– ident: 9566_CR57
  doi: 10.1109/ICSM.2012.6405287
– volume: 144
  start-page: 165
  year: 2018
  ident: 9566_CR37
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2018.06.027
– volume: 108
  start-page: 115
  year: 2019
  ident: 9566_CR4
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2018.12.009
– volume: 144
  start-page: 450
  year: 2018
  ident: 9566_CR47
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2018.07.035
– ident: 9566_CR34
– ident: 9566_CR41
  doi: 10.1109/ICSM.2010.5609564
SSID ssj0054992
Score 2.4623053
SecondaryResourceType review_article
Snippet Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Best practice
Decision trees
Engineering
Feature extraction
Genetic algorithms
Literature reviews
Machine learning
Mathematical and Computational Engineering
Metaphor
Open source software
Programming languages
Review Article
Software
Source code
State-of-the-art reviews
Support vector machines
Systematic review
Visualization
Title Code Smells Detection and Visualization: A Systematic Literature Review
URI https://link.springer.com/article/10.1007/s11831-021-09566-x
https://www.proquest.com/docview/2616383247
Volume 29
WOSCitedRecordID wos000627226000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmxaapkkab2M6PYwhTsduJU1TGMxO1ir--SZpuqmooIee8oPykrx8Ly_fFwDOUkrTIEiph4UR1Y4y5gmClBeEilMdvClk6WPjARsOo8mE3zlSWFHfdq9TktZTr8huevbp0DfQnwb11NPIcV1vd5F5sOF-NK79rwl4bI4TYXPmT31Hlfm-j8_b0QpjfkmL2t2m3_zff-6AbYcuYbeaDrtgTeUt0HRIE7p1XLTA1gcZwj1w05unCo6e1GxWwCtV2ttZORR5CsfTwrAuK67mJezC0VL5GQ6WisywyjDsg8f-9UPv1nMPLHgyJKT0qIyyBHMhqNGZZzyTgXZgwlz9lApRiTFKEGdKozyfZZwrQlmaJX4oOUWZ8PEBaOTzXB0CKAimPleBbstCHzMucBQmRBKBM-Jj1QaotnMsnfq4eQRjFq90k43dYm232NotfmuD82Wb50p749fanXr4YrcOi1jHh9rBaNDI2uCiHq5V8c-9Hf2t-jHYDAwvwp7NdECjXLyoE7AhX8tpsTi18_Md0ZzdNQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6ICurB6VScTs3Bmxbapk0ab2M6J9Yhbo7dSpamMJidrFX88036Y1VRQQ895QflJXn5Xl6-LwCnISGhbYfEwFyLansRNbhrScN2JCMqeJNWRh8b-rTX80Yjdl-QwpLytnuZksw8dUV2U7NPhb62-hSoJ4ZCjiuO2rG0Yv5Df1j6Xx3wZDlOC-szf2IWVJnv-_i8HVUY80taNNttOrX__ecWbBboErXy6bANSzKuQ61AmqhYx0kdNj7IEO7AdXsWStR_ktNpgi5lmt3OihGPQzScJJp1mXM1L1AL9RfKz8hfKDKjPMOwC4-dq0G7axQPLBjCcd3UIMKLxphxTrTOPGWRsJUD4_rqp5AWERhbY4tRqVCeSSPGpEtoGI1NRzBiRdzEe7Acz2K5D4i7mJhM2qotdUxMGceeM3aFy3Hkmlg2wCrtHIhCfVw_gjENKt1kbbdA2S3I7Ba8NeBs0eY51974tXazHL6gWIdJoOJD5WAUaKQNOC-Hqyr-ubeDv1U_gbXu4M4P_Jve7SGs25ojkZ3TNGE5nb_II1gVr-kkmR9nc_UdORLgGQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IiuiD06k4nZoH37Ssbdqk8W1sTsUxBtOxt5KlKQxmN9Yq_nyTXtYpKogPfcqFcnL7Ts75vgBcBoQEth0QA3Mtqu2F1OCuJQ3bkYwo501aKX1s2KW9njcasf4Kiz_Ndi9CkhmnQas0RUljHoSNkvimZqJyg231KYBPDIUiNxydSK_99cGw2Iu185PGOy2s7_-JmdNmvu_j89FU4s0vIdL05OlU_v_Pe7Cbo07UzKbJPqzJqAqVHIGifH3HVdhZkSc8gLvWLJBo8CKn0xi1ZZJmbUWIRwEaTmLNxsw4nDeoiQZLRWjUXSo1oyzycAjPndun1r2RP7xgCMd1E4MILxxjxjnR-vOUhcJWGxvXKaFCWkRgbI0tRqVCfyYNGZMuoUE4Nh3BiBVyEx_BejSL5DEg7mJiMmmrttQxMWUce87YFS7HoWtiWQOrsLkvclVy_TjG1C_1lLXdfGU3P7Wb_16Dq2WbeabJ8WvtejGUfr4-Y1_5jWrjUWCS1uC6GLqy-OfeTv5W_QK2-u2O333oPZ7Ctq2pE-n1TR3Wk8WrPINN8ZZM4sV5Om0_ANQY6P0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Code+Smells+Detection+and+Visualization%3A+A+Systematic+Literature+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Pereira+dos+Reis%2C+Jos%C3%A9&rft.au=Brito+e+Abreu%2C+Fernando&rft.au=de+Figueiredo+Carneiro%2C+Glauco&rft.au=Anslow%2C+Craig&rft.date=2022-01-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=1&rft.spage=47&rft.epage=94&rft_id=info:doi/10.1007%2Fs11831-021-09566-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_021_09566_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon