Code Smells Detection and Visualization: A Systematic Literature Review
Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the su...
Saved in:
| Published in: | Archives of computational methods in engineering Vol. 29; no. 1; pp. 47 - 94 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.01.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1134-3060, 1886-1784 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells,
God Class
(51.8%),
Feature Envy
(33.7%), and
Long Method
(26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments. |
|---|---|
| AbstractList | Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments. Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Researchers have argued that due to the subjectiveness of the code smells detection process, proposing an effective use of automatic support for this end is a non trivial task. This systematic literature review (SLR) has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Over eighty primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. We found that the most commonly used approaches to code smells detection are search-based (30.1%), metric-based (24.1%), and symptom-based approaches (19.3%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning (ML) techniques are used in 35% of the studies, with genetic programming, decision tree, support vector machines and association rules being the most used algorithms. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques, interactive ambient visualization, polymetric views, or graph models. This paper presents an up-to-date review on the state-of-the-art techniques and tools used for code smells detection and visualization. We confirm that the detection of code smells is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of code smells; increasing the diversity of detected code smells and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of code smells detection and visualization techniques validation experiments. |
| Author | Brito e Abreu, Fernando de Figueiredo Carneiro, Glauco Anslow, Craig Pereira dos Reis, José |
| Author_xml | – sequence: 1 givenname: José orcidid: 0000-0002-2505-9565 surname: Pereira dos Reis fullname: Pereira dos Reis, José email: jvprs@iscte-iul.pt organization: ISTAR-Iscte, Iscte - Instituto Universitário de Lisboa – sequence: 2 givenname: Fernando orcidid: 0000-0002-9086-4122 surname: Brito e Abreu fullname: Brito e Abreu, Fernando organization: ISTAR-Iscte, Iscte - Instituto Universitário de Lisboa – sequence: 3 givenname: Glauco orcidid: 0000-0001-6241-1612 surname: de Figueiredo Carneiro fullname: de Figueiredo Carneiro, Glauco organization: Universidade Salvador (UNIFACS) – sequence: 4 givenname: Craig orcidid: 0000-0001-8064-6300 surname: Anslow fullname: Anslow, Craig organization: Victoria University of Wellington |
| BookMark | eNp9kFFLwzAQx4MouE2_gE8Bn6u5pk0b38bUKQwEp76GLLtKRtfOJNPNT2-2CoIPgxzJHf9f7u7fJ8dN2yAhF8CugLHi2gOUHBKWxpC5EMnmiPSgLEUCRZkdxzfwLOFMsFPS937BWJ5JmfbIeNTOkU6XWNee3mJAE2zbUN3M6Zv1a13bb72r3NAhnW59wGVMDZ3YgE6HtUP6jJ8Wv87ISaVrj-e_94C83t-9jB6SydP4cTScJCbL85AIU1YzLrUWWSHjqUyagtSQATMIwnAOM5AF5iBZUUmJuSjm1YxlRgqoNOMDctn9u3Ltxxp9UIt27ZrYUqUCBC95mhVRVXYq41rvHVbK2LDfIzhtawVM7WxTnW0q2qb2tqlNRNN_6MrZpXbbwxDvIB_FzTu6v6kOUD_zFoGT |
| CitedBy_id | crossref_primary_10_1080_08874417_2023_2203088 crossref_primary_10_1155_2023_2973250 crossref_primary_10_1016_j_infsof_2025_107835 crossref_primary_10_1080_03772063_2025_2548380 crossref_primary_10_1007_s42979_024_03013_x crossref_primary_10_1109_ACCESS_2023_3334258 crossref_primary_10_3390_app14146149 crossref_primary_10_1007_s10664_022_10227_1 crossref_primary_10_1142_S0218194025500287 crossref_primary_10_3390_app13158770 crossref_primary_10_1007_s10664_021_10110_5 crossref_primary_10_1109_ACCESS_2023_3302260 crossref_primary_10_1007_s10664_024_10478_0 crossref_primary_10_33889_IJMEMS_2024_9_3_025 crossref_primary_10_1007_s42979_024_02956_5 crossref_primary_10_1016_j_infsof_2025_107760 crossref_primary_10_1109_ACCESS_2024_3397055 |
| Cites_doi | 10.1007/s11219-018-9424-8 10.1007/s10664-008-9061-0 10.1007/s10664-011-9171-y 10.1145/2601248.2601268 10.1109/MOBILESoft.2017.29 10.1109/SANER.2017.7884659 10.1016/j.infsof.2013.08.002 10.1007/s10664-013-9290-8 10.1016/j.jss.2006.07.009 10.3390/e20050372 10.1002/smr.1737 10.1109/WCRE.2002.1173068 10.1016/j.cosrev.2020.100266 10.1016/j.jss.2020.110610 10.1007/978-3-642-14107-2_2 10.12688/f1000research.7070.1 10.1007/978-3-319-62407-5 10.23919/CISTI.2017.7975961 10.4135/9781412985000 10.1109/TSE.2014.2331057 10.1016/j.entcs.2005.02.059 10.11613/BM.2012.031 10.1002/spe.2639 10.1017/CBO9781107415324.004 10.1016/j.infsof.2013.01.008 10.1016/j.infsof.2010.12.010 10.1007/s10664-008-9060-1 10.1016/j.infsof.2010.12.006 10.1007/s11831-019-09348-6 10.1109/ICSM.2004.1357825 10.1109/TSE.2009.50 10.1109/ICPC.2016.7503704 10.1016/j.infsof.2014.08.002 10.1016/j.infsof.2008.01.006 10.1109/ICSM.2007.4362679 10.1145/2915970.2915984 10.1109/JCSSE.2016.7748884 10.1109/SATE.2016.10 10.1109/SCAM.2013.6648192 10.1145/1287624.1287632 10.2307/2529310 10.1016/j.asej.2017.03.002 10.1145/320384.320389 10.1109/CSMR.2008.4493342 10.1109/ICSM.2012.6405287 10.1016/j.jss.2018.06.027 10.1016/j.infsof.2018.12.009 10.1016/j.jss.2018.07.035 10.1109/ICSM.2010.5609564 |
| ContentType | Journal Article |
| Copyright | CIMNE, Barcelona, Spain 2021 CIMNE, Barcelona, Spain 2021. |
| Copyright_xml | – notice: CIMNE, Barcelona, Spain 2021 – notice: CIMNE, Barcelona, Spain 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11831-021-09566-x |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 94 |
| ExternalDocumentID | 10_1007_s11831_021_09566_x |
| GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia funderid: http://dx.doi.org/10.13039/501100001871 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c455t-6c8fb39aa6479479fc2219a1410ce16c331b197e51907f99e567dfb04c961fa03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627226000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Thu Sep 18 00:03:38 EDT 2025 Tue Nov 18 22:28:55 EST 2025 Sat Nov 29 06:21:47 EST 2025 Fri Feb 21 02:46:24 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-6c8fb39aa6479479fc2219a1410ce16c331b197e51907f99e567dfb04c961fa03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9086-4122 0000-0002-2505-9565 0000-0001-6241-1612 0000-0001-8064-6300 |
| OpenAccessLink | http://hdl.handle.net/10071/23475 |
| PQID | 2616383247 |
| PQPubID | 1486352 |
| PageCount | 48 |
| ParticipantIDs | proquest_journals_2616383247 crossref_citationtrail_10_1007_s11831_021_09566_x crossref_primary_10_1007_s11831_021_09566_x springer_journals_10_1007_s11831_021_09566_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | MerinoLGhafariMAnslowCNierstraszOA systematic literature review of software visualization evaluationJ Syst Softw201814416518010.1016/j.jss.2018.06.027 ChenLBabarMAA systematic review of evaluation of variability management approaches in software product linesInf Softw Technol201153434436210.1016/j.infsof.2010.12.006 CarverJCJuristoNBaldassarreMTVegasSReplications of software engineering experimentsEmpir Softw Eng201419226727610.1007/s10664-013-9290-8 Chen Z, Chen L, Ma W, Xu B (2016) Detecting code smells in Python programs. In: 2016 international conference on Software Analysis, Testing and Evolution (SATE), pp 18–23. https://doi.org/10.1109/SATE.2016.10 Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic programming. In: 2017 IEEE/ACM 4th international conference on Mobile Software Engineering and Systems (MOBILESoft), pp 122–132. https://doi.org/10.1109/MOBILESoft.2017.29 Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell detection tools. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering. ACM, Limerick, Ireland. https://doi.org/10.1145/2915970.2915984 Sirikul K, Soomlek C (2016) Automated detection of code smells caused by null checking conditions in Java programs. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp 1–7. https://doi.org/10.1109/JCSSE.2016.7748884 RattanDBhatiaRSinghMSoftware clone detection: a systematic reviewInf Softw Technol20135571165119910.1016/j.infsof.2013.01.008 KhomhFPentaMDGuéhéneucYGAntoniolGAn exploratory study of the impact of antipatterns on class change- and fault-pronenessEmpir Softw Eng201217324327510.1007/s10664-011-9171-y Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects? In: IEEE International Conference on Software Maintenance, ICSM, pp 306–315. https://doi.org/10.1109/ICSM.2012.6405287 FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley1034.62113 HammadMBasitHAJarzabekSKoschkeRA systematic mapping study of clone visualizationComput Sci Rev20203710026610.1016/j.cosrev.2020.100266 ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1 Gerlitz T, Tran QM, Dziobek C (2015) Detection and handling of model smells for matlab/simulink models. In: MASE@MoDELS BrownWHMalveauRCMcCormickHWSMowbrayTJAntiPatterns: refactoring software, architectures, and projects in crisis19981HobokenWiley NoblitGHareRMeta-ethnography: synthesizing qualitative studies. Qualitative research methods1988Thousand OaksSAGE Publications10.4135/9781412985000 BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009 McHughMLInterrater reliability: the kappa statisticBiochem Med2012223276282297024510.11613/BM.2012.031 SabirFPalmaFRasoolGGuéhéneucYGMohaNA systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systemsSoftw Pract Exp201949133910.1002/spe.2639 KitchenhamBThe role of replications in empirical software engineering—a word of warningEmpir Softw Eng200813221922110.1007/s10664-008-9061-0 YamashitaAMoonenLTo what extent can maintenance problems be predicted by code smell detection? An empirical studyInf Softw Technol201355122223224210.1016/j.infsof.2013.08.002 Travassos G, Shull F, Fredericks M, Basili VR (1999) Detecting defects in object-oriented designs: using reading techniques to increase software quality. In: Proceedings of the 14th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications. ACM, New York, NY, USA, OOPSLA ’99, pp 47–56. https://doi.org/10.1145/320384.320389 ZhangHBabarMATellPIdentifying relevant studies in software engineeringInf Softw Technol201153662563710.1016/j.infsof.2010.12.010 MartinRCAgile software development: principles, patterns, and practices20021Upper Saddle RiverPrentice Hall FowlerMBeckKBrantJOpdykeWRobertsDRefactoring: improving the design of existing code1999BostonAddison-Wesley Longman Publishing Co., Inc KaurAA systematic literature review on empirical analysis of the relationship between code smells and software quality attributesArch Comput Methods Eng201910.1007/s11831-019-09348-6 DybaTDingsøyrTEmpirical studies of agile software development: a systematic reviewInf Softw Technol2008509–1083385910.1016/j.infsof.2008.01.006 Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: identification and removal of type-checking bad smells. In: CSMR 2008—12th European conference on software maintenance and reengineering, pp 329–331. https://doi.org/10.1109/CSMR.2008.4493342 dos Reis JP, e Abreu FB, de F Carneiro G (2017) Code smells detection 2.0: crowdsmelling and visualization. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp 1–4. https://doi.org/10.23919/CISTI.2017.7975961 Palomba F, Nucci DD, Panichella A, Zaidman A, Lucia AD (2017) Lightweight detection of android-specific code smells: the adoctor project. In: 2017 IEEE 24th international conference on Software Analysis, Evolution and Reengineering (SANER), pp 487–491. https://doi.org/10.1109/SANER.2017.7884659 Wasylkowski A, Zeller A, Lindig C (2007) Detecting object usage anomalies. In: Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on the foundations of software engineering. ACM, Dubrovnik, Croatia. https://doi.org/10.1145/1287624.1287632 RasoolGArshadZA review of code smell mining techniquesJ Softw Evol Process2015271186789510.1002/smr.1737 Mantyla M, Vanhanen J, Lassenius C (2004) Bad smells—humans as code critics. In: 20th IEEE international conference on software maintenance, 2004 Proceedings, pp 399–408. https://doi.org/10.1109/ICSM.2004.1357825 WakeWCRefactoring workbook2003BostonAddison-Wesley Longman Publishing Co., Inc AzeemMIPalombaFShiLWangQMachine learning techniques for code smell detection: a systematic literature review and meta-analysisInf Softw Technol201910811513810.1016/j.infsof.2018.12.009 Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on Evaluation and Assessment in Software Engineering—EASE ’14, pp 1–10. https://doi.org/10.1145/2601248.2601268, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3 MohaNGuéhéneucYGDuchienLLe MeurAFDECOR: a method for the specification and detection of code and design smellsIEEE Trans Softw Eng2010361203610.1109/TSE.2009.501209.68142 Abreu FB, Goulão M, Esteves R (1995) Toward the design quality evaluation of object-oriented software systems. In: 5th International Conference on Software Quality. American Society for Quality, American Society for Quality, Austin, Texas, EUA, pp 44–57 Lanza M, Marinescu R (2006) Object-oriented metrics in practice, vol 1. Springer. https://doi.org/10.1017/CBO9781107415324.004, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3 GuptaASuriBKumarVMisraSBlažauskasTDamaševičiusRSoftware code smell prediction model using Shannon, Rényi and Tsallis entropiesEntropy201820512010.3390/e20050372 Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Keele University and Durham University SantosJAMRocha-JuniorJBPratesLCLdo NascimentoRSFreitasMFde MendonçaMGA systematic review on the code smell effectJ Syst Softw201814445047710.1016/j.jss.2018.07.035 Fokaefs M, Tsantalis N, Chatzigeorgiou A (2007) Jdeodorant: identification and removal of feature envy bad smells. In: 2007 IEEE international conference on software maintenance, pp 519–520. https://doi.org/10.1109/ICSM.2007.4362679 LandisJRKochGGThe measurement of observer agreement for categorical dataBiometrics197733115917410.2307/25293100351.62039 AlkharabshehKCrespoYMansoETaboadaJASoftware design smell detection: a systematic mapping studySoftw Qual J201810.1007/s11219-018-9424-8 SinghSKaurSA systematic literature review: refactoring for disclosing code smells in object oriented softwareAin Shams Eng J201710.1016/j.asej.2017.03.002 Olbrich SM, Cruzes DS, Sjøberg DIK (2010) Are all code smells harmful? A study of god classes and brain classes in the evolution of three open source systems. In: 2010 IEEE international conference on software maintenance, pp 1–10 LacerdaGPetrilloFPimentaMGuéhéneucYGCode smells and refactoring: a tertiary systematic review of challenges and observationsJ Syst Softw202016711061010.1016/j.jss.2020.110610 ZhangMHallTBaddooNCode Bad Smells: a review of current knowledgeJ Softw Maint Evol2010261211721192 Kreimer J (2005) Adaptive detection of design flaws. In: Electronic notes in theoretical computer science, Research Group Programming Languages and Compilers, Department of Computer Science, University of Paderborn, Germany, vol 141, pp 117–136. https://doi.org/10.1016/j.entcs.2005.02.059 Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: 1st international workshop on replication in empirical software engineering. Citeseer Marinescu C, Marinescu R, Mihancea PF, Wettel R (2005) iplasma: an integrated platform for quality assessment of object-oriented design. In: In ICSM (industrial and tool volume). Society Press, pp 77–80 MonperrusMBruchMMeziniMD’HondtTDetecting missing method calls in object-oriented softwareECOOP 2010—object-oriented programming2010BerlinSpringer22510.1007/978-3-642-14107-2_2 KessentiniWKessentiniMSahraouiHBechikhSOuniAA cooperative parallel search-based software engineering approach for code-smells detectionIEEE Trans Software Eng201440984186110.1109/TSE.2014.2331057 Fard AM, Mesbah A (2013) JSNOSE: detecting JavaScript code smells. In: 2013 IEEE 13th international working conference on Sour M Zhang (9566_CR60) 2010; 26 K Alkharabsheh (9566_CR3) 2018 A Kaur (9566_CR23) 2019 L Merino (9566_CR37) 2018; 144 9566_CR29 G Rasool (9566_CR44) 2015; 27 9566_CR28 MI Azeem (9566_CR4) 2019; 108 9566_CR20 9566_CR24 H Zhang (9566_CR59) 2011; 53 WC Wake (9566_CR54) 2003 9566_CR52 FJ Shull (9566_CR48) 2008; 13 9566_CR51 9566_CR50 9566_CR1 P Brereton (9566_CR6) 2007; 80 D Rattan (9566_CR45) 2013; 55 JAM Santos (9566_CR47) 2018; 144 9566_CR19 9566_CR17 F Khomh (9566_CR26) 2012; 17 9566_CR12 9566_CR56 9566_CR11 9566_CR55 M Monperrus (9566_CR39) 2010 A Belikov (9566_CR5) 2015; 4 M Hammad (9566_CR22) 2020; 37 9566_CR53 9566_CR15 S Singh (9566_CR49) 2017 9566_CR14 B Kitchenham (9566_CR27) 2008; 13 9566_CR57 9566_CR41 N Moha (9566_CR38) 2010; 36 A Gupta (9566_CR21) 2018; 20 G Noblit (9566_CR40) 1988 M Fowler (9566_CR18) 1999 F Sabir (9566_CR46) 2019; 49 9566_CR2 9566_CR43 9566_CR42 G Lacerda (9566_CR30) 2020; 167 WH Brown (9566_CR7) 1998 9566_CR8 JR Landis (9566_CR31) 1977; 33 W Kessentini (9566_CR25) 2014; 40 A Yamashita (9566_CR58) 2013; 55 ML McHugh (9566_CR36) 2012; 22 RC Martin (9566_CR35) 2002 9566_CR34 JL Fleiss (9566_CR16) 2013 9566_CR33 JC Carver (9566_CR9) 2014; 19 T Dyba (9566_CR13) 2008; 50 9566_CR32 L Chen (9566_CR10) 2011; 53 |
| References_xml | – reference: MartinRCAgile software development: principles, patterns, and practices20021Upper Saddle RiverPrentice Hall – reference: McHughMLInterrater reliability: the kappa statisticBiochem Med2012223276282297024510.11613/BM.2012.031 – reference: ShullFJCarverJCVegasSJuristoNThe role of replications in empirical software engineeringEmpir Softw Eng200813221121810.1007/s10664-008-9060-1 – reference: Sirikul K, Soomlek C (2016) Automated detection of code smells caused by null checking conditions in Java programs. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp 1–7. https://doi.org/10.1109/JCSSE.2016.7748884 – reference: CarverJCJuristoNBaldassarreMTVegasSReplications of software engineering experimentsEmpir Softw Eng201419226727610.1007/s10664-013-9290-8 – reference: Gupta A, Suri B, Misra S (2017) A systematic literature review: code bad smells in Java Source Code. In: ICCSA 2017, vol 10409, pp 665–682. https://doi.org/10.1007/978-3-319-62407-5 – reference: KhomhFPentaMDGuéhéneucYGAntoniolGAn exploratory study of the impact of antipatterns on class change- and fault-pronenessEmpir Softw Eng201217324327510.1007/s10664-011-9171-y – reference: DybaTDingsøyrTEmpirical studies of agile software development: a systematic reviewInf Softw Technol2008509–1083385910.1016/j.infsof.2008.01.006 – reference: Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic programming. In: 2017 IEEE/ACM 4th international conference on Mobile Software Engineering and Systems (MOBILESoft), pp 122–132. https://doi.org/10.1109/MOBILESoft.2017.29 – reference: Lanza M, Marinescu R (2006) Object-oriented metrics in practice, vol 1. Springer. https://doi.org/10.1017/CBO9781107415324.004, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3 – reference: Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Keele University and Durham University – reference: dos Reis JP, e Abreu FB, de F Carneiro G (2017) Code smells detection 2.0: crowdsmelling and visualization. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp 1–4. https://doi.org/10.23919/CISTI.2017.7975961 – reference: Fokaefs M, Tsantalis N, Chatzigeorgiou A (2007) Jdeodorant: identification and removal of feature envy bad smells. In: 2007 IEEE international conference on software maintenance, pp 519–520. https://doi.org/10.1109/ICSM.2007.4362679 – reference: Marinescu C, Marinescu R, Mihancea PF, Wettel R (2005) iplasma: an integrated platform for quality assessment of object-oriented design. In: In ICSM (industrial and tool volume). Society Press, pp 77–80 – reference: KessentiniWKessentiniMSahraouiHBechikhSOuniAA cooperative parallel search-based software engineering approach for code-smells detectionIEEE Trans Software Eng201440984186110.1109/TSE.2014.2331057 – reference: ZhangHBabarMATellPIdentifying relevant studies in software engineeringInf Softw Technol201153662563710.1016/j.infsof.2010.12.010 – reference: Chen Z, Chen L, Ma W, Xu B (2016) Detecting code smells in Python programs. In: 2016 international conference on Software Analysis, Testing and Evolution (SATE), pp 18–23. https://doi.org/10.1109/SATE.2016.10 – reference: Travassos G, Shull F, Fredericks M, Basili VR (1999) Detecting defects in object-oriented designs: using reading techniques to increase software quality. In: Proceedings of the 14th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications. ACM, New York, NY, USA, OOPSLA ’99, pp 47–56. https://doi.org/10.1145/320384.320389 – reference: Palomba F, Panichella A, Lucia AD, Oliveto R, Zaidman A (2016) A textual-based technique for smell detection. In: IEEE 24th International Conference on Program Comprehension (ICPC), pp 1–10. https://doi.org/10.1109/ICPC.2016.7503704 – reference: SabirFPalmaFRasoolGGuéhéneucYGMohaNA systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systemsSoftw Pract Exp201949133910.1002/spe.2639 – reference: NoblitGHareRMeta-ethnography: synthesizing qualitative studies. Qualitative research methods1988Thousand OaksSAGE Publications10.4135/9781412985000 – reference: Abreu FB, Goulão M, Esteves R (1995) Toward the design quality evaluation of object-oriented software systems. In: 5th International Conference on Software Quality. American Society for Quality, American Society for Quality, Austin, Texas, EUA, pp 44–57 – reference: BelikovABelikovVA citation-based, author- and age-normalized, logarithmic index for evaluation of individual researchers independently of publication counts [version 1; peer review: 2 approved]F1000Research2015488410.12688/f1000research.7070.1 – reference: Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: 1st international workshop on replication in empirical software engineering. Citeseer – reference: FowlerMBeckKBrantJOpdykeWRobertsDRefactoring: improving the design of existing code1999BostonAddison-Wesley Longman Publishing Co., Inc – reference: FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley1034.62113 – reference: AzeemMIPalombaFShiLWangQMachine learning techniques for code smell detection: a systematic literature review and meta-analysisInf Softw Technol201910811513810.1016/j.infsof.2018.12.009 – reference: Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects? In: IEEE International Conference on Software Maintenance, ICSM, pp 306–315. https://doi.org/10.1109/ICSM.2012.6405287 – reference: LacerdaGPetrilloFPimentaMGuéhéneucYGCode smells and refactoring: a tertiary systematic review of challenges and observationsJ Syst Softw202016711061010.1016/j.jss.2020.110610 – reference: Mantyla M, Vanhanen J, Lassenius C (2004) Bad smells—humans as code critics. In: 20th IEEE international conference on software maintenance, 2004 Proceedings, pp 399–408. https://doi.org/10.1109/ICSM.2004.1357825 – reference: AlkharabshehKCrespoYMansoETaboadaJASoftware design smell detection: a systematic mapping studySoftw Qual J201810.1007/s11219-018-9424-8 – reference: KaurAA systematic literature review on empirical analysis of the relationship between code smells and software quality attributesArch Comput Methods Eng201910.1007/s11831-019-09348-6 – reference: MerinoLGhafariMAnslowCNierstraszOA systematic literature review of software visualization evaluationJ Syst Softw201814416518010.1016/j.jss.2018.06.027 – reference: Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: identification and removal of type-checking bad smells. In: CSMR 2008—12th European conference on software maintenance and reengineering, pp 329–331. https://doi.org/10.1109/CSMR.2008.4493342 – reference: WakeWCRefactoring workbook2003BostonAddison-Wesley Longman Publishing Co., Inc – reference: RasoolGArshadZA review of code smell mining techniquesJ Softw Evol Process2015271186789510.1002/smr.1737 – reference: van Emden E, Moonen L (2002) Java quality assurance by detecting code smells. In: Ninth working conference on reverse engineering, 2002. Proceedings, pp 97–106. https://doi.org/10.1109/WCRE.2002.1173068 – reference: Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on Evaluation and Assessment in Software Engineering—EASE ’14, pp 1–10. https://doi.org/10.1145/2601248.2601268, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3 – reference: LandisJRKochGGThe measurement of observer agreement for categorical dataBiometrics197733115917410.2307/25293100351.62039 – reference: BrownWHMalveauRCMcCormickHWSMowbrayTJAntiPatterns: refactoring software, architectures, and projects in crisis19981HobokenWiley – reference: Fard AM, Mesbah A (2013) JSNOSE: detecting JavaScript code smells. In: 2013 IEEE 13th international working conference on Source Code Analysis and Manipulation (SCAM), pp 116–125. https://doi.org/10.1109/SCAM.2013.6648192 – reference: Kreimer J (2005) Adaptive detection of design flaws. In: Electronic notes in theoretical computer science, Research Group Programming Languages and Compilers, Department of Computer Science, University of Paderborn, Germany, vol 141, pp 117–136. https://doi.org/10.1016/j.entcs.2005.02.059 – reference: MonperrusMBruchMMeziniMD’HondtTDetecting missing method calls in object-oriented softwareECOOP 2010—object-oriented programming2010BerlinSpringer22510.1007/978-3-642-14107-2_2 – reference: MohaNGuéhéneucYGDuchienLLe MeurAFDECOR: a method for the specification and detection of code and design smellsIEEE Trans Softw Eng2010361203610.1109/TSE.2009.501209.68142 – reference: Wasylkowski A, Zeller A, Lindig C (2007) Detecting object usage anomalies. In: Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on the foundations of software engineering. ACM, Dubrovnik, Croatia. https://doi.org/10.1145/1287624.1287632 – reference: HammadMBasitHAJarzabekSKoschkeRA systematic mapping study of clone visualizationComput Sci Rev20203710026610.1016/j.cosrev.2020.100266 – reference: SinghSKaurSA systematic literature review: refactoring for disclosing code smells in object oriented softwareAin Shams Eng J201710.1016/j.asej.2017.03.002 – reference: ZhangMHallTBaddooNCode Bad Smells: a review of current knowledgeJ Softw Maint Evol2010261211721192 – reference: Al Dallal J (2015) Identifying refactoring opportunities in object-oriented code: a systematic literature review. Inf Softw Technol 58:231–249. https://doi.org/10.1016/j.infsof.2014.08.002, http://arxiv.org/abs/1011.1669v3arXiv:1011.1669v3 – reference: SantosJAMRocha-JuniorJBPratesLCLdo NascimentoRSFreitasMFde MendonçaMGA systematic review on the code smell effectJ Syst Softw201814445047710.1016/j.jss.2018.07.035 – reference: KitchenhamBThe role of replications in empirical software engineering—a word of warningEmpir Softw Eng200813221922110.1007/s10664-008-9061-0 – reference: GuptaASuriBKumarVMisraSBlažauskasTDamaševičiusRSoftware code smell prediction model using Shannon, Rényi and Tsallis entropiesEntropy201820512010.3390/e20050372 – reference: YamashitaAMoonenLTo what extent can maintenance problems be predicted by code smell detection? An empirical studyInf Softw Technol201355122223224210.1016/j.infsof.2013.08.002 – reference: Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell detection tools. In: Proceedings of the 20th international conference on evaluation and assessment in software engineering. ACM, Limerick, Ireland. https://doi.org/10.1145/2915970.2915984 – reference: Olbrich SM, Cruzes DS, Sjøberg DIK (2010) Are all code smells harmful? A study of god classes and brain classes in the evolution of three open source systems. In: 2010 IEEE international conference on software maintenance, pp 1–10 – reference: RattanDBhatiaRSinghMSoftware clone detection: a systematic reviewInf Softw Technol20135571165119910.1016/j.infsof.2013.01.008 – reference: ChenLBabarMAA systematic review of evaluation of variability management approaches in software product linesInf Softw Technol201153434436210.1016/j.infsof.2010.12.006 – reference: Palomba F, Nucci DD, Panichella A, Zaidman A, Lucia AD (2017) Lightweight detection of android-specific code smells: the adoctor project. In: 2017 IEEE 24th international conference on Software Analysis, Evolution and Reengineering (SANER), pp 487–491. https://doi.org/10.1109/SANER.2017.7884659 – reference: Gerlitz T, Tran QM, Dziobek C (2015) Detection and handling of model smells for matlab/simulink models. In: MASE@MoDELS – reference: BreretonPKitchenhamBABudgenDTurnerMKhalilMLessons from applying the systematic literature review process within the software engineering domainJ Syst Softw200780457158310.1016/j.jss.2006.07.009 – year: 2018 ident: 9566_CR3 publication-title: Softw Qual J doi: 10.1007/s11219-018-9424-8 – volume: 13 start-page: 219 issue: 2 year: 2008 ident: 9566_CR27 publication-title: Empir Softw Eng doi: 10.1007/s10664-008-9061-0 – volume: 17 start-page: 243 issue: 3 year: 2012 ident: 9566_CR26 publication-title: Empir Softw Eng doi: 10.1007/s10664-011-9171-y – volume-title: Refactoring workbook year: 2003 ident: 9566_CR54 – ident: 9566_CR28 – volume-title: Agile software development: principles, patterns, and practices year: 2002 ident: 9566_CR35 – ident: 9566_CR56 doi: 10.1145/2601248.2601268 – ident: 9566_CR24 doi: 10.1109/MOBILESoft.2017.29 – ident: 9566_CR43 doi: 10.1109/SANER.2017.7884659 – volume-title: Refactoring: improving the design of existing code year: 1999 ident: 9566_CR18 – volume: 55 start-page: 2223 issue: 12 year: 2013 ident: 9566_CR58 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2013.08.002 – volume: 19 start-page: 267 issue: 2 year: 2014 ident: 9566_CR9 publication-title: Empir Softw Eng doi: 10.1007/s10664-013-9290-8 – ident: 9566_CR8 – volume: 26 start-page: 1172 issue: 12 year: 2010 ident: 9566_CR60 publication-title: J Softw Maint Evol – volume: 80 start-page: 571 issue: 4 year: 2007 ident: 9566_CR6 publication-title: J Syst Softw doi: 10.1016/j.jss.2006.07.009 – volume: 20 start-page: 1 issue: 5 year: 2018 ident: 9566_CR21 publication-title: Entropy doi: 10.3390/e20050372 – volume: 27 start-page: 867 issue: 11 year: 2015 ident: 9566_CR44 publication-title: J Softw Evol Process doi: 10.1002/smr.1737 – ident: 9566_CR53 doi: 10.1109/WCRE.2002.1173068 – volume: 37 start-page: 100266 year: 2020 ident: 9566_CR22 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2020.100266 – volume: 167 start-page: 110610 year: 2020 ident: 9566_CR30 publication-title: J Syst Softw doi: 10.1016/j.jss.2020.110610 – start-page: 2 volume-title: ECOOP 2010—object-oriented programming year: 2010 ident: 9566_CR39 doi: 10.1007/978-3-642-14107-2_2 – volume: 4 start-page: 884 year: 2015 ident: 9566_CR5 publication-title: F1000Research doi: 10.12688/f1000research.7070.1 – ident: 9566_CR20 doi: 10.1007/978-3-319-62407-5 – ident: 9566_CR12 doi: 10.23919/CISTI.2017.7975961 – volume-title: Meta-ethnography: synthesizing qualitative studies. Qualitative research methods year: 1988 ident: 9566_CR40 doi: 10.4135/9781412985000 – ident: 9566_CR1 – volume: 40 start-page: 841 issue: 9 year: 2014 ident: 9566_CR25 publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2014.2331057 – ident: 9566_CR29 doi: 10.1016/j.entcs.2005.02.059 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 9566_CR36 publication-title: Biochem Med doi: 10.11613/BM.2012.031 – volume: 49 start-page: 3 issue: 1 year: 2019 ident: 9566_CR46 publication-title: Softw Pract Exp doi: 10.1002/spe.2639 – ident: 9566_CR19 – ident: 9566_CR32 doi: 10.1017/CBO9781107415324.004 – volume: 55 start-page: 1165 issue: 7 year: 2013 ident: 9566_CR45 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2013.01.008 – volume: 53 start-page: 625 issue: 6 year: 2011 ident: 9566_CR59 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2010.12.010 – volume: 13 start-page: 211 issue: 2 year: 2008 ident: 9566_CR48 publication-title: Empir Softw Eng doi: 10.1007/s10664-008-9060-1 – volume: 53 start-page: 344 issue: 4 year: 2011 ident: 9566_CR10 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2010.12.006 – year: 2019 ident: 9566_CR23 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09348-6 – ident: 9566_CR33 doi: 10.1109/ICSM.2004.1357825 – volume: 36 start-page: 20 issue: 1 year: 2010 ident: 9566_CR38 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2009.50 – ident: 9566_CR42 doi: 10.1109/ICPC.2016.7503704 – ident: 9566_CR2 doi: 10.1016/j.infsof.2014.08.002 – volume: 50 start-page: 833 issue: 9–10 year: 2008 ident: 9566_CR13 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2008.01.006 – ident: 9566_CR17 doi: 10.1109/ICSM.2007.4362679 – ident: 9566_CR15 doi: 10.1145/2915970.2915984 – ident: 9566_CR50 doi: 10.1109/JCSSE.2016.7748884 – volume-title: AntiPatterns: refactoring software, architectures, and projects in crisis year: 1998 ident: 9566_CR7 – volume-title: Statistical methods for rates and proportions year: 2013 ident: 9566_CR16 – ident: 9566_CR11 doi: 10.1109/SATE.2016.10 – ident: 9566_CR14 doi: 10.1109/SCAM.2013.6648192 – ident: 9566_CR55 doi: 10.1145/1287624.1287632 – volume: 33 start-page: 159 issue: 1 year: 1977 ident: 9566_CR31 publication-title: Biometrics doi: 10.2307/2529310 – year: 2017 ident: 9566_CR49 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2017.03.002 – ident: 9566_CR51 doi: 10.1145/320384.320389 – ident: 9566_CR52 doi: 10.1109/CSMR.2008.4493342 – ident: 9566_CR57 doi: 10.1109/ICSM.2012.6405287 – volume: 144 start-page: 165 year: 2018 ident: 9566_CR37 publication-title: J Syst Softw doi: 10.1016/j.jss.2018.06.027 – volume: 108 start-page: 115 year: 2019 ident: 9566_CR4 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2018.12.009 – volume: 144 start-page: 450 year: 2018 ident: 9566_CR47 publication-title: J Syst Softw doi: 10.1016/j.jss.2018.07.035 – ident: 9566_CR34 – ident: 9566_CR41 doi: 10.1109/ICSM.2010.5609564 |
| SSID | ssj0054992 |
| Score | 2.4623053 |
| SecondaryResourceType | review_article |
| Snippet | Code smells tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47 |
| SubjectTerms | Best practice Decision trees Engineering Feature extraction Genetic algorithms Literature reviews Machine learning Mathematical and Computational Engineering Metaphor Open source software Programming languages Review Article Software Source code State-of-the-art reviews Support vector machines Systematic review Visualization |
| Title | Code Smells Detection and Visualization: A Systematic Literature Review |
| URI | https://link.springer.com/article/10.1007/s11831-021-09566-x https://www.proquest.com/docview/2616383247 |
| Volume | 29 |
| WOSCitedRecordID | wos000627226000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmxaapkkab2M6PYwhTsduJU1TGMxO1ir--SZpuqmooIee8oPykrx8Ly_fFwDOUkrTIEiph4UR1Y4y5gmClBeEilMdvClk6WPjARsOo8mE3zlSWFHfdq9TktZTr8huevbp0DfQnwb11NPIcV1vd5F5sOF-NK79rwl4bI4TYXPmT31Hlfm-j8_b0QpjfkmL2t2m3_zff-6AbYcuYbeaDrtgTeUt0HRIE7p1XLTA1gcZwj1w05unCo6e1GxWwCtV2ttZORR5CsfTwrAuK67mJezC0VL5GQ6WisywyjDsg8f-9UPv1nMPLHgyJKT0qIyyBHMhqNGZZzyTgXZgwlz9lApRiTFKEGdKozyfZZwrQlmaJX4oOUWZ8PEBaOTzXB0CKAimPleBbstCHzMucBQmRBKBM-Jj1QaotnMsnfq4eQRjFq90k43dYm232NotfmuD82Wb50p749fanXr4YrcOi1jHh9rBaNDI2uCiHq5V8c-9Hf2t-jHYDAwvwp7NdECjXLyoE7AhX8tpsTi18_Md0ZzdNQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6ICurB6VScTs3Bmxbapk0ab2M6J9Yhbo7dSpamMJidrFX88036Y1VRQQ895QflJXn5Xl6-LwCnISGhbYfEwFyLansRNbhrScN2JCMqeJNWRh8b-rTX80Yjdl-QwpLytnuZksw8dUV2U7NPhb62-hSoJ4ZCjiuO2rG0Yv5Df1j6Xx3wZDlOC-szf2IWVJnv-_i8HVUY80taNNttOrX__ecWbBboErXy6bANSzKuQ61AmqhYx0kdNj7IEO7AdXsWStR_ktNpgi5lmt3OihGPQzScJJp1mXM1L1AL9RfKz8hfKDKjPMOwC4-dq0G7axQPLBjCcd3UIMKLxphxTrTOPGWRsJUD4_rqp5AWERhbY4tRqVCeSSPGpEtoGI1NRzBiRdzEe7Acz2K5D4i7mJhM2qotdUxMGceeM3aFy3Hkmlg2wCrtHIhCfVw_gjENKt1kbbdA2S3I7Ba8NeBs0eY51974tXazHL6gWIdJoOJD5WAUaKQNOC-Hqyr-ubeDv1U_gbXu4M4P_Jve7SGs25ojkZ3TNGE5nb_II1gVr-kkmR9nc_UdORLgGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IiuiD06k4nZoH37Ssbdqk8W1sTsUxBtOxt5KlKQxmN9Yq_nyTXtYpKogPfcqFcnL7Ts75vgBcBoQEth0QA3Mtqu2F1OCuJQ3bkYwo501aKX1s2KW9njcasf4Kiz_Ndi9CkhmnQas0RUljHoSNkvimZqJyg231KYBPDIUiNxydSK_99cGw2Iu185PGOy2s7_-JmdNmvu_j89FU4s0vIdL05OlU_v_Pe7Cbo07UzKbJPqzJqAqVHIGifH3HVdhZkSc8gLvWLJBo8CKn0xi1ZZJmbUWIRwEaTmLNxsw4nDeoiQZLRWjUXSo1oyzycAjPndun1r2RP7xgCMd1E4MILxxjxjnR-vOUhcJWGxvXKaFCWkRgbI0tRqVCfyYNGZMuoUE4Nh3BiBVyEx_BejSL5DEg7mJiMmmrttQxMWUce87YFS7HoWtiWQOrsLkvclVy_TjG1C_1lLXdfGU3P7Wb_16Dq2WbeabJ8WvtejGUfr4-Y1_5jWrjUWCS1uC6GLqy-OfeTv5W_QK2-u2O333oPZ7Ctq2pE-n1TR3Wk8WrPINN8ZZM4sV5Om0_ANQY6P0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Code+Smells+Detection+and+Visualization%3A+A+Systematic+Literature+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Pereira+dos+Reis%2C+Jos%C3%A9&rft.au=Brito+e+Abreu%2C+Fernando&rft.au=de+Figueiredo+Carneiro%2C+Glauco&rft.au=Anslow%2C+Craig&rft.date=2022-01-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=1&rft.spage=47&rft.epage=94&rft_id=info:doi/10.1007%2Fs11831-021-09566-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_021_09566_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |