Poly(lactic acid) nanofibrous scaffolds for tissue engineering

Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced drug delivery reviews Ročník 107; s. 206 - 212
Hlavní autoři: Santoro, Marco, Shah, Sarita R., Walker, Jennifer L., Mikos, Antonios G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 15.12.2016
Témata:
ISSN:0169-409X, 1872-8294, 1872-8294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use. [Display omitted]
AbstractList Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use. [Display omitted]
Author Santoro, Marco
Mikos, Antonios G.
Shah, Sarita R.
Walker, Jennifer L.
AuthorAffiliation b Department of Bioengineering, Rice University, Houston, TX 77030
a Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005
AuthorAffiliation_xml – name: b Department of Bioengineering, Rice University, Houston, TX 77030
– name: a Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005
Author_xml – sequence: 1
  givenname: Marco
  surname: Santoro
  fullname: Santoro, Marco
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
– sequence: 2
  givenname: Sarita R.
  surname: Shah
  fullname: Shah, Sarita R.
  organization: Department of Bioengineering, Rice University, Houston, TX 77030, United States
– sequence: 3
  givenname: Jennifer L.
  surname: Walker
  fullname: Walker, Jennifer L.
  organization: Department of Bioengineering, Rice University, Houston, TX 77030, United States
– sequence: 4
  givenname: Antonios G.
  surname: Mikos
  fullname: Mikos, Antonios G.
  email: mikos@rice.edu
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27125190$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFu1DAQtVAR3RZ-gAPKsRwSxk5iOxKqVFW0IFWCA0jcLMceL7PK2sXOVurfk2VLBRx6mpHmvTfz5p2wo5giMvaaQ8OBy3ebxnqfG7H0DXQN8OEZW3GtRK3F0B2x1TIY6g6G78fspJQNABdKwgt2LBQXPR9gxc6_pOn-bLJuJldZR_5tFW1MgcacdqUqzoaQJl-qkHI1Uyk7rDCuKSJmiuuX7HmwU8FXD_WUfbv68PXyY33z-frT5cVN7bq-n2sp29G2vsOWc5CBK-1GHVw_KKF8iziOSgEPVsheWyU9SBlkp9oWtQDVj-0pOz_o3u7GLXqHcc52MreZtjbfm2TJ_DuJ9MOs053pQS-m-0Xg7EEgp587LLPZUnE4TTbiYtRwLaTUoPiwQN_8vetxyZ-nLQBxALicSskYHiEczD4ZszH7ZMw-GQOdgd-q-j-So9nOlPb30vQ09f2BisuH7wizKY4wOvSU0c3GJ3qK_gseL6mC
CitedBy_id crossref_primary_10_3390_polym12040792
crossref_primary_10_1002_jbm_a_36181
crossref_primary_10_1016_j_colsurfb_2018_08_037
crossref_primary_10_1002_pen_26906
crossref_primary_10_1021_acs_langmuir_4c02975
crossref_primary_10_3390_molecules25225286
crossref_primary_10_3390_membranes12100929
crossref_primary_10_1016_j_polymer_2024_127294
crossref_primary_10_3390_ijms232416185
crossref_primary_10_1002_adfm_202305603
crossref_primary_10_1002_adtp_202300428
crossref_primary_10_1016_j_ijpharm_2017_08_117
crossref_primary_10_1007_s40009_023_01261_8
crossref_primary_10_1016_j_progpolymsci_2018_10_004
crossref_primary_10_1016_j_bioadv_2022_212808
crossref_primary_10_3390_jfb12010016
crossref_primary_10_1080_09205063_2020_1753932
crossref_primary_10_3390_jfb16070249
crossref_primary_10_1016_j_biotechadv_2017_05_006
crossref_primary_10_1007_s40883_020_00187_7
crossref_primary_10_1016_j_mec_2025_e00262
crossref_primary_10_3390_jcs8070269
crossref_primary_10_3390_polym15010065
crossref_primary_10_1016_j_jmbbm_2016_09_012
crossref_primary_10_2174_1381612829666230816100631
crossref_primary_10_1002_pat_5095
crossref_primary_10_1016_j_tibtech_2019_07_002
crossref_primary_10_1039_D2NJ02747J
crossref_primary_10_1080_00914037_2024_2335173
crossref_primary_10_1016_j_bioactmat_2021_03_009
crossref_primary_10_1039_D4RA02002B
crossref_primary_10_1080_09205063_2023_2168594
crossref_primary_10_3390_pharmaceutics13070957
crossref_primary_10_1016_j_jddst_2023_105116
crossref_primary_10_1002_adhm_202201457
crossref_primary_10_1039_C9BM01290G
crossref_primary_10_1007_s11082_022_03970_8
crossref_primary_10_1007_s12668_018_0525_4
crossref_primary_10_1515_rams_2020_0041
crossref_primary_10_3390_jfb14090465
crossref_primary_10_1007_s11082_024_06500_w
crossref_primary_10_1016_j_ijbiomac_2024_129975
crossref_primary_10_1088_1748_605X_abaf06
crossref_primary_10_1134_S1811238221020028
crossref_primary_10_1111_jerd_12805
crossref_primary_10_3390_polym13152577
crossref_primary_10_1007_s11090_019_09956_x
crossref_primary_10_1016_j_jddst_2022_103918
crossref_primary_10_1038_s41598_017_10531_7
crossref_primary_10_1080_1023666X_2019_1602908
crossref_primary_10_1088_1742_6596_2175_1_012016
crossref_primary_10_3390_coatings14060666
crossref_primary_10_1002_mabi_202400079
crossref_primary_10_1088_1361_6528_acf501
crossref_primary_10_1088_1748_605X_abca11
crossref_primary_10_3390_polym10060680
crossref_primary_10_3389_fbioe_2021_666399
crossref_primary_10_1002_anbr_202000088
crossref_primary_10_2147_SCCAA_S314107
crossref_primary_10_3389_fbioe_2022_1021827
crossref_primary_10_3390_molecules27113640
crossref_primary_10_3390_ijms23147545
crossref_primary_10_3390_s16081238
crossref_primary_10_1016_j_ijbiomac_2025_141470
crossref_primary_10_1016_j_ijbiomac_2023_126314
crossref_primary_10_1016_j_isci_2024_111512
crossref_primary_10_1007_s00289_024_05148_6
crossref_primary_10_3390_polym13121962
crossref_primary_10_1039_D3NR00583F
crossref_primary_10_1016_j_ijbiomac_2024_131365
crossref_primary_10_1016_j_ijbiomac_2019_04_145
crossref_primary_10_3390_pharmaceutics13020230
crossref_primary_10_1016_j_carbpol_2024_121927
crossref_primary_10_1177_0885328217723179
crossref_primary_10_1007_s00784_022_04379_z
crossref_primary_10_1016_j_actbio_2018_04_026
crossref_primary_10_1016_j_compositesa_2021_106309
crossref_primary_10_1016_j_ijbiomac_2021_08_218
crossref_primary_10_1016_j_saa_2018_08_019
crossref_primary_10_1016_j_jddst_2018_05_005
crossref_primary_10_1177_09673911211027126
crossref_primary_10_1002_jbm_b_34093
crossref_primary_10_1002_mba2_74
crossref_primary_10_1007_s12034_021_02463_w
crossref_primary_10_1016_j_apmt_2020_100611
crossref_primary_10_1016_j_stlm_2021_100011
crossref_primary_10_1208_s12249_024_02855_1
crossref_primary_10_1088_1757_899X_988_1_012003
crossref_primary_10_1016_j_ijbiomac_2023_123693
crossref_primary_10_3390_fermentation9090789
crossref_primary_10_1016_j_eurpolymj_2019_109239
crossref_primary_10_3390_ma18132954
crossref_primary_10_1016_j_ijbiomac_2023_126206
crossref_primary_10_1016_j_ijpharm_2021_120465
crossref_primary_10_1016_j_chemosphere_2024_141186
crossref_primary_10_1002_pat_5215
crossref_primary_10_3390_ijms23031290
crossref_primary_10_1016_j_desal_2023_116475
crossref_primary_10_3390_molecules27207045
crossref_primary_10_1080_21691401_2019_1639723
crossref_primary_10_3389_fphar_2020_00431
crossref_primary_10_1002_mabi_202500308
crossref_primary_10_1007_s13346_021_00925_6
crossref_primary_10_1002_jbm_b_34503
crossref_primary_10_1016_j_ijpharm_2021_120698
crossref_primary_10_1016_j_actbio_2019_04_032
crossref_primary_10_1080_00914037_2023_2301647
crossref_primary_10_1016_j_bioactmat_2020_06_018
crossref_primary_10_1177_0885328217719854
crossref_primary_10_1088_1748_605X_ac11ca
crossref_primary_10_1155_2019_2472964
crossref_primary_10_4155_tde_2019_0044
crossref_primary_10_1002_admi_202101302
crossref_primary_10_1007_s10853_022_06887_5
crossref_primary_10_1007_s10934_018_0687_z
crossref_primary_10_1016_j_foodchem_2021_131525
crossref_primary_10_1080_09593330_2023_2173088
crossref_primary_10_3389_fbioe_2023_1115312
crossref_primary_10_3390_pharmaceutics15020557
crossref_primary_10_3233_BME_230002
crossref_primary_10_1016_j_ijbiomac_2022_07_140
crossref_primary_10_1186_s13036_024_00412_9
crossref_primary_10_1016_j_jddst_2021_103014
crossref_primary_10_1016_j_mechmat_2023_104640
crossref_primary_10_1016_j_actbio_2019_01_043
crossref_primary_10_1097_SAP_0000000000002036
crossref_primary_10_3390_biomedicines12071613
crossref_primary_10_3390_polym16182621
crossref_primary_10_1134_S1811238221020107
crossref_primary_10_3390_ijms22168781
crossref_primary_10_1016_j_ijbiomac_2024_131335
crossref_primary_10_1016_j_biomaterials_2023_122270
crossref_primary_10_1080_20550324_2022_2054212
crossref_primary_10_1002_ejic_202500126
crossref_primary_10_1007_s10904_023_02605_z
crossref_primary_10_1007_s11172_025_4712_5
crossref_primary_10_1016_j_addr_2018_07_019
crossref_primary_10_1016_j_supflu_2018_02_015
crossref_primary_10_1002_adhm_202101590
crossref_primary_10_1016_j_ijbiomac_2021_07_196
crossref_primary_10_1007_s11814_019_0459_8
crossref_primary_10_1016_j_jmbbm_2020_103634
crossref_primary_10_1016_j_mencom_2018_07_024
crossref_primary_10_1515_polyeng_2025_0078
crossref_primary_10_3390_polym17091212
crossref_primary_10_1016_j_bioactmat_2023_01_003
crossref_primary_10_3390_polym13183087
crossref_primary_10_3390_ijms22031408
crossref_primary_10_1016_j_bone_2021_116256
crossref_primary_10_1016_j_mtcomm_2020_101812
crossref_primary_10_3390_biomedicines10050963
crossref_primary_10_3390_polym10050561
crossref_primary_10_1002_slct_202302689
crossref_primary_10_3390_ijms23031736
crossref_primary_10_3390_pharmaceutics13030357
crossref_primary_10_1080_03091902_2022_2041750
crossref_primary_10_3390_polym10101167
crossref_primary_10_1002_jnr_70060
crossref_primary_10_1002_adhm_202304114
crossref_primary_10_3389_fmats_2025_1570738
crossref_primary_10_1007_s12668_025_02022_1
crossref_primary_10_1016_j_carbpol_2020_117198
crossref_primary_10_1016_j_biomaterials_2018_08_010
crossref_primary_10_1002_pol_20200719
crossref_primary_10_1016_j_neulet_2023_137417
crossref_primary_10_1016_j_eurpolymj_2017_09_020
crossref_primary_10_1002_pat_5263
crossref_primary_10_3390_polym15051202
crossref_primary_10_3390_molecules28020485
crossref_primary_10_1038_s41598_021_82484_x
crossref_primary_10_1002_jbm_a_36213
crossref_primary_10_1038_s41536_022_00236_5
crossref_primary_10_1016_j_jmbbm_2020_103616
crossref_primary_10_1007_s00170_025_15596_7
crossref_primary_10_3390_ijms23031895
crossref_primary_10_1016_j_ijbiomac_2025_143393
crossref_primary_10_1016_j_prosdent_2018_03_033
crossref_primary_10_1007_s41779_019_00363_1
crossref_primary_10_3390_app13169432
crossref_primary_10_1016_j_jconrel_2020_10_027
crossref_primary_10_3390_ma15207061
crossref_primary_10_1002_smll_202405642
crossref_primary_10_1016_j_bprint_2021_e00177
crossref_primary_10_1016_j_carbpol_2021_117632
crossref_primary_10_1186_s40580_019_0209_y
crossref_primary_10_1002_pat_5366
crossref_primary_10_1080_10601325_2021_1880935
crossref_primary_10_1089_ten_tec_2019_0226
crossref_primary_10_34172_bi_30806
crossref_primary_10_1016_j_matt_2022_09_012
crossref_primary_10_1016_j_matdes_2025_114698
crossref_primary_10_1016_j_molstruc_2024_138243
crossref_primary_10_1016_j_rechem_2025_102351
crossref_primary_10_3390_pharmaceutics15092196
crossref_primary_10_1016_j_addr_2018_03_005
crossref_primary_10_3390_nano13060989
crossref_primary_10_3390_gels11050316
crossref_primary_10_1080_07853890_2024_2337871
crossref_primary_10_1016_j_regen_2020_100035
crossref_primary_10_1002_pen_25511
crossref_primary_10_1007_s12257_021_0418_1
crossref_primary_10_1208_s12249_021_02081_z
crossref_primary_10_1177_0885328217753414
crossref_primary_10_1007_s40005_024_00690_x
crossref_primary_10_1002_pat_5399
crossref_primary_10_1016_j_recot_2024_01_016
crossref_primary_10_1177_08927057251318717
crossref_primary_10_1016_j_jcis_2021_02_099
crossref_primary_10_1002_macp_202000034
crossref_primary_10_1002_jbm_a_37764
crossref_primary_10_1016_j_jiec_2019_06_044
crossref_primary_10_1515_chem_2020_0163
crossref_primary_10_1016_j_ijengsci_2024_104136
crossref_primary_10_1016_j_mattod_2025_03_009
crossref_primary_10_1016_j_colsurfb_2019_01_060
crossref_primary_10_3390_md23090349
crossref_primary_10_3390_ma13173786
crossref_primary_10_1016_j_ijbiomac_2022_09_027
crossref_primary_10_1515_rams_2025_0098
crossref_primary_10_1002_app_56389
crossref_primary_10_1016_j_burns_2024_04_008
crossref_primary_10_1002_jbm_b_34125
crossref_primary_10_1080_1023666X_2018_1499275
crossref_primary_10_1002_adfm_202406950
crossref_primary_10_1016_j_ccr_2019_06_002
crossref_primary_10_1016_j_jddst_2023_105054
crossref_primary_10_1016_j_tice_2025_103024
crossref_primary_10_1016_j_jmst_2020_02_060
crossref_primary_10_1016_j_cej_2019_02_043
crossref_primary_10_1080_00222348_2019_1593601
crossref_primary_10_1007_s10068_024_01543_x
crossref_primary_10_1080_03639045_2018_1430820
crossref_primary_10_3390_app12063192
crossref_primary_10_1002_bmm2_12111
crossref_primary_10_1007_s10561_020_09894_5
crossref_primary_10_1016_j_cis_2024_103121
crossref_primary_10_1038_s41598_020_63892_x
crossref_primary_10_1116_6_0002206
crossref_primary_10_3390_polym16213044
crossref_primary_10_1002_pen_25339
crossref_primary_10_3390_ijms241713642
crossref_primary_10_3390_ijms21196989
crossref_primary_10_1016_j_biombioe_2024_107067
crossref_primary_10_1016_j_polymer_2020_123336
crossref_primary_10_1038_s41427_023_00526_4
crossref_primary_10_1016_j_biomaterials_2017_09_002
crossref_primary_10_1108_RPJ_05_2025_0180
crossref_primary_10_1038_s41598_022_24275_6
crossref_primary_10_1080_1023666X_2018_1478618
crossref_primary_10_1134_S1990793119070078
crossref_primary_10_1177_0263617418816200
crossref_primary_10_3390_jfb11040078
crossref_primary_10_1007_s00723_019_01133_9
crossref_primary_10_1016_j_bprint_2025_e00429
crossref_primary_10_1016_j_eurpolymj_2025_114161
crossref_primary_10_1002_jbm_a_36776
crossref_primary_10_1134_S1063774523600308
crossref_primary_10_1016_j_mencom_2018_01_020
crossref_primary_10_1016_j_polymer_2020_122596
crossref_primary_10_3390_ijms222011215
crossref_primary_10_1002_marc_202200250
crossref_primary_10_1093_rb_rbae139
crossref_primary_10_1016_j_mtcomm_2017_08_006
crossref_primary_10_3390_biomimetics6040062
crossref_primary_10_1016_j_ijbiomac_2020_08_059
crossref_primary_10_1002_pat_5723
crossref_primary_10_3390_ph16020325
crossref_primary_10_1007_s12221_018_8037_y
crossref_primary_10_1016_j_ijbiomac_2025_146977
crossref_primary_10_1002_app_54788
crossref_primary_10_1039_C8NR08704K
crossref_primary_10_1002_app_55636
crossref_primary_10_1002_jbm_a_36427
crossref_primary_10_1016_j_surfin_2024_105590
crossref_primary_10_3390_ijms19113475
crossref_primary_10_1016_j_matpr_2020_05_535
crossref_primary_10_3390_ijms251910766
crossref_primary_10_1016_j_ijpharm_2021_120288
crossref_primary_10_3390_ma15062105
crossref_primary_10_3390_polym17141928
crossref_primary_10_1177_0883911521996402
crossref_primary_10_1080_09205063_2016_1211000
crossref_primary_10_1007_s40883_018_0076_9
crossref_primary_10_1016_j_eurpolymj_2017_11_020
crossref_primary_10_1016_j_jallcom_2024_176019
crossref_primary_10_1186_s13068_024_02596_0
crossref_primary_10_3390_gels10040216
crossref_primary_10_1016_j_jcat_2019_03_002
crossref_primary_10_1088_1742_6596_953_1_012015
crossref_primary_10_1002_mabi_202100098
crossref_primary_10_1016_j_actbio_2024_11_006
crossref_primary_10_1080_02635143_2024_2423077
crossref_primary_10_1007_s10973_019_08890_6
crossref_primary_10_3390_pharmaceutics13071038
crossref_primary_10_1016_j_jtice_2017_06_022
crossref_primary_10_3390_biomedicines10112736
crossref_primary_10_1177_0885328217741903
crossref_primary_10_1016_j_recot_2023_02_001
crossref_primary_10_3390_pharmaceutics17091176
crossref_primary_10_1007_s42242_023_00239_1
crossref_primary_10_1016_j_ijbiomac_2023_127607
crossref_primary_10_1080_00914037_2017_1393681
crossref_primary_10_1016_j_procir_2020_02_315
crossref_primary_10_1515_epoly_2020_0046
crossref_primary_10_1007_s11837_018_3222_4
crossref_primary_10_1007_s11665_021_05792_3
crossref_primary_10_1016_j_carbpol_2018_09_011
crossref_primary_10_1016_j_bioadv_2023_213578
crossref_primary_10_1016_j_jddst_2024_105959
crossref_primary_10_3390_technologies11050137
crossref_primary_10_1007_s42765_024_00450_4
crossref_primary_10_1080_15583724_2018_1484761
crossref_primary_10_3390_nano13152236
crossref_primary_10_1089_wound_2020_1206
crossref_primary_10_3390_polym14081627
crossref_primary_10_3390_polym12010159
crossref_primary_10_3390_polym17182455
crossref_primary_10_1016_j_ijbiomac_2021_05_197
Cites_doi 10.1016/0142-9612(96)85754-1
10.1016/j.msec.2013.11.008
10.1016/j.jconrel.2005.02.024
10.1152/ajpheart.00007.2012
10.1016/j.biotechadv.2011.06.019
10.1186/1754-1611-8-30
10.1007/s10856-008-3646-4
10.1016/j.jconrel.2008.01.011
10.1002/adem.201180006
10.1021/bm900416b
10.1166/jbn.2005.032
10.1016/j.addr.2011.01.008
10.1016/j.addr.2009.07.007
10.1016/j.biomaterials.2013.09.097
10.1002/app.40797
10.1002/app.35372
10.1155/2013/789289
10.1089/ten.2006.12.1197
10.1016/j.addr.2012.03.009
10.1080/15583724.2014.881374
10.1016/j.biomaterials.2013.02.016
10.1016/j.reactfunctpolym.2012.07.011
10.1016/j.actbio.2013.08.022
10.1016/j.carbpol.2011.07.014
10.1128/AAC.00622-13
10.1517/17425247.2013.808183
10.1016/j.ijbiomac.2014.06.004
10.1111/j.1541-4337.2010.00126.x
10.1016/j.actbio.2012.07.012
10.1002/adv.20032
10.1089/ten.tea.2008.0175
10.1016/j.ijbiomac.2014.09.058
10.3390/ijms12042158
10.1089/ten.tec.2013.0458
10.1016/j.biomaterials.2013.08.028
10.1016/j.progpolymsci.2013.05.014
10.1016/j.ijpharm.2012.09.019
10.1016/j.pneurobio.2010.11.002
10.1016/j.biotechadv.2012.08.001
10.1002/bit.20393
10.1002/mabi.201200004
10.1016/j.actbio.2009.12.051
10.1615/CritRevBiomedEng.v40.i5.10
10.1016/j.biomaterials.2011.09.009
10.1016/j.ijpharm.2011.02.004
10.1016/j.addr.2007.03.011
10.1016/j.msec.2013.05.034
10.1021/nl101355x
10.1016/j.jconrel.2015.09.008
10.1016/j.jconrel.2009.06.007
10.1371/journal.pone.0120328
10.1126/science.8493529
10.1097/SCS.0b013e31819b96fb
10.1007/s10853-013-7527-y
10.1016/j.biomaterials.2012.03.063
10.1088/1741-2560/6/1/016001
10.1016/j.biomaterials.2010.07.028
10.1016/j.msec.2012.04.031
10.1039/C5RA05773F
10.1016/j.pneurobio.2015.06.001
10.1016/j.progpolymsci.2010.01.006
10.1016/j.ijpharm.2008.07.033
10.1089/ten.teb.2011.0238
10.1016/j.jconrel.2015.05.103
10.1016/S1369-7021(04)00233-0
10.1089/ten.tec.2008.0422
10.1016/j.proeng.2012.07.534
10.1002/jbm.a.31870
10.1080/00222340600769832
10.1016/j.actbio.2013.07.040
10.1021/bm060680j
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.addr.2016.04.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-8294
EndPage 212
ExternalDocumentID PMC5081275
27125190
10_1016_j_addr_2016_04_019
S0169409X16301296
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: F30 AR067606
– fundername: NCI NIH HHS
  grantid: R01 CA180279
GroupedDBID ---
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSP
SSU
SSZ
T5K
TEORI
~G-
--K
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMT
HVGLF
HX~
HZ~
R2-
SEW
SPT
WUQ
Y6R
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c455t-663ba3d4e31106f178cb8fc59727d3eebb7701fa2658a76d066f64733e82075b3
ISICitedReferencesCount 372
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390505500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-409X
1872-8294
IngestDate Tue Sep 30 16:59:59 EDT 2025
Sun Nov 09 14:12:34 EST 2025
Mon Jul 21 06:05:46 EDT 2025
Sat Nov 29 07:27:12 EST 2025
Tue Nov 18 21:51:13 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PLA
Tissue engineering
ACL
PDLLA
Drug delivery
BMP-2
PDLA
β-TCP
PLLA
PLDLA
HA
PEO
Nanofibers
Scaffolds
TIPS
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-663ba3d4e31106f178cb8fc59727d3eebb7701fa2658a76d066f64733e82075b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0169409X16301296?via%3Dihub
PMID 27125190
PQID 1826680719
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5081275
proquest_miscellaneous_1826680719
pubmed_primary_27125190
crossref_primary_10_1016_j_addr_2016_04_019
crossref_citationtrail_10_1016_j_addr_2016_04_019
elsevier_sciencedirect_doi_10_1016_j_addr_2016_04_019
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advanced drug delivery reviews
PublicationTitleAlternate Adv Drug Deliv Rev
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lee, Jin, Jang (bb0080) 2014; 8
Pillay, Dott, Choonara, Tyagi, Tomar, Kumar, du Toit, Ndesendo (bb0140) 2013
Wei, Guo-Wang, Han, Ding, Chen (bb0170) 2015; 213
Dahlin, Kasper, Mikos (bb0270) 2011; 17
Mohiti-Asli, Pourdeyhimi, Loboa (bb0380) 2014; 20
Saraf, Lozier, Haesslein, Kasper, Raphael, Baggett, Mikos (bb0105) 2009; 15
Hu, Sun, Ma, Xie, Chen, Ma (bb0320) 2010; 31
Bigg (bb0045) 2005; 24
Lou, Wang, Song, Gu, Yang (bb0205) 2014; 69
Lanza, Langer, Vacanti (bb0005) 2007
Zhang, Mochalin, Neitzel, Hazeli, Niu, Kontsos, Zhou, Lelkes, Gogotsi (bb0200) 2012; 33
Zamani, Prabhakaran, Ramakrishna (bb0090) 2013; 8
Maretschek, Greiner, Kissel (bb0125) 2008; 127
Heunis, Smith, Dicks (bb0375) 2013; 57
Holzwarth, Ma (bb0190) 2011; 32
Zhao, Han, Tu, Huan, Zeng, Wu, Cha, Zhou (bb0065) 2012; 32
Butcher, Mahler, Hockaday (bb0295) 2011; 63
Langer, Vacanti (bb0035) 1993; 260
Chiono, Tonda-Turo (bb0245) 2015; 131
Habraken, Wolke, Jansen (bb0180) 2007; 59
Raquez, Habibi, Murariu, Dubois (bb0230) 2013; 38
Mohiti-Asli, Saha, Murphy, Gracz, Pourdeyhimi, Atala, Loboa (bb0350) 2015
Binan, Tendey, De Crescenzo, El Ayoubi, Ajji, Jolicoeur (bb0280) 2014; 35
Badrossamay, McIlwee, Goss, Parker (bb0310) 2010; 10
Ratner (bb0050) 2013
Wang, Mullins, Cregg, Hurtado, Oudega, Trombley, Gilbert (bb0285) 2009; 6
Cheng, Sun, Hu, Jin, Sun, Shi, Zhang, Cui, Zhang (bb0390) 2013; 9
Thuy, Ghosh, Hwang, Chanunpanich, Park (bb0145) 2012; 439
Wang, Zhang, Wang, Yin, Dong (bb0315) 2009; 10
Zeng, Yang, Liang, Zhang, Guan, Xu, Chen, Jing (bb0095) 2005; 105
Lu, Mikos (bb0010) 2009
Jamshidian, Tehrany, Imran, Jacquot, Desobry (bb0015) 2010; 9
Ren (bb0235) 2010
Nguyen, Ghosh, Hwang, Tran, Park (bb0345) 2013; 48
Torres-Giner, Martinez-Abad, Gimeno-Alcaniz, Ocio, Lagaron (bb0155) 2012; 14
Athanasiou, Niederauer, Agrawal (bb0175) 1996; 17
Hasan, Memic, Annabi, Hossain, Paul, Dokmeci, Dehghani, Khademhosseini (bb0300) 2014; 10
Shalumon, Deepthi, Anupama, Nair, Jayakumar, Chennazhi (bb0325) 2015; 72
Li, Mauck, Tuan (bb0265) 2005; 1
Papenburg, Bolhuis-Versteeg, Grijpma, Feijen, Wessling, Stamatialis (bb0215) 2010; 6
Lasprilla, Martinez, Lunelli, Jardini, Filho (bb0025) 2012; 30
Lovald, Khraishi, Wagner, Baack (bb0030) 2009; 20
Gu, Ding, Yang, Liu (bb0240) 2011; 93
Immich, Arias, Carreras, Boemo, Tornero (bb0135) 2013; 33
Fang, Feng (bb0210) 2014; 35
Surrao, Waldman, Amsden (bb0220) 2012; 8
Tian, Prabhakaran, Hu, Chen, Besenbacher, Ramakrishna (bb0120) 2015; 5
Kontogiannopoulos, Assimopoulou, Tsivintzelis, Panayiotou, Papageorgiou (bb0340) 2011; 409
Kobsa, Kristofik, Sawyer, Bothwell, Kyriakides, Saltzman (bb0385) 2013; 34
He, Huang, Han, Liu, Zhang, Chen (bb0150) 2006; 45
Sundaramurthi, Krishnan, Sethuraman (bb0335) 2014; 54
Zahedi, Karami, Rezaeian, Jafari, Mahdaviani, Abdolghaffari, Abdollahi (bb0365) 2012; 124
Gao, Truong, Zhu, Kyratzis (bb0355) 2014; 131
Callahan, Xie, Barker, Zheng, Reneker, Dove, Becker (bb0275) 2013; 34
Mourino, Cattalini, Roether, Dubey, Roy, Boccaccini (bb0225) 2013; 10
Nguyen, Chung, Park (bb0110) 2011; 86
Sun, Jin, Holzwarth, Liu, Hu, Gupte, Zhao, Ma (bb0255) 2012; 12
Lopes, Jardini, Filho (bb0020) 2012; 42
Pérez, Won, Knowles, Kim (bb0195) 2013; 65
Heunis, Bshena, Klumperman, Dicks (bb0370) 2011; 12
Yoo, Kim, Park (bb0075) 2009; 61
Liao, Chen, Liu, Leong (bb0100) 2009; 139
Puppi, Chiellini, Piras, Chiellini (bb0165) 2010; 35
Ma (bb0040) 2004; 7
Bengali, Pannier, Segura, Anderson, Jang, Mustoe, Shea (bb0160) 2005; 90
Amini, Laurencin, Nukavarapu (bb0185) 2012; 40
Shao, Chen, Wang, Chen, Du (bb0070) 2012; 72
Pham, Sharma, Mikos (bb0060) 2006; 7
Kurobe, Maxfield, Tara, Rocco, Bagi, Yi, Udelsman, Zhuang, Cleary, Iwakiri, Breuer, Shinoka (bb0330) 2015; 10
Thakur, Florek, Kohn, Michniak (bb0360) 2008; 364
Pham, Sharma, Mikos (bb0055) 2006; 12
Chou, Carson, Woodrow (bb0085) 2015; 220
Zhao, Tan, Pastorin, Ho (bb0260) 2013; 31
Hsu, Ni (bb0290) 2009; 15
Sakai, Yamada, Yamaguchi, Ciach, Kawakami (bb0130) 2009; 88a
Lu, Huang, Lin, Yao, Lou, Tsai, Chen (bb0250) 2009; 20
Eschenhagen, Eder, Vollert, Hansen (bb0305) 2012; 303
Nguyen, Ghosh, Hwang, Chanunpanich, Park (bb0115) 2012; 439
Badrossamay (10.1016/j.addr.2016.04.019_bb0310) 2010; 10
Dahlin (10.1016/j.addr.2016.04.019_bb0270) 2011; 17
Amini (10.1016/j.addr.2016.04.019_bb0185) 2012; 40
Mohiti-Asli (10.1016/j.addr.2016.04.019_bb0380) 2014; 20
Sakai (10.1016/j.addr.2016.04.019_bb0130) 2009; 88a
Zeng (10.1016/j.addr.2016.04.019_bb0095) 2005; 105
Thakur (10.1016/j.addr.2016.04.019_bb0360) 2008; 364
Papenburg (10.1016/j.addr.2016.04.019_bb0215) 2010; 6
Gao (10.1016/j.addr.2016.04.019_bb0355) 2014; 131
Zahedi (10.1016/j.addr.2016.04.019_bb0365) 2012; 124
Lee (10.1016/j.addr.2016.04.019_bb0080) 2014; 8
Pérez (10.1016/j.addr.2016.04.019_bb0195) 2013; 65
Kobsa (10.1016/j.addr.2016.04.019_bb0385) 2013; 34
Zamani (10.1016/j.addr.2016.04.019_bb0090) 2013; 8
Chiono (10.1016/j.addr.2016.04.019_bb0245) 2015; 131
Hu (10.1016/j.addr.2016.04.019_bb0320) 2010; 31
Bengali (10.1016/j.addr.2016.04.019_bb0160) 2005; 90
Yoo (10.1016/j.addr.2016.04.019_bb0075) 2009; 61
Raquez (10.1016/j.addr.2016.04.019_bb0230) 2013; 38
Ratner (10.1016/j.addr.2016.04.019_bb0050) 2013
Callahan (10.1016/j.addr.2016.04.019_bb0275) 2013; 34
Zhao (10.1016/j.addr.2016.04.019_bb0065) 2012; 32
Nguyen (10.1016/j.addr.2016.04.019_bb0115) 2012; 439
Pham (10.1016/j.addr.2016.04.019_bb0060) 2006; 7
Pham (10.1016/j.addr.2016.04.019_bb0055) 2006; 12
Puppi (10.1016/j.addr.2016.04.019_bb0165) 2010; 35
Surrao (10.1016/j.addr.2016.04.019_bb0220) 2012; 8
Kontogiannopoulos (10.1016/j.addr.2016.04.019_bb0340) 2011; 409
Tian (10.1016/j.addr.2016.04.019_bb0120) 2015; 5
Wei (10.1016/j.addr.2016.04.019_bb0170) 2015; 213
He (10.1016/j.addr.2016.04.019_bb0150) 2006; 45
Bigg (10.1016/j.addr.2016.04.019_bb0045) 2005; 24
Holzwarth (10.1016/j.addr.2016.04.019_bb0190) 2011; 32
Heunis (10.1016/j.addr.2016.04.019_bb0370) 2011; 12
Lasprilla (10.1016/j.addr.2016.04.019_bb0025) 2012; 30
Ma (10.1016/j.addr.2016.04.019_bb0040) 2004; 7
Fang (10.1016/j.addr.2016.04.019_bb0210) 2014; 35
Zhao (10.1016/j.addr.2016.04.019_bb0260) 2013; 31
Shalumon (10.1016/j.addr.2016.04.019_bb0325) 2015; 72
Kurobe (10.1016/j.addr.2016.04.019_bb0330) 2015; 10
Saraf (10.1016/j.addr.2016.04.019_bb0105) 2009; 15
Thuy (10.1016/j.addr.2016.04.019_bb0145) 2012; 439
Shao (10.1016/j.addr.2016.04.019_bb0070) 2012; 72
Torres-Giner (10.1016/j.addr.2016.04.019_bb0155) 2012; 14
Hsu (10.1016/j.addr.2016.04.019_bb0290) 2009; 15
Jamshidian (10.1016/j.addr.2016.04.019_bb0015) 2010; 9
Lopes (10.1016/j.addr.2016.04.019_bb0020) 2012; 42
Butcher (10.1016/j.addr.2016.04.019_bb0295) 2011; 63
Mohiti-Asli (10.1016/j.addr.2016.04.019_bb0350) 2015
Lanza (10.1016/j.addr.2016.04.019_bb0005) 2007
Habraken (10.1016/j.addr.2016.04.019_bb0180) 2007; 59
Athanasiou (10.1016/j.addr.2016.04.019_bb0175) 1996; 17
Lu (10.1016/j.addr.2016.04.019_bb0010) 2009
Cheng (10.1016/j.addr.2016.04.019_bb0390) 2013; 9
Eschenhagen (10.1016/j.addr.2016.04.019_bb0305) 2012; 303
Immich (10.1016/j.addr.2016.04.019_bb0135) 2013; 33
Heunis (10.1016/j.addr.2016.04.019_bb0375) 2013; 57
Chou (10.1016/j.addr.2016.04.019_bb0085) 2015; 220
Binan (10.1016/j.addr.2016.04.019_bb0280) 2014; 35
Wang (10.1016/j.addr.2016.04.019_bb0285) 2009; 6
Li (10.1016/j.addr.2016.04.019_bb0265) 2005; 1
Nguyen (10.1016/j.addr.2016.04.019_bb0110) 2011; 86
Nguyen (10.1016/j.addr.2016.04.019_bb0345) 2013; 48
Liao (10.1016/j.addr.2016.04.019_bb0100) 2009; 139
Ren (10.1016/j.addr.2016.04.019_bb0235) 2010
Lovald (10.1016/j.addr.2016.04.019_bb0030) 2009; 20
Wang (10.1016/j.addr.2016.04.019_bb0315) 2009; 10
Hasan (10.1016/j.addr.2016.04.019_bb0300) 2014; 10
Pillay (10.1016/j.addr.2016.04.019_bb0140) 2013
Lu (10.1016/j.addr.2016.04.019_bb0250) 2009; 20
Sun (10.1016/j.addr.2016.04.019_bb0255) 2012; 12
Langer (10.1016/j.addr.2016.04.019_bb0035) 1993; 260
Lou (10.1016/j.addr.2016.04.019_bb0205) 2014; 69
Sundaramurthi (10.1016/j.addr.2016.04.019_bb0335) 2014; 54
Gu (10.1016/j.addr.2016.04.019_bb0240) 2011; 93
Zhang (10.1016/j.addr.2016.04.019_bb0200) 2012; 33
Maretschek (10.1016/j.addr.2016.04.019_bb0125) 2008; 127
Mourino (10.1016/j.addr.2016.04.019_bb0225) 2013; 10
References_xml – year: 2013
  ident: bb0050
  article-title: Biomaterials Science: An Introduction to Materials in Medicine
– volume: 8
  year: 2014
  ident: bb0080
  article-title: Electrospun nanofibers as versatile interfaces for efficient gene delivery
  publication-title: J. Biol. Eng.
– volume: 33
  start-page: 5067
  year: 2012
  end-page: 5075
  ident: bb0200
  article-title: Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering
  publication-title: Biomaterials
– volume: 6
  start-page: 2477
  year: 2010
  end-page: 2483
  ident: bb0215
  article-title: A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion
  publication-title: Acta Biomater.
– volume: 9
  start-page: 552
  year: 2010
  end-page: 571
  ident: bb0015
  article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 439
  start-page: 296
  year: 2012
  end-page: 306
  ident: bb0145
  article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system
  publication-title: Int. J. Pharm.
– volume: 10
  start-page: 2257
  year: 2010
  end-page: 2261
  ident: bb0310
  article-title: Nanofiber assembly by rotary jet-spinning
  publication-title: Nano Lett.
– volume: 54
  start-page: 348
  year: 2014
  end-page: 376
  ident: bb0335
  article-title: Electrospun nanofibers as scaffolds for skin tissue engineering
  publication-title: Polym. Rev.
– volume: 42
  start-page: 1402
  year: 2012
  end-page: 1413
  ident: bb0020
  article-title: Poly (lactic acid) production for tissue engineering applications
  publication-title: Procedia Eng.
– volume: 93
  start-page: 204
  year: 2011
  end-page: 230
  ident: bb0240
  article-title: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration
  publication-title: Prog. Neurobiol.
– volume: 88a
  start-page: 281
  year: 2009
  end-page: 287
  ident: bb0130
  article-title: Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery
  publication-title: J. Biomed. Mater. Res. A
– volume: 34
  start-page: 3891
  year: 2013
  end-page: 3901
  ident: bb0385
  article-title: An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds
  publication-title: Biomaterials
– volume: 131
  year: 2014
  ident: bb0355
  article-title: Electrospun antibacterial nanofibers: production, activity, and in vivo applications
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 349
  year: 2011
  end-page: 364
  ident: bb0270
  article-title: Polymeric nanofibers in tissue engineering
  publication-title: Tissue Eng. Part B Rev.
– volume: 35
  start-page: 403
  year: 2010
  end-page: 440
  ident: bb0165
  article-title: Polymeric materials for bone and cartilage repair
  publication-title: Prog. Polym. Sci.
– volume: 69
  start-page: 464
  year: 2014
  end-page: 470
  ident: bb0205
  article-title: Fabrication of PLLA/beta-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 59
  start-page: 234
  year: 2007
  end-page: 248
  ident: bb0180
  article-title: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
– volume: 105
  start-page: 43
  year: 2005
  end-page: 51
  ident: bb0095
  article-title: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation
  publication-title: J. Control. Release
– volume: 139
  start-page: 48
  year: 2009
  end-page: 55
  ident: bb0100
  article-title: Sustained viral gene delivery through core-shell fibers
  publication-title: J. Control. Release
– volume: 35
  start-page: 190
  year: 2014
  end-page: 194
  ident: bb0210
  article-title: Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite
  publication-title: Mat. Sci. Eng. C Mater.
– volume: 31
  start-page: 654
  year: 2013
  end-page: 668
  ident: bb0260
  article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering
  publication-title: Biotechnol. Adv.
– volume: 10
  year: 2015
  ident: bb0330
  article-title: Development of small diameter nanofiber tissue engineered arterial grafts
  publication-title: PLoS One
– volume: 72
  start-page: 1048
  year: 2015
  end-page: 1055
  ident: bb0325
  article-title: Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 40
  start-page: 363
  year: 2012
  end-page: 408
  ident: bb0185
  article-title: Bone tissue engineering: recent advances and challenges
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 10
  start-page: 1353
  year: 2013
  end-page: 1365
  ident: bb0225
  article-title: Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering
  publication-title: Expert Opin. Drug Deliv.
– volume: 12
  start-page: 2158
  year: 2011
  end-page: 2173
  ident: bb0370
  article-title: Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO)
  publication-title: Int. J. Mol. Sci.
– volume: 1
  start-page: 259
  year: 2005
  end-page: 275
  ident: bb0265
  article-title: Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery
  publication-title: J. Biomed. Nanotechnol.
– volume: 409
  start-page: 216
  year: 2011
  end-page: 228
  ident: bb0340
  article-title: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications
  publication-title: Int. J. Pharm.
– volume: 127
  start-page: 180
  year: 2008
  end-page: 187
  ident: bb0125
  article-title: Electrospun biodegradable nanofiber nonwovens for controlled release of proteins
  publication-title: J. Control. Release
– volume: 6
  start-page: 016001
  year: 2009
  ident: bb0285
  article-title: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications
  publication-title: J. Neural Eng.
– volume: 24
  start-page: 69
  year: 2005
  end-page: 82
  ident: bb0045
  article-title: Polylactide copolymers: effect of copolymer ratio and end capping on their properties
  publication-title: Adv. Polym. Technol.
– volume: 8
  start-page: 2997
  year: 2013
  end-page: 3017
  ident: bb0090
  article-title: Advances in drug delivery
  publication-title: Int. J. Nanomedicine
– volume: 5
  start-page: 49838
  year: 2015
  end-page: 49848
  ident: bb0120
  article-title: Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells
  publication-title: RSC Adv.
– volume: 15
  start-page: 333
  year: 2009
  end-page: 344
  ident: bb0105
  article-title: Fabrication of nonwoven coaxial fiber meshes by electrospinning
  publication-title: Tissue Eng. Part C Methods
– volume: 34
  start-page: 9089
  year: 2013
  end-page: 9095
  ident: bb0275
  article-title: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide
  publication-title: Biomaterials
– volume: 10
  start-page: 2240
  year: 2009
  end-page: 2244
  ident: bb0315
  article-title: Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold
  publication-title: Biomacromolecules
– volume: 124
  start-page: 4174
  year: 2012
  end-page: 4183
  ident: bb0365
  article-title: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(?-caprolactone) blends
  publication-title: J. Appl. Polym. Sci.
– volume: 65
  start-page: 471
  year: 2013
  end-page: 496
  ident: bb0195
  article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: 30
  year: 2004
  end-page: 40
  ident: bb0040
  article-title: Scaffolds for tissue fabrication
  publication-title: Mater. Today
– volume: 63
  start-page: 242
  year: 2011
  end-page: 268
  ident: bb0295
  article-title: Aortic valve disease and treatment: the need for naturally engineered solutions
  publication-title: Adv. Drug Deliv. Rev.
– volume: 220
  start-page: 584
  year: 2015
  end-page: 591
  ident: bb0085
  article-title: Current strategies for sustaining drug release from electrospun nanofibers
  publication-title: J. Control. Release
– volume: 303
  start-page: H133
  year: 2012
  end-page: H143
  ident: bb0305
  article-title: Physiological aspects of cardiac tissue engineering
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 72
  start-page: 765
  year: 2012
  end-page: 772
  ident: bb0070
  article-title: Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process
  publication-title: React. Funct. Polym.
– volume: 45
  start-page: 515
  year: 2006
  end-page: 524
  ident: bb0150
  article-title: Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery
  publication-title: J. Macromol. Sci. B
– volume: 20
  start-page: 1175
  year: 2009
  end-page: 1180
  ident: bb0250
  article-title: Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration
  publication-title: J. Mater. Sci. Mater. Med.
– year: 2010
  ident: bb0235
  article-title: Biodegradable poly(lactic acid): synthesis, modification, processing and applications
– volume: 131
  start-page: 87
  year: 2015
  end-page: 104
  ident: bb0245
  article-title: Trends in the design of nerve guidance channels in peripheral nerve tissue engineering
  publication-title: Prog. Neurobiol.
– volume: 15
  start-page: 1381
  year: 2009
  end-page: 1390
  ident: bb0290
  article-title: Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation
  publication-title: Tissue Eng. A
– volume: 35
  start-page: 664
  year: 2014
  end-page: 674
  ident: bb0280
  article-title: Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold
  publication-title: Biomaterials
– volume: 30
  start-page: 321
  year: 2012
  end-page: 328
  ident: bb0025
  article-title: Poly-lactic acid synthesis for application in biomedical devices—a review
  publication-title: Biotechnol. Adv.
– volume: 32
  start-page: 1496
  year: 2012
  end-page: 1502
  ident: bb0065
  article-title: Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique
  publication-title: Mater. Sci. Eng., C Mater.
– volume: 86
  start-page: 1799
  year: 2011
  end-page: 1806
  ident: bb0110
  article-title: Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity
  publication-title: Carbohydr. Polym.
– volume: 31
  start-page: 7971
  year: 2010
  end-page: 7977
  ident: bb0320
  article-title: Porous nanofibrous PLLA scaffolds for vascular tissue engineering
  publication-title: Biomaterials
– volume: 20
  start-page: 790
  year: 2014
  end-page: 797
  ident: bb0380
  article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and
  publication-title: Tissue Eng. Part C Methods
– volume: 213
  start-page: E62
  year: 2015
  end-page: E63
  ident: bb0170
  article-title: Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber
  publication-title: J. Control. Release
– volume: 20
  start-page: 389
  year: 2009
  end-page: 398
  ident: bb0030
  article-title: Mechanical design optimization of bioabsorbable fixation devices for bone fractures
  publication-title: J. Craniofac. Surg.
– volume: 12
  start-page: 761
  year: 2012
  end-page: 769
  ident: bb0255
  article-title: Development of channeled nanofibrous scaffolds for oriented tissue engineering
  publication-title: Macromol. Biosci.
– volume: 38
  start-page: 1504
  year: 2013
  end-page: 1542
  ident: bb0230
  article-title: Polylactide (PLA)-based nanocomposites
  publication-title: Prog. Polym. Sci.
– year: 2013
  ident: bb0140
  article-title: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications
  publication-title: J. Nanomater.
– volume: 8
  start-page: 3997
  year: 2012
  end-page: 4006
  ident: bb0220
  article-title: Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering
  publication-title: Acta Biomater.
– volume: 10
  start-page: 11
  year: 2014
  end-page: 25
  ident: bb0300
  article-title: Electrospun scaffolds for tissue engineering of vascular grafts
  publication-title: Acta Biomater.
– year: 2015
  ident: bb0350
  article-title: Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 7
  start-page: 2796
  year: 2006
  end-page: 2805
  ident: bb0060
  article-title: Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration
  publication-title: Biomacromolecules
– volume: 48
  start-page: 7125
  year: 2013
  end-page: 7133
  ident: bb0345
  article-title: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing
  publication-title: J. Mater. Sci.
– volume: 364
  start-page: 87
  year: 2008
  end-page: 93
  ident: bb0360
  article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing
  publication-title: Int. J. Pharm.
– volume: 439
  start-page: 296
  year: 2012
  end-page: 306
  ident: bb0115
  article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system
  publication-title: Int. J. Pharm.
– volume: 17
  start-page: 93
  year: 1996
  end-page: 102
  ident: bb0175
  article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers
  publication-title: Biomaterials
– volume: 90
  start-page: 290
  year: 2005
  end-page: 302
  ident: bb0160
  article-title: Gene delivery through cell culture substrate adsorbed DNA complexes
  publication-title: Biotechnol. Bioeng.
– volume: 33
  start-page: 4002
  year: 2013
  end-page: 4008
  ident: bb0135
  article-title: Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen
  publication-title: Mater. Sci. Eng., C Mater.
– volume: 61
  start-page: 1033
  year: 2009
  end-page: 1042
  ident: bb0075
  article-title: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 9
  start-page: 9461
  year: 2013
  end-page: 9473
  ident: bb0390
  article-title: inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes
  publication-title: Acta Biomater.
– start-page: 794
  year: 2009
  end-page: 800
  ident: bb0010
  article-title: Poly(lactic acid)
  publication-title: Polymer Data Handbook
– volume: 260
  start-page: 920
  year: 1993
  end-page: 926
  ident: bb0035
  article-title: Tissue engineering
  publication-title: Science
– year: 2007
  ident: bb0005
  article-title: Principles of Tissue Engineering
– volume: 12
  start-page: 1197
  year: 2006
  end-page: 1211
  ident: bb0055
  article-title: Electrospinning of polymeric nanofibers for tissue engineering applications: a review
  publication-title: Tissue Eng.
– volume: 14
  start-page: B112
  year: 2012
  end-page: B122
  ident: bb0155
  article-title: Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers
  publication-title: Adv. Eng. Mater.
– volume: 32
  start-page: 9622
  year: 2011
  end-page: 9629
  ident: bb0190
  article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 57
  start-page: 3928
  year: 2013
  end-page: 3935
  ident: bb0375
  article-title: Evaluation of a nisin-eluting nanofiber scaffold to treat
  publication-title: Antimicrob. Agents Chemother.
– volume: 17
  start-page: 93
  year: 1996
  ident: 10.1016/j.addr.2016.04.019_bb0175
  article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)85754-1
– start-page: 794
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0010
  article-title: Poly(lactic acid)
– volume: 35
  start-page: 190
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0210
  article-title: Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite
  publication-title: Mat. Sci. Eng. C Mater.
  doi: 10.1016/j.msec.2013.11.008
– volume: 105
  start-page: 43
  year: 2005
  ident: 10.1016/j.addr.2016.04.019_bb0095
  article-title: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.02.024
– volume: 303
  start-page: H133
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0305
  article-title: Physiological aspects of cardiac tissue engineering
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00007.2012
– year: 2007
  ident: 10.1016/j.addr.2016.04.019_bb0005
– volume: 30
  start-page: 321
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0025
  article-title: Poly-lactic acid synthesis for application in biomedical devices—a review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.06.019
– volume: 8
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0080
  article-title: Electrospun nanofibers as versatile interfaces for efficient gene delivery
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-8-30
– volume: 20
  start-page: 1175
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0250
  article-title: Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-008-3646-4
– volume: 127
  start-page: 180
  year: 2008
  ident: 10.1016/j.addr.2016.04.019_bb0125
  article-title: Electrospun biodegradable nanofiber nonwovens for controlled release of proteins
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2008.01.011
– volume: 14
  start-page: B112
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0155
  article-title: Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201180006
– volume: 10
  start-page: 2240
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0315
  article-title: Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold
  publication-title: Biomacromolecules
  doi: 10.1021/bm900416b
– volume: 1
  start-page: 259
  year: 2005
  ident: 10.1016/j.addr.2016.04.019_bb0265
  article-title: Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2005.032
– year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0350
  article-title: Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 63
  start-page: 242
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0295
  article-title: Aortic valve disease and treatment: the need for naturally engineered solutions
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.01.008
– volume: 61
  start-page: 1033
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0075
  article-title: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.07.007
– volume: 35
  start-page: 664
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0280
  article-title: Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.09.097
– volume: 131
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0355
  article-title: Electrospun antibacterial nanofibers: production, activity, and in vivo applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40797
– volume: 124
  start-page: 4174
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0365
  article-title: Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(?-caprolactone) blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.35372
– year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0140
  article-title: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications
  publication-title: J. Nanomater.
  doi: 10.1155/2013/789289
– volume: 12
  start-page: 1197
  year: 2006
  ident: 10.1016/j.addr.2016.04.019_bb0055
  article-title: Electrospinning of polymeric nanofibers for tissue engineering applications: a review
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.1197
– volume: 65
  start-page: 471
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0195
  article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.03.009
– volume: 54
  start-page: 348
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0335
  article-title: Electrospun nanofibers as scaffolds for skin tissue engineering
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2014.881374
– volume: 34
  start-page: 3891
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0385
  article-title: An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.016
– volume: 72
  start-page: 765
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0070
  article-title: Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.07.011
– volume: 10
  start-page: 11
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0300
  article-title: Electrospun scaffolds for tissue engineering of vascular grafts
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.08.022
– year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0050
– volume: 86
  start-page: 1799
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0110
  article-title: Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.07.014
– volume: 57
  start-page: 3928
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0375
  article-title: Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00622-13
– volume: 10
  start-page: 1353
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0225
  article-title: Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2013.808183
– volume: 69
  start-page: 464
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0205
  article-title: Fabrication of PLLA/beta-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.06.004
– volume: 9
  start-page: 552
  year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0015
  article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/j.1541-4337.2010.00126.x
– volume: 8
  start-page: 3997
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0220
  article-title: Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.07.012
– volume: 24
  start-page: 69
  year: 2005
  ident: 10.1016/j.addr.2016.04.019_bb0045
  article-title: Polylactide copolymers: effect of copolymer ratio and end capping on their properties
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.20032
– volume: 15
  start-page: 1381
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0290
  article-title: Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2008.0175
– volume: 72
  start-page: 1048
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0325
  article-title: Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.09.058
– volume: 12
  start-page: 2158
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0370
  article-title: Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12042158
– volume: 20
  start-page: 790
  year: 2014
  ident: 10.1016/j.addr.2016.04.019_bb0380
  article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2013.0458
– volume: 34
  start-page: 9089
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0275
  article-title: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.028
– volume: 38
  start-page: 1504
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0230
  article-title: Polylactide (PLA)-based nanocomposites
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.05.014
– volume: 439
  start-page: 296
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0145
  article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2012.09.019
– volume: 93
  start-page: 204
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0240
  article-title: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2010.11.002
– volume: 31
  start-page: 654
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0260
  article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.08.001
– volume: 90
  start-page: 290
  year: 2005
  ident: 10.1016/j.addr.2016.04.019_bb0160
  article-title: Gene delivery through cell culture substrate adsorbed DNA complexes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20393
– volume: 12
  start-page: 761
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0255
  article-title: Development of channeled nanofibrous scaffolds for oriented tissue engineering
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201200004
– volume: 439
  start-page: 296
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0115
  article-title: Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2012.09.019
– volume: 6
  start-page: 2477
  year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0215
  article-title: A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.12.051
– volume: 40
  start-page: 363
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0185
  article-title: Bone tissue engineering: recent advances and challenges
  publication-title: Crit. Rev. Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– volume: 32
  start-page: 9622
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0190
  article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.009
– volume: 409
  start-page: 216
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0340
  article-title: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.02.004
– volume: 59
  start-page: 234
  year: 2007
  ident: 10.1016/j.addr.2016.04.019_bb0180
  article-title: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.03.011
– volume: 33
  start-page: 4002
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0135
  article-title: Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen
  publication-title: Mater. Sci. Eng., C Mater.
  doi: 10.1016/j.msec.2013.05.034
– volume: 10
  start-page: 2257
  year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0310
  article-title: Nanofiber assembly by rotary jet-spinning
  publication-title: Nano Lett.
  doi: 10.1021/nl101355x
– volume: 220
  start-page: 584
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0085
  article-title: Current strategies for sustaining drug release from electrospun nanofibers
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.09.008
– volume: 139
  start-page: 48
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0100
  article-title: Sustained viral gene delivery through core-shell fibers
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.06.007
– volume: 10
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0330
  article-title: Development of small diameter nanofiber tissue engineered arterial grafts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120328
– volume: 260
  start-page: 920
  year: 1993
  ident: 10.1016/j.addr.2016.04.019_bb0035
  article-title: Tissue engineering
  publication-title: Science
  doi: 10.1126/science.8493529
– volume: 20
  start-page: 389
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0030
  article-title: Mechanical design optimization of bioabsorbable fixation devices for bone fractures
  publication-title: J. Craniofac. Surg.
  doi: 10.1097/SCS.0b013e31819b96fb
– year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0235
– volume: 48
  start-page: 7125
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0345
  article-title: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7527-y
– volume: 33
  start-page: 5067
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0200
  article-title: Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.063
– volume: 6
  start-page: 016001
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0285
  article-title: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/1/016001
– volume: 31
  start-page: 7971
  year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0320
  article-title: Porous nanofibrous PLLA scaffolds for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.028
– volume: 32
  start-page: 1496
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0065
  article-title: Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique
  publication-title: Mater. Sci. Eng., C Mater.
  doi: 10.1016/j.msec.2012.04.031
– volume: 5
  start-page: 49838
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0120
  article-title: Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05773F
– volume: 131
  start-page: 87
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0245
  article-title: Trends in the design of nerve guidance channels in peripheral nerve tissue engineering
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2015.06.001
– volume: 35
  start-page: 403
  year: 2010
  ident: 10.1016/j.addr.2016.04.019_bb0165
  article-title: Polymeric materials for bone and cartilage repair
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2010.01.006
– volume: 364
  start-page: 87
  year: 2008
  ident: 10.1016/j.addr.2016.04.019_bb0360
  article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.07.033
– volume: 17
  start-page: 349
  year: 2011
  ident: 10.1016/j.addr.2016.04.019_bb0270
  article-title: Polymeric nanofibers in tissue engineering
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2011.0238
– volume: 213
  start-page: E62
  year: 2015
  ident: 10.1016/j.addr.2016.04.019_bb0170
  article-title: Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.05.103
– volume: 7
  start-page: 30
  year: 2004
  ident: 10.1016/j.addr.2016.04.019_bb0040
  article-title: Scaffolds for tissue fabrication
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(04)00233-0
– volume: 15
  start-page: 333
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0105
  article-title: Fabrication of nonwoven coaxial fiber meshes by electrospinning
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2008.0422
– volume: 42
  start-page: 1402
  year: 2012
  ident: 10.1016/j.addr.2016.04.019_bb0020
  article-title: Poly (lactic acid) production for tissue engineering applications
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.07.534
– volume: 88a
  start-page: 281
  year: 2009
  ident: 10.1016/j.addr.2016.04.019_bb0130
  article-title: Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.31870
– volume: 45
  start-page: 515
  year: 2006
  ident: 10.1016/j.addr.2016.04.019_bb0150
  article-title: Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery
  publication-title: J. Macromol. Sci. B
  doi: 10.1080/00222340600769832
– volume: 9
  start-page: 9461
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0390
  article-title: In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.07.040
– volume: 7
  start-page: 2796
  year: 2006
  ident: 10.1016/j.addr.2016.04.019_bb0060
  article-title: Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration
  publication-title: Biomacromolecules
  doi: 10.1021/bm060680j
– volume: 8
  start-page: 2997
  year: 2013
  ident: 10.1016/j.addr.2016.04.019_bb0090
  article-title: Advances in drug delivery via electrospun and electrosprayed nanomaterials
  publication-title: Int. J. Nanomedicine
SSID ssj0012760
Score 2.6537733
SecondaryResourceType review_article
Snippet Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Animals
Drug delivery
Humans
Lactic Acid - chemistry
Nanofibers
Nanofibers - chemistry
PLA
Polyesters - chemistry
Scaffolds
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title Poly(lactic acid) nanofibrous scaffolds for tissue engineering
URI https://dx.doi.org/10.1016/j.addr.2016.04.019
https://www.ncbi.nlm.nih.gov/pubmed/27125190
https://www.proquest.com/docview/1826680719
https://pubmed.ncbi.nlm.nih.gov/PMC5081275
Volume 107
WOSCitedRecordID wos000390505500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-8294
  dateEnd: 20171031
  omitProxy: false
  ssIdentifier: ssj0012760
  issn: 0169-409X
  databaseCode: AIEXJ
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQuCAqU8KgWCVUgN5Hfu74gRai81FYRBJSbtV7vkpTIqZK0ag78d2a89sZJ1YoeuFjR-iF758v4m_U3M4S8ySMRJOD0OoHAFmYaRQDSVx2pWCK15llQVmL6ecROTvhwmPRbrT91LszFhBUFv7xMzv6rqWEMjI2ps7cwt70oDMBvMDpsweyw_SfD96fYPJpPyuwnR0i8gcQpRAFXzWaoeJ1LofV0ks-NxrCceketChM2CWuv1gjks_NfTq4mqONYVhkvlo9_x1bEJmPmGKZzasdHYlStO48XwvnWbazfV3KOWl7jHNmdx-PfRvzXwwbH4-nc-dRtrk54ZU8fk59ZL1jGAAG3bJe78rim0W3tM9248fr1jar6imc3iwynXfDHWMbVi8sKtZW7XSujvfF6s6LDWs92muI1UrxG6oapi0Vjt30WJeAUt3tfDodf7Wcon5Vp5vYhqqwrIxDcvJPrmM3VyGVTgNtgNIOH5EEVitCegdAj0lLFDrlnmpMud8h-31Q1Xx7QwSpJb35A92l_Ve98-Zi8R8S9NXijiLd3tIE2atFGAW3UoI020PaE_Ph4OPjwuVO15ejIMIoWHeComQjyUAVAHWPtMS4zriVEpj7LA6WyjDHX08IHcitYnAOp1XHIgkAB22RRFjwlW8W0UM8IzSCYzWAIWKsMNRPc0zrMwySGqIRzL2gTr57SVFY167F1yiS93pht4thzzkzFlhuPjmpLpRXnNFwyBeDdeN7r2qwpOGT8yiYKBbOaYsAec2DucMyuMbO9D59hPJG4bcLWAGAPwGLv63uK8ags-g6BFPZieH6rp3tB7q_-lC_J1mJ2rl6Ru_ICjD3bI3fYkO9VmP8L1H3LSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28lactic+acid%29+nanofibrous+scaffolds+for+tissue+engineering&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Santoro%2C+Marco&rft.au=Shah%2C+Sarita+R.&rft.au=Walker%2C+Jennifer+L.&rft.au=Mikos%2C+Antonios+G.&rft.date=2016-12-15&rft.issn=0169-409X&rft.volume=107&rft.spage=206&rft.epage=212&rft_id=info:doi/10.1016%2Fj.addr.2016.04.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_addr_2016_04_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon