Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning Jg. 52; H. 2; S. 191 - 213
Hauptverfasser: Alama, Jesse, Heskes, Tom, Kühlwein, Daniel, Tsivtsivadze, Evgeni, Urban, Josef
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.02.2014
Springer
Springer Nature B.V
Schlagworte:
ISSN:0168-7433, 1573-0670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories.
AbstractList Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories.[PUBLICATION ABSTRACT]
Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories.
Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories.
Author Alama, Jesse
Heskes, Tom
Urban, Josef
Kühlwein, Daniel
Tsivtsivadze, Evgeni
Author_xml – sequence: 1
  givenname: Jesse
  surname: Alama
  fullname: Alama, Jesse
  organization: Center for Artificial Intelligence, New University of Lisbon
– sequence: 2
  givenname: Tom
  surname: Heskes
  fullname: Heskes, Tom
  organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University
– sequence: 3
  givenname: Daniel
  surname: Kühlwein
  fullname: Kühlwein, Daniel
  organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University
– sequence: 4
  givenname: Evgeni
  surname: Tsivtsivadze
  fullname: Tsivtsivadze, Evgeni
  organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University
– sequence: 5
  givenname: Josef
  surname: Urban
  fullname: Urban, Josef
  email: Josef.Urban@gmail.com
  organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28269302$$DView record in Pascal Francis
BookMark eNqFkU9rGzEQxUVJoY7bD9CboARy2USjfysdg0nSkIQW2p6FVjvbbFhLjrQ--NtXxgmUQNPTXH7vzZt5x-QopoiEfAZ2Boy15wWYgbZhIBrLjW7UO7IA1YqG6ZYdkQUDbZpWCvGBHJfyyBgTwOyCXH_PuB4L0h84YZjHFOmQMr338wOu_TyGQrsdXaW82RZ6Ef20K2OhPvb0FnPEid7j_JD68pG8H_xU8NPzXJJfV5c_V1-bu2_XN6uLuyZIpeZGg_FaKWS91lyKLohOQWe7vkPNdEAzCBms4KKHYOUgewu9HKyWXQg9cCOW5PTgu8npaYtldjV9wGnyEdO2ONAtqHoaF_9HFdPCcmFVRb-8Qh_TNtdrKyUtM8YKkJU6eaZ8CX4aso9hLG6Tx7XPO8cN11bUzUvSHriQUykZBxfG2e9_O2c_Tg6Y23fmDp252pnbd-b2OeCV8sX8LQ0_aEpl42_Mf2X_p-gPBQKojQ
CitedBy_id crossref_primary_10_1007_s10817_016_9362_8
crossref_primary_10_1007_s13042_021_01448_9
crossref_primary_10_1007_s11786_014_0182_0
crossref_primary_10_1016_j_jsc_2024_102376
crossref_primary_10_1016_j_jsc_2014_09_032
crossref_primary_10_1007_s10489_021_02469_1
crossref_primary_10_1007_s10817_018_9479_z
crossref_primary_10_1007_s10817_015_9330_8
crossref_primary_10_3233_AIC_180761
crossref_primary_10_1145_3428299
crossref_primary_10_1007_s10817_020_09576_7
crossref_primary_10_3233_AIC_201566
crossref_primary_10_1007_s10817_014_9303_3
crossref_primary_10_3233_AIC_190627
crossref_primary_10_1007_s10472_018_9598_6
crossref_primary_10_1007_s10817_018_9458_4
crossref_primary_10_1145_2658986
crossref_primary_10_1155_2018_8314105
crossref_primary_10_1109_TPAMI_2022_3140382
crossref_primary_10_1145_3661308
crossref_primary_10_3390_e17127877
crossref_primary_10_1007_s10489_020_01837_7
crossref_primary_10_1162_tacl_a_00594
Cites_doi 10.1162/neco.1991.3.4.461
10.1007/978-3-540-71070-7_37
10.1007/978-3-540-78800-3_24
10.1007/3-540-45949-9
10.1007/978-3-642-15582-6_30
10.1007/978-3-642-02959-2_10
10.1007/11542384_3
10.1007/978-3-642-31374-5_1
10.4064/fm-32-1-176-783
10.1007/s10107-010-0420-4
10.1007/978-3-642-22673-1_10
10.1007/978-3-540-74591-4_18
10.1007/3-540-44581-1_27
10.1090/S0002-9947-1950-0051437-7
10.1017/CBO9780511581007
10.1007/BF00247436
10.1007/978-3-642-28717-6_6
10.1007/s10817-007-9085-y
10.1007/978-3-642-24364-6_2
10.1017/CBO9780511809682
10.1007/s10817-004-6245-1
10.1007/BFb0031814
10.1007/978-3-642-22438-6_23
10.1007/s10817-012-9269-y
10.1007/978-3-662-07964-5
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
2015 INIST-CNRS
Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: 2015 INIST-CNRS
– notice: Springer Science+Business Media Dordrecht 2014
DBID AAYXX
CITATION
IQODW
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10817-013-9286-5
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1573-0670
EndPage 213
ExternalDocumentID 3187113531
28269302
10_1007_s10817_013_9286_5
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
8FD
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c455t-618a655e0d66243bc3b51b9bdbe606ce8f34c9323d1c94f4d91d4f964bccd1283
IEDL.DBID P5Z
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330589600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-7433
IngestDate Thu Oct 02 11:48:55 EDT 2025
Wed Oct 01 14:30:42 EDT 2025
Tue Nov 04 22:15:15 EST 2025
Wed Apr 02 07:28:59 EDT 2025
Sat Nov 29 05:55:12 EST 2025
Tue Nov 18 22:10:52 EST 2025
Fri Feb 21 02:34:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Automated reasoning in large theories
Premise selection
Automated theorem proving
Machine learning
Automated reasoning
Formal method
Knowledge base
Automatic proving
Kernel method
Theorem proving
Fine grain structure
Proof theory
Artificial intelligence
Formal verification
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-618a655e0d66243bc3b51b9bdbe606ce8f34c9323d1c94f4d91d4f964bccd1283
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://hdl.handle.net/2066/117169
PQID 1490889314
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_1671531023
proquest_miscellaneous_1506392395
proquest_journals_1490889314
pascalfrancis_primary_28269302
crossref_citationtrail_10_1007_s10817_013_9286_5
crossref_primary_10_1007_s10817_013_9286_5
springer_journals_10_1007_s10817_013_9286_5
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Heidelberg
PublicationTitle Journal of automated reasoning
PublicationTitleAbbrev J Autom Reasoning
PublicationYear 2014
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References RiazanovAVoronkovAThe design and implementation of VAMPIREAI Commun.2002152–3911101021.68082
Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos. Lecture Notes in Computer Science, vol. 6989, pp. 12–27. Springer (2011)
Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS. Lecture Notes in Computer Science, vol. 6327, pp. 155–166. Springer (2010)
RifkinRYeoGPoggioTSuykensJHorvathGBasuSMicchelliCVandewalleJRegularized least-squares classificationAdvances in Learning Theory: Methods, Model and Applications2003AmsterdamIOS Press131154
Harrison, J., Slind, K., Arthan, R.: HOL. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. Lecture Notes in Computer Science, vol. 3600, pp. 11–19. Springer (2006)
Schoelkopf, B., Herbrich, R., Williamson, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory, pp. 416–426. Berlin, Germany (2001)
Shalev-ShwartzSSingerYSrebroNCotterAPegasos: primal estimated sub-gradient solver for SVMMath. Program.2011127133010.1007/s10107-010-0420-41211.902392776708
UrbanJRudnickiPSutcliffeGATP and presentation service for Mizar formalizationsJ. Autom. Reason.20135022924110.1007/s10817-012-9269-y1260.683803016805
Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Tech. Rep. UIUCDCS-R-99-2101, UIUC Computer Science Department (1999). http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf
Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 6167, pp. 132–146. Springer (2010)
Alama, J.: Formal proofs and refutations. Ph.D. thesis, Stanford University (2009)
GrabowskiAKorniłowiczANaumowiczAMizar in a nutshellJ. Formaliz. Reason.2010321532451211.683692747563
Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applications and extraction for Coq and Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 7362, pp. 1–16. Springer (2012)
Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE. LNCS, vol. 5663, pp. 140–145. Springer (2009)
TarskiAOn well-ordered subsets of any setFundam. Math.193932176183
RudnickiPObvious inferencesJ. Autom. Reason.19873438339310.1007/BF002474360641.68141922616
AronszajnN.Theory of reproducing kernelsTrans. Am. Math. Soc.195068337404
Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008)
Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. Lecture Notes in Computer Science, vol. 6803, pp. 299–314. Springer (2011)
Solovay, R.: AC and strongly inaccessible cardinals. Available on the Foundations of Mathematics archives at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html (2008)
MengJPaulsonLCTranslating higher-order clauses to first-order clausesJ. Autom. Reason.2008401356010.1007/s10817-007-9085-y1203.681882387925
Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 232–245. Springer (2007)
Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007. CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007)
Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer (1996)
SchulzSE - A brainiac theorem proverAI Commun.2002152–31111261020.68084
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A proof assistant for higher-order logic. Lecture Notes in Computer Science, vol. 2283. Springer (2002)
ScholkopfBSmolaAJLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond2001CambridgeMIT Press
UrbanJMPTP 0.2: design, implementation, and initial experimentsJ. Autom. Reason.2006371–221431113.68095
BishopCMPattern Recognition and Machine Learning (Information Science and Statistics)2006SecaucusSpringer
de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)
Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Mathematical Logic. Springer (2009)
Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM. Lecture Notes in Computer Science, vol. 6824, pp. 133–148. Springer (2011)
RichardMDLippmannRPNeural network classifiers estimate Bayesian a posteriori probabilitiesNeural Comput.20103446148310.1162/neco.1991.3.4.461
Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Coq’Art: the calculus of inductive constructions. In: Texts in Theoretical Computer Science. Springer (2004)
Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp. 530–531. Kaufmann (1981)
Shawe-TaylorJCristianiniNKernel Methods for Pattern Analysis2004New YorkCambridge University Press10.1017/CBO9780511809682
TsivtsivadzeEPahikkalaTBobergJSalakoskiTHeskesTFürnkranzJHüllermeierECo-regularized least-squares for label rankingPreference Learning2011BerlinSpringer107123
TrybulecATarski Grothendieck set theoryFormaliz. Math.199011911
Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 7180, pp. 37–45. Springer (2012)
UrbanJMPTP—motivation, implementation, first experimentsJ. Autom. Reason.2004333–431933910.1007/s10817-004-6245-11075.680812137987
9286_CR40
9286_CR29
9286_CR9
9286_CR24
9286_CR8
A Grabowski (9286_CR11) 2010; 3
R Rifkin (9286_CR22) 2003
J Meng (9286_CR15) 2008; 40
CM Bishop (9286_CR7) 2006
S Shalev-Shwartz (9286_CR27) 2011; 127
J Shawe-Taylor (9286_CR28) 2004
A Tarski (9286_CR31) 1939; 32
P Rudnicki (9286_CR23) 1987; 3
9286_CR30
9286_CR10
J Urban (9286_CR34) 2004; 33
J Urban (9286_CR37) 2013; 50
A Riazanov (9286_CR20) 2002; 15
MD Richard (9286_CR21) 2010; 3
9286_CR16
9286_CR38
9286_CR17
9286_CR39
9286_CR18
9286_CR19
9286_CR12
S Schulz (9286_CR26) 2002; 15
9286_CR13
9286_CR14
J Urban (9286_CR35) 2006; 37
9286_CR36
A Trybulec (9286_CR32) 1990; 1
9286_CR6
9286_CR5
9286_CR4
9286_CR3
9286_CR2
9286_CR1
B Scholkopf (9286_CR25) 2001
E Tsivtsivadze (9286_CR33) 2011
References_xml – reference: Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS. Lecture Notes in Computer Science, vol. 6327, pp. 155–166. Springer (2010)
– reference: Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer (1996)
– reference: Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Mathematical Logic. Springer (2009)
– reference: Shalev-ShwartzSSingerYSrebroNCotterAPegasos: primal estimated sub-gradient solver for SVMMath. Program.2011127133010.1007/s10107-010-0420-41211.902392776708
– reference: RiazanovAVoronkovAThe design and implementation of VAMPIREAI Commun.2002152–3911101021.68082
– reference: TarskiAOn well-ordered subsets of any setFundam. Math.193932176183
– reference: BishopCMPattern Recognition and Machine Learning (Information Science and Statistics)2006SecaucusSpringer
– reference: Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 6167, pp. 132–146. Springer (2010)
– reference: Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Tech. Rep. UIUCDCS-R-99-2101, UIUC Computer Science Department (1999). http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf
– reference: AronszajnN.Theory of reproducing kernelsTrans. Am. Math. Soc.195068337404
– reference: Alama, J.: Formal proofs and refutations. Ph.D. thesis, Stanford University (2009)
– reference: Harrison, J., Slind, K., Arthan, R.: HOL. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. Lecture Notes in Computer Science, vol. 3600, pp. 11–19. Springer (2006)
– reference: Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 7180, pp. 37–45. Springer (2012)
– reference: Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Coq’Art: the calculus of inductive constructions. In: Texts in Theoretical Computer Science. Springer (2004)
– reference: ScholkopfBSmolaAJLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond2001CambridgeMIT Press
– reference: Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007. CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007)
– reference: RichardMDLippmannRPNeural network classifiers estimate Bayesian a posteriori probabilitiesNeural Comput.20103446148310.1162/neco.1991.3.4.461
– reference: Shawe-TaylorJCristianiniNKernel Methods for Pattern Analysis2004New YorkCambridge University Press10.1017/CBO9780511809682
– reference: Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A proof assistant for higher-order logic. Lecture Notes in Computer Science, vol. 2283. Springer (2002)
– reference: Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 232–245. Springer (2007)
– reference: UrbanJMPTP—motivation, implementation, first experimentsJ. Autom. Reason.2004333–431933910.1007/s10817-004-6245-11075.680812137987
– reference: TrybulecATarski Grothendieck set theoryFormaliz. Math.199011911
– reference: MengJPaulsonLCTranslating higher-order clauses to first-order clausesJ. Autom. Reason.2008401356010.1007/s10817-007-9085-y1203.681882387925
– reference: Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM. Lecture Notes in Computer Science, vol. 6824, pp. 133–148. Springer (2011)
– reference: RifkinRYeoGPoggioTSuykensJHorvathGBasuSMicchelliCVandewalleJRegularized least-squares classificationAdvances in Learning Theory: Methods, Model and Applications2003AmsterdamIOS Press131154
– reference: SchulzSE - A brainiac theorem proverAI Commun.2002152–31111261020.68084
– reference: UrbanJMPTP 0.2: design, implementation, and initial experimentsJ. Autom. Reason.2006371–221431113.68095
– reference: UrbanJRudnickiPSutcliffeGATP and presentation service for Mizar formalizationsJ. Autom. Reason.20135022924110.1007/s10817-012-9269-y1260.683803016805
– reference: Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp. 530–531. Kaufmann (1981)
– reference: Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos. Lecture Notes in Computer Science, vol. 6989, pp. 12–27. Springer (2011)
– reference: GrabowskiAKorniłowiczANaumowiczAMizar in a nutshellJ. Formaliz. Reason.2010321532451211.683692747563
– reference: Solovay, R.: AC and strongly inaccessible cardinals. Available on the Foundations of Mathematics archives at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html (2008)
– reference: Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applications and extraction for Coq and Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 7362, pp. 1–16. Springer (2012)
– reference: Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008)
– reference: Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE. LNCS, vol. 5663, pp. 140–145. Springer (2009)
– reference: TsivtsivadzeEPahikkalaTBobergJSalakoskiTHeskesTFürnkranzJHüllermeierECo-regularized least-squares for label rankingPreference Learning2011BerlinSpringer107123
– reference: de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)
– reference: RudnickiPObvious inferencesJ. Autom. Reason.19873438339310.1007/BF002474360641.68141922616
– reference: Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. Lecture Notes in Computer Science, vol. 6803, pp. 299–314. Springer (2011)
– reference: Schoelkopf, B., Herbrich, R., Williamson, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory, pp. 416–426. Berlin, Germany (2001)
– volume: 15
  start-page: 111
  issue: 2–3
  year: 2002
  ident: 9286_CR26
  publication-title: AI Commun.
– volume: 3
  start-page: 461
  issue: 4
  year: 2010
  ident: 9286_CR21
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.461
– ident: 9286_CR9
– ident: 9286_CR39
  doi: 10.1007/978-3-540-71070-7_37
– ident: 9286_CR16
  doi: 10.1007/978-3-540-78800-3_24
– ident: 9286_CR17
  doi: 10.1007/3-540-45949-9
– ident: 9286_CR36
  doi: 10.1007/978-3-642-15582-6_30
– ident: 9286_CR40
  doi: 10.1007/978-3-642-02959-2_10
– start-page: 107
  volume-title: Preference Learning
  year: 2011
  ident: 9286_CR33
– ident: 9286_CR1
– ident: 9286_CR13
  doi: 10.1007/11542384_3
– ident: 9286_CR4
  doi: 10.1007/978-3-642-31374-5_1
– volume: 32
  start-page: 176
  year: 1939
  ident: 9286_CR31
  publication-title: Fundam. Math.
  doi: 10.4064/fm-32-1-176-783
– ident: 9286_CR38
– volume: 127
  start-page: 3
  issue: 1
  year: 2011
  ident: 9286_CR27
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0420-4
– ident: 9286_CR19
– ident: 9286_CR2
  doi: 10.1007/978-3-642-22673-1_10
– ident: 9286_CR30
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2006
  ident: 9286_CR7
– ident: 9286_CR18
  doi: 10.1007/978-3-540-74591-4_18
– ident: 9286_CR24
  doi: 10.1007/3-540-44581-1_27
– ident: 9286_CR5
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 3
  start-page: 153
  issue: 2
  year: 2010
  ident: 9286_CR11
  publication-title: J. Formaliz. Reason.
– ident: 9286_CR29
  doi: 10.1017/CBO9780511581007
– volume: 3
  start-page: 383
  issue: 4
  year: 1987
  ident: 9286_CR23
  publication-title: J. Autom. Reason.
  doi: 10.1007/BF00247436
– ident: 9286_CR3
  doi: 10.1007/978-3-642-28717-6_6
– volume: 40
  start-page: 35
  issue: 1
  year: 2008
  ident: 9286_CR15
  publication-title: J. Autom. Reason.
  doi: 10.1007/s10817-007-9085-y
– volume: 37
  start-page: 21
  issue: 1–2
  year: 2006
  ident: 9286_CR35
  publication-title: J. Autom. Reason.
– volume: 15
  start-page: 91
  issue: 2–3
  year: 2002
  ident: 9286_CR20
  publication-title: AI Commun.
– ident: 9286_CR8
  doi: 10.1007/978-3-642-24364-6_2
– volume: 1
  start-page: 9
  issue: 1
  year: 1990
  ident: 9286_CR32
  publication-title: Formaliz. Math.
– volume-title: Kernel Methods for Pattern Analysis
  year: 2004
  ident: 9286_CR28
  doi: 10.1017/CBO9780511809682
– volume: 33
  start-page: 319
  issue: 3–4
  year: 2004
  ident: 9286_CR34
  publication-title: J. Autom. Reason.
  doi: 10.1007/s10817-004-6245-1
– volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2001
  ident: 9286_CR25
– ident: 9286_CR10
– ident: 9286_CR12
  doi: 10.1007/BFb0031814
– start-page: 131
  volume-title: Advances in Learning Theory: Methods, Model and Applications
  year: 2003
  ident: 9286_CR22
– ident: 9286_CR14
  doi: 10.1007/978-3-642-22438-6_23
– volume: 50
  start-page: 229
  year: 2013
  ident: 9286_CR37
  publication-title: J. Autom. Reason.
  doi: 10.1007/s10817-012-9269-y
– ident: 9286_CR6
  doi: 10.1007/978-3-662-07964-5
SSID ssj0003109
Score 2.401993
Snippet Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Automated reasoning
Benchmarking
Computer Science
Computer science; control theory; systems
Construction
Data processing. List processing. Character string processing
Exact sciences and technology
Kernels
Knowledge bases (artificial intelligence)
Learning and adaptive systems
Logic and foundations
Mathematical analysis
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Mathematical logic, foundations, set theory
Mathematics
Memory organisation. Data processing
Proof theory and constructive mathematics
Proving
Sciences and techniques of general use
Software
Symbolic and Algebraic Manipulation
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HgTxFutFBJ-Ugm2OTR5FPEBcFi98K02agLB0l-2u4L930ktXVNC3QidtmEkyM8zk-wCOTMdmeO6JUFPKQyaswyelQiENeuPUaeZ0STbR6Xbl87Pq1fe4i6bbvSlJlif1p8tuMvJtkjRUsRQhn4V5j13iaQvu7p_a49dDXVaA3h4ok9KmlPndJ6ac0dIwLVAvriK0mIo4vxRJS99zufKvWa_Cch1qkrNqbazBjM3XYaWhcSD1rt6Aq97Ik75Zcl9y4qChCEay5LYFdC2IfiMe8nhSkAbEhKR5Rm7sKLd9cluyUBeb8Hh58XB-Hdb8CqFhnI8xa5Sp4NyeZkLEjGpDNY-00pm2mNYYKx1lBuM7mkVGMccyFWXMKcG0MRn6NboFc_kgt9tAmNXSlehdLmaplkqaGBNBa0SsRORsAKeNohNTg497Dox-8gGb7BWVoKISr6iEB3DcDhlWyBu_CR9MWa8dgRmlJ3uMA9hrzJnUu7TAtKfs8qIRC-CwfY0a90WTNLeDCcpwH8TFVPFfZEQHHYcHwQjgpFkGn37z06x3_iS9C4sYrbGqZXwP5sajid2HBfM6filGB-UmeAe9DP-v
  priority: 102
  providerName: Springer Nature
Title Premise Selection for Mathematics by Corpus Analysis and Kernel Methods
URI https://link.springer.com/article/10.1007/s10817-013-9286-5
https://www.proquest.com/docview/1490889314
https://www.proquest.com/docview/1506392395
https://www.proquest.com/docview/1671531023
Volume 52
WOSCitedRecordID wos000330589600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 0168-7433
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 0168-7433
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 0168-7433
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 0168-7433
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary (1997 - Present)
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 0168-7433
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7y6KFQmqQP6jY1CuTUIhpbj5VOpS1JAyHLkm1D6MVYLwgE73a9W-i_78ivdAPdSy_G4BGWNZJmRjP-PoBjO_IO9z1JDWOCcukD3mlNpbJojctgeDAN2cRoPFY3N3rSHbjVXVllvyc2G7Wb2XhG_iFrK3JYxj_Of9LIGhWzqx2FxjbsZjlK4HyeiB_DThxRL1ts74iZyVif1Wx_nVNZLLpkVOdKUrFml57MyxqHKLTcFmvO54N8aWOGzvb-9wP24WnngJJP7Yw5gC1fPYO9ntyBdGv9OXydLCIVnCfThikH1UfQvyWXA8xrTcxvEoGQVzXpoU1IWTly4ReVvyOXDTd1_QK-n51--3JOO9YFarkQS4wlVSmF8CdOypwzY5kRmdHGGY_BjvUqMG7R62Mus5oH7nTmeNCSG2sdWjv2EnaqWeVfAeHeqNBgeoWcl0ZpZXMMD72VuZZZ8Amc9GNe2A6SPDJj3BX3YMpRTQWqqYhqKkQC74Ym8xaPY5NwuqbIoQXGmZECMk_gsNdV0a3durhXVAJHw2Mc8ZhKKSs_W6GMiK5dzrTYICNHaE4iNEYC7_tZ89dr_tXr15s79QYeo9PG28rxQ9hZLlb-LTyyv5a39SKF3c-n48lVCtsXI5rGStZp2iwKvF5Nr_8AwD4O6g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFL3UKiiI9ZOO1hpBX5TBTr42eRARtbZsd1mwQvFlOskkUCiz686u0j_lb_RmZjJ1BfetD74NTDKTSU7uvZncnAPwwg5ciXZPpoYxkXLpPF5pnUpl0RsX3nBvGrGJwXisTk70ZAN-xbMwIa0y2sTGUJdTG_6Rv8najByW8Xez72lQjQq7q1FCo4XF0F38xCVb_fbwI47vS0r3Px1_OEg7VYHUciEWuFZShRTC7ZVSUs6MZUZkRpvSOAzmrVOecYtRDSszq7nnpc5K7rXkxtoSrTnD516D6xhG6GAIJuJbb_kDy2bLJR44OhmLu6jtUT2VhSRPlmqqZCpW_ODtWVHjkPhWS2Ml2P1rf7Zxe_tb_1uH3YU7XYBN3rcz4h5suOo-bEXxCtLZsgfweTIPUneOfGmUgBCeBON3MuppbGtiLkggel7WJFK3kKIqydDNK3dORo32dv0Qvl7J5zyCzWpauW0g3BnlG84yT3lhlFaW4vLXWUm1zLxLYC-OcW47yvWg_HGeX5JFB1jkCIs8wCIXCbzqq8xavpF1hXdXgNPXwHV0kLikCexEbOSdbarzS2Ak8Ly_jT0etoqKyk2XWEaE0JUyLdaUkQN0l4H6I4HXEaV_vOZfrX68vlHP4ObB8egoPzocD5_ALQxQeZslvwObi_nSPYUb9sfirJ7vNpOPwOlVg_c3-gZnpg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG0KTpo2rCBvDSPACitb41vgBIWArTGVVxUXaWxY7tjRpSkvTDu2v8es4TuKMItG3PfAWKXbi2J_POY6Pvw_ghenbAu2ejDVjIubSOrxSKpapQW-cO82drsUm-qNRenqqxmvwK5yF8WmVwSbWhrqYGP-P_CBpMnJYwg9cmxYxPhy8nf6IvYKU32kNchoNRIb26icu36o3x4c41i8pHRx9-_ApbhUGYsOFmOO6Kc2lELZXSEk504ZpkWilC20xsDc2dYwbjHBYkRjFHS9UUnCnJNfGFGjZGT73Fmz0merh7Np4fzQaf-n8gOfcbJjFPWMnY2FPtTm4lyY-5ZPFiqYyFktecWuaVzhArlHWWAp9_9qtrZ3gYOd_7r67sN2G3uRdM1fuwZot78NOkLUgrZV7AB_HMy-CZ8nXWiMIgUswsicnHcFtRfQV8RTQi4oEUheSlwUZ2llpL8hJrcpdPYTvN_I5j2C9nJT2MRBudepqNjNHea5TlRqKC2NrJFUycTaCXhjvzLRk7F4T5CK7ppH2EMkQIpmHSCYieNVVmTZMJKsK7y-BqKuBK2wvfkkj2As4yVqrVWXXIIngeXcbe9xvIuWlnSywjPBBLWVKrCgj--hIPSlIBK8DYv94zb9a_WR1o57BHcRs9vl4NNyFTYxceZM-vwfr89nCPoXb5nJ-Xs3225lI4Oym0fsbcaxxng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Premise+Selection+for+Mathematics+by+Corpus+Analysis+and+Kernel+Methods&rft.jtitle=Journal+of+automated+reasoning&rft.au=Alama%2C+Jesse&rft.au=Heskes%2C+Tom&rft.au=K%C3%BChlwein%2C+Daniel&rft.au=Tsivtsivadze%2C+Evgeni&rft.date=2014-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0168-7433&rft.eissn=1573-0670&rft.volume=52&rft.issue=2&rft.spage=191&rft_id=info:doi/10.1007%2Fs10817-013-9286-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3187113531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-7433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-7433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-7433&client=summon