Premise Selection for Mathematics by Corpus Analysis and Kernel Methods
Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a lar...
Gespeichert in:
| Veröffentlicht in: | Journal of automated reasoning Jg. 52; H. 2; S. 191 - 213 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.02.2014
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0168-7433, 1573-0670 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories. |
|---|---|
| AbstractList | Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories.[PUBLICATION ABSTRACT] Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories. Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based premise selection in two ways. First, a fine-grained dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed, extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50 % improvement on the benchmark over the state-of-the-art Vampire/SInE system for automated reasoning in large theories. |
| Author | Alama, Jesse Heskes, Tom Urban, Josef Kühlwein, Daniel Tsivtsivadze, Evgeni |
| Author_xml | – sequence: 1 givenname: Jesse surname: Alama fullname: Alama, Jesse organization: Center for Artificial Intelligence, New University of Lisbon – sequence: 2 givenname: Tom surname: Heskes fullname: Heskes, Tom organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University – sequence: 3 givenname: Daniel surname: Kühlwein fullname: Kühlwein, Daniel organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University – sequence: 4 givenname: Evgeni surname: Tsivtsivadze fullname: Tsivtsivadze, Evgeni organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University – sequence: 5 givenname: Josef surname: Urban fullname: Urban, Josef email: Josef.Urban@gmail.com organization: Intelligent Systems, Institute for Computing and Information Sciences, Radboud University |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28269302$$DView record in Pascal Francis |
| BookMark | eNqFkU9rGzEQxUVJoY7bD9CboARy2USjfysdg0nSkIQW2p6FVjvbbFhLjrQ--NtXxgmUQNPTXH7vzZt5x-QopoiEfAZ2Boy15wWYgbZhIBrLjW7UO7IA1YqG6ZYdkQUDbZpWCvGBHJfyyBgTwOyCXH_PuB4L0h84YZjHFOmQMr338wOu_TyGQrsdXaW82RZ6Ef20K2OhPvb0FnPEid7j_JD68pG8H_xU8NPzXJJfV5c_V1-bu2_XN6uLuyZIpeZGg_FaKWS91lyKLohOQWe7vkPNdEAzCBms4KKHYOUgewu9HKyWXQg9cCOW5PTgu8npaYtldjV9wGnyEdO2ONAtqHoaF_9HFdPCcmFVRb-8Qh_TNtdrKyUtM8YKkJU6eaZ8CX4aso9hLG6Tx7XPO8cN11bUzUvSHriQUykZBxfG2e9_O2c_Tg6Y23fmDp252pnbd-b2OeCV8sX8LQ0_aEpl42_Mf2X_p-gPBQKojQ |
| CitedBy_id | crossref_primary_10_1007_s10817_016_9362_8 crossref_primary_10_1007_s13042_021_01448_9 crossref_primary_10_1007_s11786_014_0182_0 crossref_primary_10_1016_j_jsc_2024_102376 crossref_primary_10_1016_j_jsc_2014_09_032 crossref_primary_10_1007_s10489_021_02469_1 crossref_primary_10_1007_s10817_018_9479_z crossref_primary_10_1007_s10817_015_9330_8 crossref_primary_10_3233_AIC_180761 crossref_primary_10_1145_3428299 crossref_primary_10_1007_s10817_020_09576_7 crossref_primary_10_3233_AIC_201566 crossref_primary_10_1007_s10817_014_9303_3 crossref_primary_10_3233_AIC_190627 crossref_primary_10_1007_s10472_018_9598_6 crossref_primary_10_1007_s10817_018_9458_4 crossref_primary_10_1145_2658986 crossref_primary_10_1155_2018_8314105 crossref_primary_10_1109_TPAMI_2022_3140382 crossref_primary_10_1145_3661308 crossref_primary_10_3390_e17127877 crossref_primary_10_1007_s10489_020_01837_7 crossref_primary_10_1162_tacl_a_00594 |
| Cites_doi | 10.1162/neco.1991.3.4.461 10.1007/978-3-540-71070-7_37 10.1007/978-3-540-78800-3_24 10.1007/3-540-45949-9 10.1007/978-3-642-15582-6_30 10.1007/978-3-642-02959-2_10 10.1007/11542384_3 10.1007/978-3-642-31374-5_1 10.4064/fm-32-1-176-783 10.1007/s10107-010-0420-4 10.1007/978-3-642-22673-1_10 10.1007/978-3-540-74591-4_18 10.1007/3-540-44581-1_27 10.1090/S0002-9947-1950-0051437-7 10.1017/CBO9780511581007 10.1007/BF00247436 10.1007/978-3-642-28717-6_6 10.1007/s10817-007-9085-y 10.1007/978-3-642-24364-6_2 10.1017/CBO9780511809682 10.1007/s10817-004-6245-1 10.1007/BFb0031814 10.1007/978-3-642-22438-6_23 10.1007/s10817-012-9269-y 10.1007/978-3-662-07964-5 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2013 2015 INIST-CNRS Springer Science+Business Media Dordrecht 2014 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2013 – notice: 2015 INIST-CNRS – notice: Springer Science+Business Media Dordrecht 2014 |
| DBID | AAYXX CITATION IQODW 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10817-013-9286-5 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Mathematics |
| EISSN | 1573-0670 |
| EndPage | 213 |
| ExternalDocumentID | 3187113531 28269302 10_1007_s10817_013_9286_5 |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 8FD AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c455t-618a655e0d66243bc3b51b9bdbe606ce8f34c9323d1c94f4d91d4f964bccd1283 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330589600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-7433 |
| IngestDate | Thu Oct 02 11:48:55 EDT 2025 Wed Oct 01 14:30:42 EDT 2025 Tue Nov 04 22:15:15 EST 2025 Wed Apr 02 07:28:59 EDT 2025 Sat Nov 29 05:55:12 EST 2025 Tue Nov 18 22:10:52 EST 2025 Fri Feb 21 02:34:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Automated reasoning in large theories Premise selection Automated theorem proving Machine learning Automated reasoning Formal method Knowledge base Automatic proving Kernel method Theorem proving Fine grain structure Proof theory Artificial intelligence Formal verification |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-618a655e0d66243bc3b51b9bdbe606ce8f34c9323d1c94f4d91d4f964bccd1283 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | http://hdl.handle.net/2066/117169 |
| PQID | 1490889314 |
| PQPubID | 23500 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_1671531023 proquest_miscellaneous_1506392395 proquest_journals_1490889314 pascalfrancis_primary_28269302 crossref_citationtrail_10_1007_s10817_013_9286_5 crossref_primary_10_1007_s10817_013_9286_5 springer_journals_10_1007_s10817_013_9286_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Heidelberg |
| PublicationTitle | Journal of automated reasoning |
| PublicationTitleAbbrev | J Autom Reasoning |
| PublicationYear | 2014 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | RiazanovAVoronkovAThe design and implementation of VAMPIREAI Commun.2002152–3911101021.68082 Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos. Lecture Notes in Computer Science, vol. 6989, pp. 12–27. Springer (2011) Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS. Lecture Notes in Computer Science, vol. 6327, pp. 155–166. Springer (2010) RifkinRYeoGPoggioTSuykensJHorvathGBasuSMicchelliCVandewalleJRegularized least-squares classificationAdvances in Learning Theory: Methods, Model and Applications2003AmsterdamIOS Press131154 Harrison, J., Slind, K., Arthan, R.: HOL. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. Lecture Notes in Computer Science, vol. 3600, pp. 11–19. Springer (2006) Schoelkopf, B., Herbrich, R., Williamson, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory, pp. 416–426. Berlin, Germany (2001) Shalev-ShwartzSSingerYSrebroNCotterAPegasos: primal estimated sub-gradient solver for SVMMath. Program.2011127133010.1007/s10107-010-0420-41211.902392776708 UrbanJRudnickiPSutcliffeGATP and presentation service for Mizar formalizationsJ. Autom. Reason.20135022924110.1007/s10817-012-9269-y1260.683803016805 Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Tech. Rep. UIUCDCS-R-99-2101, UIUC Computer Science Department (1999). http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 6167, pp. 132–146. Springer (2010) Alama, J.: Formal proofs and refutations. Ph.D. thesis, Stanford University (2009) GrabowskiAKorniłowiczANaumowiczAMizar in a nutshellJ. Formaliz. Reason.2010321532451211.683692747563 Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applications and extraction for Coq and Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 7362, pp. 1–16. Springer (2012) Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE. LNCS, vol. 5663, pp. 140–145. Springer (2009) TarskiAOn well-ordered subsets of any setFundam. Math.193932176183 RudnickiPObvious inferencesJ. Autom. Reason.19873438339310.1007/BF002474360641.68141922616 AronszajnN.Theory of reproducing kernelsTrans. Am. Math. Soc.195068337404 Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008) Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. Lecture Notes in Computer Science, vol. 6803, pp. 299–314. Springer (2011) Solovay, R.: AC and strongly inaccessible cardinals. Available on the Foundations of Mathematics archives at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html (2008) MengJPaulsonLCTranslating higher-order clauses to first-order clausesJ. Autom. Reason.2008401356010.1007/s10817-007-9085-y1203.681882387925 Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 232–245. Springer (2007) Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007. CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007) Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer (1996) SchulzSE - A brainiac theorem proverAI Commun.2002152–31111261020.68084 Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A proof assistant for higher-order logic. Lecture Notes in Computer Science, vol. 2283. Springer (2002) ScholkopfBSmolaAJLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond2001CambridgeMIT Press UrbanJMPTP 0.2: design, implementation, and initial experimentsJ. Autom. Reason.2006371–221431113.68095 BishopCMPattern Recognition and Machine Learning (Information Science and Statistics)2006SecaucusSpringer de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008) Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Mathematical Logic. Springer (2009) Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM. Lecture Notes in Computer Science, vol. 6824, pp. 133–148. Springer (2011) RichardMDLippmannRPNeural network classifiers estimate Bayesian a posteriori probabilitiesNeural Comput.20103446148310.1162/neco.1991.3.4.461 Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Coq’Art: the calculus of inductive constructions. In: Texts in Theoretical Computer Science. Springer (2004) Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp. 530–531. Kaufmann (1981) Shawe-TaylorJCristianiniNKernel Methods for Pattern Analysis2004New YorkCambridge University Press10.1017/CBO9780511809682 TsivtsivadzeEPahikkalaTBobergJSalakoskiTHeskesTFürnkranzJHüllermeierECo-regularized least-squares for label rankingPreference Learning2011BerlinSpringer107123 TrybulecATarski Grothendieck set theoryFormaliz. Math.199011911 Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 7180, pp. 37–45. Springer (2012) UrbanJMPTP—motivation, implementation, first experimentsJ. Autom. Reason.2004333–431933910.1007/s10817-004-6245-11075.680812137987 9286_CR40 9286_CR29 9286_CR9 9286_CR24 9286_CR8 A Grabowski (9286_CR11) 2010; 3 R Rifkin (9286_CR22) 2003 J Meng (9286_CR15) 2008; 40 CM Bishop (9286_CR7) 2006 S Shalev-Shwartz (9286_CR27) 2011; 127 J Shawe-Taylor (9286_CR28) 2004 A Tarski (9286_CR31) 1939; 32 P Rudnicki (9286_CR23) 1987; 3 9286_CR30 9286_CR10 J Urban (9286_CR34) 2004; 33 J Urban (9286_CR37) 2013; 50 A Riazanov (9286_CR20) 2002; 15 MD Richard (9286_CR21) 2010; 3 9286_CR16 9286_CR38 9286_CR17 9286_CR39 9286_CR18 9286_CR19 9286_CR12 S Schulz (9286_CR26) 2002; 15 9286_CR13 9286_CR14 J Urban (9286_CR35) 2006; 37 9286_CR36 A Trybulec (9286_CR32) 1990; 1 9286_CR6 9286_CR5 9286_CR4 9286_CR3 9286_CR2 9286_CR1 B Scholkopf (9286_CR25) 2001 E Tsivtsivadze (9286_CR33) 2011 |
| References_xml | – reference: Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS. Lecture Notes in Computer Science, vol. 6327, pp. 155–166. Springer (2010) – reference: Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer (1996) – reference: Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Mathematical Logic. Springer (2009) – reference: Shalev-ShwartzSSingerYSrebroNCotterAPegasos: primal estimated sub-gradient solver for SVMMath. Program.2011127133010.1007/s10107-010-0420-41211.902392776708 – reference: RiazanovAVoronkovAThe design and implementation of VAMPIREAI Commun.2002152–3911101021.68082 – reference: TarskiAOn well-ordered subsets of any setFundam. Math.193932176183 – reference: BishopCMPattern Recognition and Machine Learning (Information Science and Statistics)2006SecaucusSpringer – reference: Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 6167, pp. 132–146. Springer (2010) – reference: Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Tech. Rep. UIUCDCS-R-99-2101, UIUC Computer Science Department (1999). http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf – reference: AronszajnN.Theory of reproducing kernelsTrans. Am. Math. Soc.195068337404 – reference: Alama, J.: Formal proofs and refutations. Ph.D. thesis, Stanford University (2009) – reference: Harrison, J., Slind, K., Arthan, R.: HOL. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. Lecture Notes in Computer Science, vol. 3600, pp. 11–19. Springer (2006) – reference: Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 7180, pp. 37–45. Springer (2012) – reference: Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Coq’Art: the calculus of inductive constructions. In: Texts in Theoretical Computer Science. Springer (2004) – reference: ScholkopfBSmolaAJLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond2001CambridgeMIT Press – reference: Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007. CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007) – reference: RichardMDLippmannRPNeural network classifiers estimate Bayesian a posteriori probabilitiesNeural Comput.20103446148310.1162/neco.1991.3.4.461 – reference: Shawe-TaylorJCristianiniNKernel Methods for Pattern Analysis2004New YorkCambridge University Press10.1017/CBO9780511809682 – reference: Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A proof assistant for higher-order logic. Lecture Notes in Computer Science, vol. 2283. Springer (2002) – reference: Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 232–245. Springer (2007) – reference: UrbanJMPTP—motivation, implementation, first experimentsJ. Autom. Reason.2004333–431933910.1007/s10817-004-6245-11075.680812137987 – reference: TrybulecATarski Grothendieck set theoryFormaliz. Math.199011911 – reference: MengJPaulsonLCTranslating higher-order clauses to first-order clausesJ. Autom. Reason.2008401356010.1007/s10817-007-9085-y1203.681882387925 – reference: Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM. Lecture Notes in Computer Science, vol. 6824, pp. 133–148. Springer (2011) – reference: RifkinRYeoGPoggioTSuykensJHorvathGBasuSMicchelliCVandewalleJRegularized least-squares classificationAdvances in Learning Theory: Methods, Model and Applications2003AmsterdamIOS Press131154 – reference: SchulzSE - A brainiac theorem proverAI Commun.2002152–31111261020.68084 – reference: UrbanJMPTP 0.2: design, implementation, and initial experimentsJ. Autom. Reason.2006371–221431113.68095 – reference: UrbanJRudnickiPSutcliffeGATP and presentation service for Mizar formalizationsJ. Autom. Reason.20135022924110.1007/s10817-012-9269-y1260.683803016805 – reference: Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp. 530–531. Kaufmann (1981) – reference: Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos. Lecture Notes in Computer Science, vol. 6989, pp. 12–27. Springer (2011) – reference: GrabowskiAKorniłowiczANaumowiczAMizar in a nutshellJ. Formaliz. Reason.2010321532451211.683692747563 – reference: Solovay, R.: AC and strongly inaccessible cardinals. Available on the Foundations of Mathematics archives at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html (2008) – reference: Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applications and extraction for Coq and Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) AISC/MKM/Calculemus. Lecture Notes in Computer Science, vol. 7362, pp. 1–16. Springer (2012) – reference: Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 5195, pp. 441–456. Springer (2008) – reference: Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE. LNCS, vol. 5663, pp. 140–145. Springer (2009) – reference: TsivtsivadzeEPahikkalaTBobergJSalakoskiTHeskesTFürnkranzJHüllermeierECo-regularized least-squares for label rankingPreference Learning2011BerlinSpringer107123 – reference: de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008) – reference: RudnickiPObvious inferencesJ. Autom. Reason.19873438339310.1007/BF002474360641.68141922616 – reference: Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. Lecture Notes in Computer Science, vol. 6803, pp. 299–314. Springer (2011) – reference: Schoelkopf, B., Herbrich, R., Williamson, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, R. (eds.) Proceedings of the 14th Annual Conference on Computational Learning Theory, pp. 416–426. Berlin, Germany (2001) – volume: 15 start-page: 111 issue: 2–3 year: 2002 ident: 9286_CR26 publication-title: AI Commun. – volume: 3 start-page: 461 issue: 4 year: 2010 ident: 9286_CR21 publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.461 – ident: 9286_CR9 – ident: 9286_CR39 doi: 10.1007/978-3-540-71070-7_37 – ident: 9286_CR16 doi: 10.1007/978-3-540-78800-3_24 – ident: 9286_CR17 doi: 10.1007/3-540-45949-9 – ident: 9286_CR36 doi: 10.1007/978-3-642-15582-6_30 – ident: 9286_CR40 doi: 10.1007/978-3-642-02959-2_10 – start-page: 107 volume-title: Preference Learning year: 2011 ident: 9286_CR33 – ident: 9286_CR1 – ident: 9286_CR13 doi: 10.1007/11542384_3 – ident: 9286_CR4 doi: 10.1007/978-3-642-31374-5_1 – volume: 32 start-page: 176 year: 1939 ident: 9286_CR31 publication-title: Fundam. Math. doi: 10.4064/fm-32-1-176-783 – ident: 9286_CR38 – volume: 127 start-page: 3 issue: 1 year: 2011 ident: 9286_CR27 publication-title: Math. Program. doi: 10.1007/s10107-010-0420-4 – ident: 9286_CR19 – ident: 9286_CR2 doi: 10.1007/978-3-642-22673-1_10 – ident: 9286_CR30 – volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics) year: 2006 ident: 9286_CR7 – ident: 9286_CR18 doi: 10.1007/978-3-540-74591-4_18 – ident: 9286_CR24 doi: 10.1007/3-540-44581-1_27 – ident: 9286_CR5 doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 3 start-page: 153 issue: 2 year: 2010 ident: 9286_CR11 publication-title: J. Formaliz. Reason. – ident: 9286_CR29 doi: 10.1017/CBO9780511581007 – volume: 3 start-page: 383 issue: 4 year: 1987 ident: 9286_CR23 publication-title: J. Autom. Reason. doi: 10.1007/BF00247436 – ident: 9286_CR3 doi: 10.1007/978-3-642-28717-6_6 – volume: 40 start-page: 35 issue: 1 year: 2008 ident: 9286_CR15 publication-title: J. Autom. Reason. doi: 10.1007/s10817-007-9085-y – volume: 37 start-page: 21 issue: 1–2 year: 2006 ident: 9286_CR35 publication-title: J. Autom. Reason. – volume: 15 start-page: 91 issue: 2–3 year: 2002 ident: 9286_CR20 publication-title: AI Commun. – ident: 9286_CR8 doi: 10.1007/978-3-642-24364-6_2 – volume: 1 start-page: 9 issue: 1 year: 1990 ident: 9286_CR32 publication-title: Formaliz. Math. – volume-title: Kernel Methods for Pattern Analysis year: 2004 ident: 9286_CR28 doi: 10.1017/CBO9780511809682 – volume: 33 start-page: 319 issue: 3–4 year: 2004 ident: 9286_CR34 publication-title: J. Autom. Reason. doi: 10.1007/s10817-004-6245-1 – volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond year: 2001 ident: 9286_CR25 – ident: 9286_CR10 – ident: 9286_CR12 doi: 10.1007/BFb0031814 – start-page: 131 volume-title: Advances in Learning Theory: Methods, Model and Applications year: 2003 ident: 9286_CR22 – ident: 9286_CR14 doi: 10.1007/978-3-642-22438-6_23 – volume: 50 start-page: 229 year: 2013 ident: 9286_CR37 publication-title: J. Autom. Reason. doi: 10.1007/s10817-012-9269-y – ident: 9286_CR6 doi: 10.1007/978-3-662-07964-5 |
| SSID | ssj0003109 |
| Score | 2.401993 |
| Snippet | Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. This work develops learning-based... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 191 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Automated reasoning Benchmarking Computer Science Computer science; control theory; systems Construction Data processing. List processing. Character string processing Exact sciences and technology Kernels Knowledge bases (artificial intelligence) Learning and adaptive systems Logic and foundations Mathematical analysis Mathematical Logic and Formal Languages Mathematical Logic and Foundations Mathematical logic, foundations, set theory Mathematics Memory organisation. Data processing Proof theory and constructive mathematics Proving Sciences and techniques of general use Software Symbolic and Algebraic Manipulation |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HgTxFutFBJ-Ugm2OTR5FPEBcFi98K02agLB0l-2u4L930ktXVNC3QidtmEkyM8zk-wCOTMdmeO6JUFPKQyaswyelQiENeuPUaeZ0STbR6Xbl87Pq1fe4i6bbvSlJlif1p8tuMvJtkjRUsRQhn4V5j13iaQvu7p_a49dDXVaA3h4ok9KmlPndJ6ac0dIwLVAvriK0mIo4vxRJS99zufKvWa_Cch1qkrNqbazBjM3XYaWhcSD1rt6Aq97Ik75Zcl9y4qChCEay5LYFdC2IfiMe8nhSkAbEhKR5Rm7sKLd9cluyUBeb8Hh58XB-Hdb8CqFhnI8xa5Sp4NyeZkLEjGpDNY-00pm2mNYYKx1lBuM7mkVGMccyFWXMKcG0MRn6NboFc_kgt9tAmNXSlehdLmaplkqaGBNBa0SsRORsAKeNohNTg497Dox-8gGb7BWVoKISr6iEB3DcDhlWyBu_CR9MWa8dgRmlJ3uMA9hrzJnUu7TAtKfs8qIRC-CwfY0a90WTNLeDCcpwH8TFVPFfZEQHHYcHwQjgpFkGn37z06x3_iS9C4sYrbGqZXwP5sajid2HBfM6filGB-UmeAe9DP-v priority: 102 providerName: Springer Nature |
| Title | Premise Selection for Mathematics by Corpus Analysis and Kernel Methods |
| URI | https://link.springer.com/article/10.1007/s10817-013-9286-5 https://www.proquest.com/docview/1490889314 https://www.proquest.com/docview/1506392395 https://www.proquest.com/docview/1671531023 |
| Volume | 52 |
| WOSCitedRecordID | wos000330589600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0670 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0003109 issn: 0168-7433 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0670 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0003109 issn: 0168-7433 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0670 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0003109 issn: 0168-7433 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0670 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0003109 issn: 0168-7433 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary (1997 - Present) customDbUrl: eissn: 1573-0670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003109 issn: 0168-7433 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7y6KFQmqQP6jY1CuTUIhpbj5VOpS1JAyHLkm1D6MVYLwgE73a9W-i_78ivdAPdSy_G4BGWNZJmRjP-PoBjO_IO9z1JDWOCcukD3mlNpbJojctgeDAN2cRoPFY3N3rSHbjVXVllvyc2G7Wb2XhG_iFrK3JYxj_Of9LIGhWzqx2FxjbsZjlK4HyeiB_DThxRL1ts74iZyVif1Wx_nVNZLLpkVOdKUrFml57MyxqHKLTcFmvO54N8aWOGzvb-9wP24WnngJJP7Yw5gC1fPYO9ntyBdGv9OXydLCIVnCfThikH1UfQvyWXA8xrTcxvEoGQVzXpoU1IWTly4ReVvyOXDTd1_QK-n51--3JOO9YFarkQS4wlVSmF8CdOypwzY5kRmdHGGY_BjvUqMG7R62Mus5oH7nTmeNCSG2sdWjv2EnaqWeVfAeHeqNBgeoWcl0ZpZXMMD72VuZZZ8Amc9GNe2A6SPDJj3BX3YMpRTQWqqYhqKkQC74Ym8xaPY5NwuqbIoQXGmZECMk_gsNdV0a3durhXVAJHw2Mc8ZhKKSs_W6GMiK5dzrTYICNHaE4iNEYC7_tZ89dr_tXr15s79QYeo9PG28rxQ9hZLlb-LTyyv5a39SKF3c-n48lVCtsXI5rGStZp2iwKvF5Nr_8AwD4O6g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFL3UKiiI9ZOO1hpBX5TBTr42eRARtbZsd1mwQvFlOskkUCiz686u0j_lb_RmZjJ1BfetD74NTDKTSU7uvZncnAPwwg5ciXZPpoYxkXLpPF5pnUpl0RsX3nBvGrGJwXisTk70ZAN-xbMwIa0y2sTGUJdTG_6Rv8najByW8Xez72lQjQq7q1FCo4XF0F38xCVb_fbwI47vS0r3Px1_OEg7VYHUciEWuFZShRTC7ZVSUs6MZUZkRpvSOAzmrVOecYtRDSszq7nnpc5K7rXkxtoSrTnD516D6xhG6GAIJuJbb_kDy2bLJR44OhmLu6jtUT2VhSRPlmqqZCpW_ODtWVHjkPhWS2Ml2P1rf7Zxe_tb_1uH3YU7XYBN3rcz4h5suOo-bEXxCtLZsgfweTIPUneOfGmUgBCeBON3MuppbGtiLkggel7WJFK3kKIqydDNK3dORo32dv0Qvl7J5zyCzWpauW0g3BnlG84yT3lhlFaW4vLXWUm1zLxLYC-OcW47yvWg_HGeX5JFB1jkCIs8wCIXCbzqq8xavpF1hXdXgNPXwHV0kLikCexEbOSdbarzS2Ak8Ly_jT0etoqKyk2XWEaE0JUyLdaUkQN0l4H6I4HXEaV_vOZfrX68vlHP4ObB8egoPzocD5_ALQxQeZslvwObi_nSPYUb9sfirJ7vNpOPwOlVg_c3-gZnpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG0KTpo2rCBvDSPACitb41vgBIWArTGVVxUXaWxY7tjRpSkvTDu2v8es4TuKMItG3PfAWKXbi2J_POY6Pvw_ghenbAu2ejDVjIubSOrxSKpapQW-cO82drsUm-qNRenqqxmvwK5yF8WmVwSbWhrqYGP-P_CBpMnJYwg9cmxYxPhy8nf6IvYKU32kNchoNRIb26icu36o3x4c41i8pHRx9-_ApbhUGYsOFmOO6Kc2lELZXSEk504ZpkWilC20xsDc2dYwbjHBYkRjFHS9UUnCnJNfGFGjZGT73Fmz0merh7Np4fzQaf-n8gOfcbJjFPWMnY2FPtTm4lyY-5ZPFiqYyFktecWuaVzhArlHWWAp9_9qtrZ3gYOd_7r67sN2G3uRdM1fuwZot78NOkLUgrZV7AB_HMy-CZ8nXWiMIgUswsicnHcFtRfQV8RTQi4oEUheSlwUZ2llpL8hJrcpdPYTvN_I5j2C9nJT2MRBudepqNjNHea5TlRqKC2NrJFUycTaCXhjvzLRk7F4T5CK7ppH2EMkQIpmHSCYieNVVmTZMJKsK7y-BqKuBK2wvfkkj2As4yVqrVWXXIIngeXcbe9xvIuWlnSywjPBBLWVKrCgj--hIPSlIBK8DYv94zb9a_WR1o57BHcRs9vl4NNyFTYxceZM-vwfr89nCPoXb5nJ-Xs3225lI4Oym0fsbcaxxng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Premise+Selection+for+Mathematics+by+Corpus+Analysis+and+Kernel+Methods&rft.jtitle=Journal+of+automated+reasoning&rft.au=Alama%2C+Jesse&rft.au=Heskes%2C+Tom&rft.au=K%C3%BChlwein%2C+Daniel&rft.au=Tsivtsivadze%2C+Evgeni&rft.date=2014-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0168-7433&rft.eissn=1573-0670&rft.volume=52&rft.issue=2&rft.spage=191&rft_id=info:doi/10.1007%2Fs10817-013-9286-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3187113531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-7433&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-7433&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-7433&client=summon |