Solving Large-Scale Least Squares Semidefinite Programming by Alternating Direction Methods
The well-known least squares semidefinite programming (LSSDP) problem seeks the nearest adjustment of a given symmetric matrix in the intersection of the cone of positive semidefinite matrices and a set of linear constraints, and it captures many applications in diversing fields. The task of solving...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 32; číslo 1; s. 136 - 152 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The well-known least squares semidefinite programming (LSSDP) problem seeks the nearest adjustment of a given symmetric matrix in the intersection of the cone of positive semidefinite matrices and a set of linear constraints, and it captures many applications in diversing fields. The task of solving large-scale LSSDP with many linear constraints, however, is numerically challenging. This paper mainly shows the applicability of the classical alternating direction method (ADM) for solving LSSDP and convinces the efficiency of the ADM approach. We compare the ADM approach with some other existing approaches numerically, and we show the superiority of ADM for solving large-scale LSSDP. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0895-4798 1095-7162 |
| DOI: | 10.1137/090768813 |